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ABSTRACT.

The problem of resonant iontail formation during | CRF heating of tokamak plasmasis considered.
Using the fact that the RF diffusion and Fast-ion Fokker-Planck equations admit simple solution
procedures, a method is given for the determination of the solution of the time dependent ICRF
Fokker-Planck equation in the small Larmor-radius approximation (p.k,<<1). The solution
procedure leadsto aVolterraintegral equation for the determination of the effect of the Coulomb
scattering processes on tail formation. Then using an iterative-perturbation technique, the problem
of tail formation during heating at the fundamental (n=1) and second harmonic (n=2) frequencies
is addressed.



I INTRODUCTION

In recent years there has been considerable interest in the problem of the
determination of the time dependent behaviour of resonant ions in ICRF
heated tokamak plasmas, especially since a detailed knowledge of the
distribution function is essential to the theoretical and experimental
study of the heating process. As is well known, the collisionless
interaction of the resonant ions with the cyclotron wave fields leads to
anisotropic diffusion in velocity space, and the evolution of the ion
distribution function due to the collective effects of particle-wave
interaction and Coulomb scattering is determined by a quasi-linear
Fokker-Planck equation [1,2]. To date, the problem of finding useful
sbiution procedures has proved a formidable task. Although numerical
solutions to the complete system have been obtained [3], analytical model
' treatments have only been partially successful. Stix (1975), using a smali
Larmor-radius approximatioh (pik*<<1)’ derived a lowest order steady-state
solution to the equation deseribing minority ion heating at the
fundamental frequency. From this solution the principal features of the
ion distribution function were identified. Further, perturbation solutions
in the weak RF interaction limit havé been obtained and used to
investigate tail distortion [M], and ICRF beam hybrid heating schemes [5].
The "collisionless" RF~diffusion equation has also received considerable
attention in the literature, particularly in connection with enhanced
resonant ion loss processes [6,7]. These authors justified the use of the
RF-diffusion equation in their investigations of particle losses by
assuming that the early time development of the distribution function is
dominated by particle wave interactions. However, Coulomb scattering

. processes are an important component in the evolution of the resonant ions
.and even a small degree of scattering can be expected to significantly
modify the "collisionless" distribution function. Accordingly, a
consistent treatment would appear to be necessary, even for the initial
phase of the evolution.

In the treatment presented in this work, a mathematical technique based
upon the observation that the RF-diffusion and "Fast Ion" Fokker-Planck
equation separately admit simple solution procedures, is used to determine
the complete solution of the problem. Consideration is restricted to the

development of a solution procedure for the determination of the evolution




of the resonant ions in the tail of the distribution function. For this
class of particles, the Coulomb scéttering proceses are primarily
collisions with the plasma thermal ions and electrons, and the relétively
infrequent energetic ion-ion encounters can be negelcted. Further, it is
assumed that the resonant ions in the bulk of the distribution do not
depart appreciably from thermal equilibrium with the non-resonant plasma
species, and in accordance with [2], orbit effects are neglected, and a
small Larmor-radius approximation is used. The loss in generality implicit
in the use of the (pik_L << 1) approximation, although undesirable, does
lead to a significant gain in tractability.

The organisation of this work is a follows:

In section II, details of a model Fokker-Planck equation which determines
the evolution of the resonant ions in the tail of the distribution are
presented. The equation includes the dominant Coulomb scattering processeé
of dynamical friction, pitch angle scattering, and energy diffusion, with
a simplified quasi-linear RF-operator.

Then in section III, the aforementioned technique of interaction
separation is used to reformulate the problem in terms of an integral
equation of the Volterra type. In this formulation it is analytically
convenient, for reasons which will become apparent, to derive the source
or driving.term for the system from the solution to the RF¥diffusion, or
collisionless Fokker-Planck equation, and determine the influence of the
Coulomb scattering processes on tail formation from the solution of the
integral equation. Following an expansion of the solution in a series of
Legendre polynomials the system is reduced to an integral equation in the

time domain,_which is solved using an interactive-perturbation method.

Finally, in section IV, as an application of the solution procedure, the
problem of tail formation during ICRF heating at the fundamental and
second harmonic frequencies is addressed. The validity of the

"collisionless" model is also discussed.




