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ABSTRACT.

The importance of having reliable estimates of electron-ion recombination coefficients for species
such as Ni*"” in tokamaks is pointed out. The state of theoretical calculation of recombination
rates in thermal plasma is then briefly reviewed.

A new treatment is summarised which unites detailed computation of the direct recombination
reactions populating excited ionic energy levels (emphasising dielectronic and radiative
recombination) with a careful study of the effects in a plasma of subsequent collisions on the
initial direct capture distributions. This includes both singly excited and doubly excited (resonance)
state distributions

[lustrations are drawn from fairly ionised ions of interest in laboratory plasmas and include
some specific results on recombination of neon-like and adjacent ions of iron, nickel and selenium.
these ions either are strongly radiating species in tokamak plasmas such as JET or important X-ray
studies

Some results are shown of modelling of nickel ion radiation in JET using the new rate coefficients.



INTRODUCTION

The local densities of ions in a plasma are determined by the
balance of ionisation, recombination and diffusion. For an
impurity species such as nickel in the JET tokamak, modelling
of the ion distribution for a typical pulse incorporating
these processes 1s shown in figure 1. Ni*?s, in the central
plasma, is determined by the balance between ionisation and
recombination, while Ni*! in the edge plasma is determined by
the balance between ionisation and inward diffusion. An
intermediate ion such as Ni*!'7 is influenced by all three
processes. Such intermediate l1ons are important radiators.
Routine measurement of the spatial distribution of spectral
radiation from ions such as Ni*!'7 and Ni*2?% is made on JET,
We seek a consistent model from which absolute nickel density
and radiated power may be deduced. The impurity diffusion
coefficient in JET is inferred empirically to be
approximately 1 m? sec™! independent of ion charge. This is
from the observed positions of radiating shells (eg figure
2). Ionisation and recombination coefficients by contrast
are sought from theorefical atomic physics calculation.

For plasma electron densities Né g 10 em™ 3%, an impurity ion
is almost certainly in its ground energy level (or lowest
metastable level, if present). The effective ionisation
coefficient is the ground level, two bhody electron-icn
ionisation rate coefficient and is negligibly dependent on
plasma density. The effective recombination coefficient for
an ion such as Ni*'7 at densities N, ~ 10** em™ on the other
hand is sensitive to density. It is also markedly sensitive
to the recombining ion structure. This paper reviews briefly
calculations of recombination. A new general calculation for
eficclive vecombination coeryiclenus is then aescrivea and
illustrated. Finally, we return to the modelling of nickel
in JET.




2. AN OVERVIEW OF THE RECOMBINATION COEFFICIENT

The effective electron-ién recombination coefficient
characterises the growth of the ground level population
density of ions 1% due to free electron capture by ions
A+Z+1. Ift iz a composite coefficient composged of direct
electron captures into any accessible energy level of A+Z
{which is stable to Auger breakup, and called a singly
excited state), followed by additional processes which
influence or interrupt the captured electron'’s random walk to
the ground level. The relevant direct capture reactions are
radiative recombination, dielectronic recombination and
three-body recombination. Restricting to electron densities
Ne < 10'* em~? and temperatures Te at which the ion A" Z's
fractional abundance in equilibrium is large, only the first
two direct processes are important. The direct dielectronic
recombination process is itself a composite process composed
of a radiationless transition to a resonant state (the
resonant states which are not stable to Auger breakup are
called doubly excited) followed by a radiative stabilisation.
The doubly exclited states can be influenced by additional
interactions competing with Auger breakup and radiative
stabilisation in finite density plasma. A complete
recombination calculation has therefore three steps, namely
deduction of direct dielectronic recombination coefficients
to singly excited states (including determination of doubly
excited state populations), deduction of direct radiative
recombination coefficients to singly excited states and
deduction of singly excited state populations. In the 1limit
of zero density, only the first and second steps are required
since the final effective recombination coefficient 1s merely
the sum of direct captures to all levels. Also, the doubly
exclted wlale populations in ithe Tirst.step reduce to simple
branching ratio expressions. Most studies have been of these
first two steps. An additional layer of complexity is added
if consistent inclusion of metastable states is sought. Thus
the recombining ion A+Z+1 may have populated mefastable
states. The ground and metastable populations of At evolve




with comparable time constants but are weakly coupled to each
other. Separate effective recombination coefficients are
required for each recombined and recombining ion metastable
pair. Also in the derivation of the generalised
coefficients, there is blurring of the distinction between
singly excited and doubly excited states.