II DERIVATION OF THE FOKKER-PLANCK EQUATION

The Fokker-Planck equation describing the evolution of resonant ions
subject to the collective effects of Coulomb scattering and particle-wave

interactions ¢an be formally written as [2]:

af

2 = (o) + ) (1)

where f is the resonant ion distribution function, C(f) is the Coulomb
scattering operator, and Q(f) is the quasi-linear operator describing the

collisionless interaction of the ions with the RF wave fields.

For resonant ions in the tail of the distribution function, the Coulomb
" operator simplifies considerably and in terms of the normalised velocity
v(= v/v,, ) takes the form [8]:
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tg(= v,/v) is the pitch variable, v, is the projection of the normalised
velocity along the magnetic field line; m, T, Z are the resonant ion mass,
temperature and charge; mj, n,, T,, Zj’ are the background plasma ion

, J J
species (j) mass, density, temperature, and charge; My Ng» Te’ are the
electron mass, density and temperature respectively, and finally &nA is

the Coulomb logarithm.

According to [2], the velocity space diffusion due to the resonant
interaction of the ions with the wave fields is well described by the
quasi linear theory of Kennel and Engelmann, and for cyclotron absorption

of the fast wave energy at the nth harmonic their operator reads
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where E+ is the component of the wave electrical field in phase with the
ion gyro-rotation; k,, k, are the parallel and the perpendicular
components of the wave vector; v, is the perpendicular component of the
ion velocity; and uw, Wi are the wave and ion gyro-angular frequencies

respectively.

Following the usual procedure of averaging over a magnetic surface to

eliminate the delta function in Eq.(2) we obtain for wave propagation

across the magnetic field (k,=0), and into systems where k,v, Woys the
simplified operator.
1 9 2n-1 af
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where here, and in the following.yL(v=vL/vth) is the normalised
perpendicular. component of the ion velocity, R is the major radius of the
toroidal axis, r is the minor radius of the particular magnetic surface
over which the averaging is taken, and eois the corresponding angle of

intersection with the resonance layer.




II1 FORMAL SOLUTION PROCEDURE AND REDUCTION OF INTEGRAL EQUATION

3.1 Formal Solution Procedure

The process of obtaining a solution to Eq. (1) is relatively

straightforward. We first write the solution in the form:

f(v,t) = £,(v,t) + £ (¥,t) ,

where v = (v,z), and fw(x,t) is a particular solution of RF diffusion
equation:

s = (r,) ()

and the part of the distribution function denoted by fc(l-t) then
satisfies the inhomogenous equation:

afc (5)
Tl C1(fc) = C(f) + (Qn + 02) (fc)

and, for analytical convenience the Coulomb scattering operator has been
written as a sum of operators: )

where
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is the operator describing resonant ion dynamical friction on the plasma
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ions and electrons together with pitch angle scattering on the plasma ions

and
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is the operator describing energy diffusion due to collisions with the
bulk plasma ions and electrons.




The solution to Eq.(1) can be formally written as:

£, =fdy_'fdt' G(yv,v', t-t') [C(fw) + {Qn + 02} (fc)] (6)

where G(x,x',.t-t') is the usual Greens function which satisfies the

equation:
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It follows that once the Greens function and the solution to Eq.(4) fw
have been found, the above integral equation can be formally solved by

the method of succesive approximation.

3.2 The Determination of the Greens Function G(v,v'.t-t')

The Greens function equation, Eq. (7) in spherical coordinates (v,E) in

velocity space is:

3
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and the general technique involved in the determination of the solution is
well known. The solution is first expanded as a Laplace integral—-Legendre

series:
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where Pm(;) is the Legendre polynomial, and for t>0 the p-integration is
closed in the half space Re(p)<c. The equation for the functions gm(v,;,p)

then reads:
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this equation is readily integrated, and after some straightforward
reduction, followed by a further integration in the complex p-plane, the

following Greens funétion is obtained:
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3.3 Reduction of the Integral Equation

In order to reduce the integral equation to a tractable form it is first
assumed that the solution to the RF-diffusion equation, fw’ and the
solution to the integral equation fc admit expansions in the form of

series in Legendre polynomials:

[+
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Then substituting these expansions and the Greens function Eq.(8) into
Eq.(6), integrating over the pitch variable g, and using the é-function to
~effect the integration over the velocity v' gives finally the integral

equation:
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This equation gives an exact formal solution for the functions Am(v,t); in
order to determine the actual solution in a particular case, it is
necessary to introduce an explicit form for the source functions Sm(v,t),
and the expansion of the RF interaction operator Q in the velocity space
coordinate system (v,z) into Eq. (9). To obtain the required expansions

in the caée of heating at the fundamental (n=1), and the second harmonic
frequencies is a relatively easy task. For the source functions Sm(v,t),
it is first necessary to derive the solution to the RF diffusion equation,
Eq.(4), subject to the appropriate initial conditions, the expansion of
the resulting solution in a series of Legendre polynomials can then be
obtained in a straightforward manner, and the source functions identified.
The determinatibn of the expansion of the operator Q and the integration

over the pitch variable r present no particular difficulties.

In the following section the problems of the determination of the time
dependent behaviour of resonant ion distribution functions during heating

at the fundamental, and second harmonic frequencies is undertaken.




IV APPLICATIONS

4.1 Tail Formation During Heating at the Fundamental Frequency (n=1)

To determime the evolution of the resonant ions in the tail of the
distribution function during ICRF heating at the fundamental frequency is

is first necessary to obtain the solution of the RF diffusion equation:

of 1 3
Tih 3t v, 9

when initially the veiocity distribution of the ions is the Maxwellian:

f(v,t=0) = %;/2 exp { - vz,

Following the application of the Laplace transform technique, the solution

subject to the initial condition is easily obtained. We have:

Ctiw
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where A2 = -rmp,v'2 = viZ2 + v 12, Io’ Ko are the modified Bessel
functions, and for t>o the p-integration contour is closed in the half
plane Re(p)<ec.

The indicated integrations are easily carried through and we obtain:

3/2 -
£(vy,v,,t) = = {(1 + 4t/11h)} 1 exp -{'vnz +v,2/7(0 + Ht/11h)}.

This solution is identical to the result obtained in Ref [6] and provides
a clear description of the time development of the resonant ion
distribution function in the absence of Coulomb scattering. Resonant -ions
which are initially Maxwellian and isotropic in velocity space are
progressivly deformed into highly anisotropic distributons with the most
energetic ions concentrated deep in the trapped region of velocity spaée.

The scale of the deformation and the time of particle build-up in the
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trapped region v,=0 is given by the ratio T,/T, = 1 + ut/rh, where T,and
T,are the parallel and perpendicular temperatures of the resonant ion

distribution function.

In order to obtain a representation in the form of an infinite series of

Legendre polynomials, we proceed as follows.

First we set v, = vz, and v,= v V1-z?, then on using the integral

representation

-y 2R 2 -2 /n2
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Invoking the Baur [9] plane wave expansion formula:
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where jﬁ(x) is the spherical Bessel function of order m, and using the
Hankel formula [9]
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From this solution representation, the source functions are readily

identified. We have:

“v2/(1 + 4t/r1 )

h m
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m=0,1...

Next, a transformation of the RF operator Eq. (3) from cylindrical |

coordinates (v,,v,) in'velocity space to the spherical coordinate system

(v,z) is required. For n=1, the operator transforms to:
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Finally, substituting Eq.(13) and Eq.(14) into the original integral

equation, Eq.(9), invoking the orthogonal properties of the Legendre

polynomials [10] and completing the integration over the pitch variable g
yields the integral equation for the functions Am(v,t). The equation ]
reads: ]
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where the functional form of the particle-wave coupling coefficients
w;+22(m) ; i=0,1,2 are presented in Table I.

Further analytic progress at this point towards the determination of a
closed form solution without further simplifications represents
considerable difficulties. Accordingly, Eq.(15) completes the analytical
treatment of the solution to the problem of heating at the fundamental
frequency n=1. In a particular case the actual solution may be obtained

- through numerical iteration.