Turning firstly to the direct radiative recombination
goefficient, table 1 summarises calculations up to about one
year ago. The use of hydrogenic formula for capture to whole
principal quantum shells and semi intuitive adjustments to
them are prominent. There-is some use of experimental and
refined calculated photoionisation creoss-section data for
capture to the ground levels. Figure 3 shows some
comparisons for the radlative recombination coefficient to
Fe*?® over all levels. More details are in Summers (1986).
From a practical point of view, the large number of states
accessible to recombination and the variety of ions precludes
the general use of the most sophisticated modern theoretical
photoionisation techniques for direct recombination
coefficients. For intermediate accuracy results for complex
ions, a heirarchy of algorithmic and numerical methods has
been established recently (Summers, 1986b; Burgess & Summers,
1987). These use numerical procedures based on observed
quantum defects and a varlational effective central potential
for ground state, metastable state and low angular momentunm
excited state capture, linked to hydrogenic methods for high
angular momentum capture. The specification includes
arblitrary LS coupled resclution. The formulation is in terms
of a generalisation of bound-free Gaunt factors. Figure 4
shows variation of the bound-free Gaunt factor, gII, with =z
for recombination to form Na-1like states, Figure 5 shows
some recum;;ha;;u; woefficients to a variéty of staves of

Fet2?!, More details are contained in Burgess & Summers
(1987).

Turning to a dielectronic recombination, table 2 summarises
zero density limit calculations of the dielectronic .

coefficient up to about one year ago. Figure 6 shows some




zero density comparative results for Fe*2°, These should be
viewed in the light of the basic reaction sequence relevant
at zero density, namely

A+Z+1(i) + e < A+Z(j,n£) . > A+Z+1(k) + e
. A*%(k,n2) + hy
87%(1i,n) + ny .
Alternative Auger and
Dielectronic recombination . radiative branchings

We also draw attention to the seminal part played by the
Burgess General Formula (Burgess, 1965). More details are in
Summers (1986a). The coefficient is sensitive to the 'parent
lon' transition i+j. Distinection is useful between cases
when the transiting parent electron between states i and J
does not change its principal quantum number {(An=o
transitions) and those when it does. For An=o transitions,
the General Formula tends to be quite accurate, and very'high
n shells are strongly populated. For Ando, the General
Formula is less reliable and fairly low‘n shells are
populated. Alternative branchings, if energetically
accessible, can cause significant disturbance of the main
dielectronic pathway. The outer electron-corbital, ng, is
approximately hydrogenic except when n belongs to, or is
close to the set of guantum numbers represented in the parent
states i or j. Thus the most relevant considerations for
calculation improvement are

(a) The parent ion (the An problem)

transition type

(b) Capture to the lowest (the low level problem)

. accessible levels , _

(¢} Competing branching (the alternative branching
with radiative problem)
stabilisation

(d) Disturbance of the (the doubly-excited state
states j, nt at redistribution problem)

finite density by
colllisions




We return to the calculation of the direct dielectronic
coefficients in the next section. Presupposing these are
correctly determined, the effective recombination coefficient
(properly called the 'collisional-dielectronic recombination
coefficient?, acd) is obtained in the course of solution for
the singly-excited populations A Z(i,n2). It is density
sensitive because of reionisation of such excited states
before the nf electron reaches the ground level. Figure 7
illustrates the behaviour of ®og -

3. A NEW RECOMBINATION CALCULATION

We have established chained semi-automatic computational
procedures for a complete recombination calculation. An
initial description has been given by Summers et al (1987)
and a full description is to be published elsewhere. Here we
wish to illustrate the steps only. The first step is
-calculation of direct dielectronic recombination coefficients
to the lowest accesible levels. For example, in Se*2?® + e »
Se*2*, the initial fluorine-like parent ion term is

2s22p® 2P, Capture is possible into n=3 levels of the form
2522p® 34 and 2s2p® 3% via doubly excited states