4.2 Tail Formation During Heating at the Second Harmonic Frequency (n=2)

In this case the RF diffusion equation to be solved is:

subject to the initial condition that the resonant ions be the Maxwellian:

f(v,t=0) = ; exp{ - vz}.
T 2

The procedure for solving this equation is similar to the case of heating
at the fundamental frequency n=1, and a solution using the Laplace
transform technique is again indicated. This procedure gives after some

straightforward reduction the solution:

/dx exp -{(x - 2t/12h)2/u(t/12h) + v2 ezx}‘ (16)
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While the integral appearing in Eq.(16) cannot be evaluated directly, a
simple application of the Method of Steepest Descents does enable a closed

form expression to be obtained. Following this standard procedure,-we get

-vh - -
f(V",V',t) = 3 e_____ exp = (n%= n) /u(t/TZh) ’
™% 1 - 27

and n n(vl,t) is a root of the equation x exp {—x}'+ A = 0, where x = 27

and A

8(t/12h) vZ exp (Mt/rzh). This result is useful in the
investigation of the initial phase of the tail development under

conditions of "strong"ARF interaction and 12h<< Tge

In order to obtain an expansion of the above distribution function, as a

series of Legendre polynomials, we first set v, = vy and v,v/1 - 2 , in

Eq.(16), and then following the procedure used previously, gives the

representation:
_ _ym (U4m+1)
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The source functions are:

Om) y (vt). a7

m
Sm(v’t) =N r(m+1) "m

m = 0,1 and the RF operator in spherical coordinates (v,r) in velocity
space is:
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Substituting Eq.(17) and Eq. (18) into the integral equation, Eq. (9),

invoking the orthogonal properties of the Legendre polynomials, and

completing the simple integration over the variable g yields the integral

equation:
t
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and the particle-wave coupling coefficients w;+21; i=0,1,2 are presented
in Table II.

: Equations (15) and (19) are almost identical in form, and as previously
mentioned, further progress towards the determination of the actual
solution in a particular case requires the intervention of a suitable

numerical procedure.
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v DISCUSSION AND NUMERICAL RESULTS

In the previous section a semi-analytic procedure for the determination of
the solution of the time dependent ICRF Fokker-Planck equation has been
presented. The solution procedure leads to the integral equation, Eq.(9),
which in a particular heating configuration, describes the effect of the
Coulomb scattering processes on the evolution of the resonant particles in
the tail of the distribution funection.

The efficiency of the solution procedure, and in particluar, that for the
coefficients Am(v,t) depends on the form of the solution to the
RF-diffusion equation, Eq.(4), and its development in a series of Legendre
polynomials. The possibility of obtaining suitable solutions is crucially
dependent on the form of the RF-diffusion coefficient; hence the use of
the small Larmor-radius approximation in this work. However, the

(pik* << 1) approximation effectively limits the method to tail particle
energies En§ 0.5m n wéi/kij which for fundamental (n=1) heating of
minority hydrogen (H) in JET with f = 45MHz, and k,= 0.3cem™! is typically
Ens ROOkeV.

From an inspection of the derived integral equations, it is evident that
while the exprgssions for the source functions Sm(v,t) and coupling
coefficients w;+22 are readily calculated for heating at the fundamental
frequency, the corresponding formulas for (n>1) become increasingly
cumbersome, nevertheless, the method is far simpler to implement than
alternative schemes. For second harmonic heating (n=2) the formulas for
iSm(v,t), Eq.(17) and W;+22, Table II, are appreciably more complicated
_than those fqr (n=1), and without further simplification involves further
‘numerical evaluations. However, in view of the limitation of the (pikl<<1)
approximation for this configuration the method is restricted to the

initial phase of the tail formation process tst , or the situation of

2h<Ts

weak RF interaction; where rs<< T the contribution of the integral

,
appearing in Eq. (19) can then bezgegelcted. Furthermore, the method of
Steepest Descents can .be ga}nfully employed to reduce the amount of
numerical computation required. A further point to note is that direct
second harmonic heating of the bulk plasma ions can give rise to

substantial tail populations, with an increase in the frequency of the

-16-




self collisions of the energetic tail ions. These energetic ion-ion
encounters will be an important component in the tail forming process and
for the final stage of the evolution t=rs a full non linear treatment of

the problem is probably required.

Before considering an actual application of the method there are a few
points of practical utility worth mentioning. The integral equation is of
the Volterra type and a well known method of obtaining a solution is the
method of succesive approximations which is essentially identical to a.
Neumann series expansion. The zeroth approximation, valid for evolution
time t<<rs, and the first Born approximation are readily obtained.
Unfortunately, the determination of the validity of these approximations
is not an easy task and in a particular case has to be assessed
nﬁmerically. While higher order Born approximations can in principle be
formulated they are far too complex for efficient numerical computation.

" Thus, the treatment is limited to the zero, and first Born approximations.
A further point to note is’that for the determination of the plasma
quantities which are of experimental interest, such as fusion reactivity
and bulk plasma heating rates, it is only necessary to solve the integral

equations for Ao(v,t).

Finally, under conditions of "strong" RF interaction, where Tnh<<Ts, and
when t((TS, the Coulomb scattering processes are inconsequential, and the
"ecollisionless" theory can be used to estimate the parameters of

interest.

In order to discuss the validity of the "collisionless" model in ICRF
studies, a problem of energetic tail formation during minority heating at
the fundamental frequency in a tokamak configuration that is typical of
the present and the next generation machine is examined. For the

. representative configuration, the following scheme of minority hydrogen
_(H) in a deuteruim (D) plasma is considered; Bulk plasma ion and electron

temperatures T Te = 2.5keV; initial minority temperature TH = 2.5keV;

D’
electron density ne

3x10'3cm™®, with a 10% minority hydrogen. The

= -2
1 1.32x1072s, and Ty
= 1.32x107's. For this configuration, a "Born approximation" to the

characteristic time scales for this data are are t

solution of the integral equation, Eq.(15) has been calculated, and using
a 15 Legendre polynomial expansion, the resonant ion distribution function
has been constructed at times given by t/-rS = 0.25, 0.5 and 1.0, after the

onset of the heating. The pertinent results are shown in Fig. 1.
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It is interesting to note that for t/rS £ 0.25 (tSZ.STRF) little deviation
from the "Collisionless" distribution function is indicated. For these

system time scales, and for the early time development of the distribution
function, the Coulomb'scattering processes are not important, and the tail

formation process is well described by the RF-diffusion equation.

VI SUMMARY

In this work it has been shown that, by applying the method of interaction
separation, the probiem of solving the time-dependent ICRF Fokker-Planck
equation can be reduced to that of obtaining a solution to an ancilliary
integral equation in the time domain. The integral equation which is of
the Volterra type is amenable to an efficient numerical solution
procedure, and for evolution times tg Ty a "Born approximation" is
readily obtained. The method is particularly effective in the

determination of energetic tail formation in fundamental heated ICRF
tokamak systems.
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APPENDIX

The particle-wave coupling coefficients appearing in Eq. (15) and Eq.
(16), w;+22 and their dependence on m are readily obtained using suitable
frictional relationships between the Legenre polynomials Pv(;). The

recurrence formulas needed for the calculations are:

(2v+1) P (v+1) P + VP
v v

+1 v-1?
(1=g2) PL = (w1) P = (1) P,
and
S (vr) (v2) V2 (vt1)2
P, T v (2w3) Twz T e T w3 B

(v=1)v p
(2v=1)(2v+1) v=2 °

The particle-wave coupling coefficients are shown below in Tables I and
iI. \
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: : TABLE I .
Fundamental Frequency (n=1) Particle-Wave Coupling Coefficients "1m+2£

. L Wonioy

-1 : (2m-1) (2m)
(4m-3) (4m~1)

0 - (2m)? . (ame)?
(4m-3) (4m-1) (4m+1) (4m+3)
| | | _ (2m+1) (2m+2)
(4m+3) (4m+5)
. Wim+24
-1 (2m-1)(2m)
(4m-1)
0 1 - (2m)2  , (2m+1)2
(4m-1) (4m+3)
1 _(2m+1) (2m+2)
(4m+3)
2 w2m+22,

- (2m-2)(2m-1)(2m)?
(4m-3) (4m-1)