2822p"* 34'38" and 2s2p® 32'3%" for all &, &', A". We include
all terms of these configurations. The results are shown in
figure 8. Auger and spontaneous emission coefficients are
computed using a multielectron, multiconfiguration structure
code extended to include distorted free waves (Badnell, 1985)
and then composed into recombination coefficients
automatically. At usual densities, doubly excited (n=3)
state redistribution is negligible. The next step is
calculation of direct dielectronic recombination coefficients
to all nhigher quantum shells for the captured eiectron. For
example, for Ni'*7 + & =+ a1 , wue initial patenuv wun eeum
is 2s22p%3s 28 and possible An=o0 parent transitions {(i+j) are
© 28*2p®3s-282%2p°%3p and 25%2p®3s-23?2p°3d. The relevant doubly
excited states of Nit'® are therefore of the form 2s2?2p°®3p ni
and 2522p53d nt. In thermal plasmas, the populations are

usually expressed in terms of Saha-Boltzmann deviations




b(j,n%) (the b-factors). In the zero density limit these
might be'expected simply to be branching ratios of the form
Aa/(Aa+Ar) and tend to 1 for Aa>>Ar. The b-factors for
states 28%2p°®3p n& which actually result are shown in figure
9. Necessary Auger rates are obtained by firstly calculating
threshold partial collision strengths in the distorted wave
approximation for the parent excitations and then preojecting
these below threshold. We include allowed and forbidden
excitations. The &-redistribution of doubly excited
populations is by positive ion c¢ollision. The complete high
level solution includes also An=1 parent excitations and all
alternative branchings. The direct recombination
coefficients to levels of the form 2s22p®3s n which result
from all the direct processes are shown in figure 10. The
last step 1s the calculation of the singly excited
populations and the deduction of Chg® Continuing with the
Ni*'® jllustration, the populations of singly excited states
of the form 2s22p®3s n are shown in figure 11 and also the
resultant %age In presenting these illustrations we have
avoided cases with the added complexity of metastables and
angular resolution of singly excited state populations.

These details are nevertheless amenable to calculation by our
computational scheme. More details are contained in Summers
et al (1987)

4. THE ABUNDANCE OF NICKEL IN JET

The new recombination rate coefficients for Ni*'” and Ni‘*!®
described here were incorporated in the transport model used
to provide the radial nickel distribution in figure 1. Some
further details, including specification of the ionisation’
rate coefficients, are in Summers et al (1987).  Agreement of
nickel abundances deﬁived from“spectrum lines of different
lonisation stages would give added confidence to our

transport model and its associated atomic rate coefficient
. . s+ 16
data. The resonance lines of Ni*+*® and Ni are

particularly suitable. The helium-~like and lithium-like

stages are in the near coronal regime and their ionisation




and recombination rate coefficients are amongst the best
established. Also they are not strongly density sensitive.
The Nit!'® stage on the other hand is influenced by transport
and its recombination coefficient is density sensitive.
Table 3 shows a comparison of nickel abundances from Ni*'7,
Ni*t2* and Ni*2% lines for a JET pulse and tends to indicate
broad agreement. Evidently such results do not provide a
definitive test on any single rate coefficient but
nonetheless give some encouragement that the theoretical
atomic rates are approaching the true values.
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Table 1.

Summary of radiative recombination calculations.
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Summary of dielectronic¢ recombination

Table 2.

calculations.
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TABLE 3

Comparison of nickel densities derived from various ilons JET
pulse 4831 at 6+5 secs.

ION B-C/B-M (em~3) Present (ecm™?)
Ni"'l? 6_)4I0 3.910
Ni+2# 2.210

Ni-i-zs 3.010

B-C/B-M denotes the Burgess-Chidichimo (1983) ionisation
sites and the Burgess General Formula (1965) for dielectronic
recombination, modified by the prescription of Mertz et al.
(1976) for An=1 and adjusted for density following Post

et al. (1977).
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Fig. 10 Direct dielectronic coefficients to n shells
for Nit'7 + e»Ni*'6, p, is the intial capturing
parent.ion state, » i< the final parent state,
Contributions to the total arise from

1. 25%2p%3s, 25%2p®3p, 25%2p%3d

2. 2s%2p®3s, 25%2p°3s”

3. 25%2p®3s, 252p°3s3d, 2s72p°3s3p, 2572p°3d

4. 25*2p%3s, 252p®3s3p, 2s%2p°3s3p, 252p°3s
Radiative recombination coefficients are also shown.
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Fig. 11 Singly excited population structure of n shells for

Ni*'®, a,, is the collisional-dielectronic recombination
coefficient.