2m { (2m=1)(2m)(2m+1) , (2m+1)2(2m+2) }
(4m+1) (4m-1) (4m+3)

- (2m+1)2(2m+2) (2m+3)
(4m+3) (4m+5)
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] TABLE II
Second Harmonic Frequency (n=2) Particle Wave Coupling Coefficients w1m+21

[} wom+29.
> (2m~3) (2m-2) (2m-1) (2m)
- (2m-7) (4m-5) (4m-3) (4m-1)
_ (2m-1)(2m) (2 - (2m-2)* _  (2m-1)2 _. (2m)? }
- (4m=3) (4m-1) (4m-3) (4m-1) (4-1)(4m-3) (4m~1) (4m+1)
- (2m)? - (2m+1)? J2 + (2m-1)2(2m)? + (2m-1)2(2m)?
0 (4m=1) (4m+1) (4m+1) (Um+3) (4m+1) (4m+3)2(Um+5) (4m-3) (4m—-1) (Um+1)
_ (2m+1)(2m+2) {2 _ (2m)?2 _ (2m+1)2 _ (2m+2)2 - (2m+3)2
1 (4m+3) (4m+5) (4m~1) (4m+3) (Um+1) (4m+3)  (4m+3) (4m+5)  (4m+5) (Um+5) (4m+7)
5 (2m+1) (2m+2) (2m+3) (2m+4)
(U4m+3) (4m+5) (4m+7)
2 wlm+21L
(2m-3) (2m-2) (2m-1) (2m)
w2 (Tm5) (8m=3) (hm=1)
(2m-1) (2m) {(um-3) - (2m-2)2 _ (2m-1)2} - (2m-1)(2m) {(Zm)2 4+ (2m+1)2 }
(4m=3) (4m-1) (4m-5) (4m-1) (4m—=1) (4m+1)  (4m-1) (4m3)
- (2m+1)2(2m+2)2 | (2m)? + (2m+1)2H1 _ (2m+1)? 7 + (2m—1)2(2m)2}
! (Um+3)?(4m+5)2 (4m=-1) (4m+3) (Um+1) (4m+3) (4m-1) (4m-3)
) (2m+5) (2m+6) (2m+7) (2m+8)
(4m+3) (4m+5) (4m+7)

(Continued ...)
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TABLE II (continued)

[} wzm+29,
(2m-4) (2m-3) (2m-2) 2 (2m-1) (2m)
w2 (4m=7) (4m-5) (4m-3) (4m=1)
(2m~1)(2m) {- (2m-2)2 - (2m-2)(2m-1) , (2m-1)? + (2m-2)(2m)?
! 4m-7) (4m=5) (4m-5(4m-3) (4m-3) (4m-1) (4m=1) (4m+1)
. (2m=2)(2m)(2m+1)?
(4m+1) (4m+3)
(2m)2 , (2mam+1)2(2me2)® , { (2m1)? » @2 roopya -
0 (4m—-1) (4m+) (4m+3)2(lUim+5) (4m-1) (4m+1) (4m+1) (4m+3)
_ (2m)(2m+1) (2m+1) |« (2m=1)2(2m)2(2m+1)
(Um-1) (4m+1) (4m+1) (4m+3) (Um=1)2(Um+1) (4m+3)
(2m*1) (2m+2) [ (2p+3)2 - (2m+2) (2m+3) , (2m+3)? + (2m+1)2(2m+3)
(4m+3(U4m+5) (4m+3) (4m+5) (4m+5) (4m+7) (4m+1) (4m+3)
1 + (2m+1)(2m)z(2m+3)} '
(4m-1) (4m+1)
(2m+1) (2m+2) (2m+3)2(2m+6) (2m+5)
2

(4m+1) (4m+2) (Um+7) (Um+9)
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Fig.1 The formation of a minority hydrogen (H) tail in a deuterium plasma (D). The
broken line is the ‘collisionless’ distribution function. Bulk Plasma temperatures
T.,Tp =2.5keV, initial minority temperature T =2.5keV, electron density
n, =3x10*cm/, minority concentration 10% and 7,/7, =0.1. :
JET-P(85)30




