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INTRODUCTION.

The question of confinement of supra thermal ions in the MeV range and their influence on the
stability i1s of great importance for magnetically confined plasmas. In order to assess these
issues a detailed knowledge of the distribution function of the fast ions is needed. Here we
study the distribution function of fast ions with non-standard orbits when they slow down
collisionally. In particular, we focus on 1ons which have trajectories in phase space that intersect
the locus of so-called pinch orbits (a generalisation of the trapped passing boundary). As the
ions cross the pinch locus their orbits undergo topological transitions.

We refer to orbits as non-standard when the radial excursion of the guiding centre cannot
be assumed to small compared to the distance between a point along the orbit and the magnetic
axis. In fact, as discussed in Ref.[1], the standard treatment of trapped particle orbits breaks
down in the central plasma region of radius 8, = AP R, where A=2gp/ R, p is the average
ion Larmor radius, R is the major toroidal radius, g(r)=rB,/ RB, is the winding index of the
magnetic field lines, B, and B are the toroidal and poloidal magnetic field components,
respectively. For example, for a 1MeV hydrogen ion and typical parameters of the JET
Tokamak, 6,, ~ 03m is about one third of the plasma minor radius. In the absence of
collisions, the orbit equation for the particle guiding centres can be obtained from the invariance

of the particle kinetic energy, £ =mv’ /2, magnetic moment, u=mv’ /2B, and canonical
toroidal momentum, P, =(Ze /c)y —mRv|B_/ B, where y 20 is the poloidal magnetic flux.

A

Let us introduce the dimensionless variables 7 =r/46,, A =(R/d,)A, ¥=(2q,/B&,)y and
¥, =(2q,/B&,)(cP,/ Ze). In the non standard regime where A<l W, <1, the relevant

Hamiltonian for the collisionless guiding centre is then given by [1],
H(Z. 50§ ,)= (2 + 97—, —£ =1, (H

where X =rcosd. p =rsind are canonically conjugate variables, with X playing the role of

the of the canonical momentum and A is the effective energy.
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The fixed point solutions of Hamilton's equations define three curves in the (X,\flq’)

plane, represented in Fig. l: each point within region I corresponds to two orbits, which are
nested into each other; one orbit pertams to each point within region II, while no orbits exist
within region III. The curves A= XO(W ), A=A .(\y,,) correspond to the locus of the co- and
counter-passing stagnation orbits, where o, =1 respectively; the separatrix curve,

A :7:‘(11!‘9 ), corresponds to the locus of the (unstable) pinch orbits. A more detailed orbit

classification is given in Ref. [2].

COLLISIONAL SLOWING DOWN.

As shown in Ref. [1], the orbit-averaged Fokker-Planck equation takes the form

7/ 8F . dF i dF
A — )\.—l—: 3 AS' ’ 2
@ Ve N, " X V) )

where 7 =1/1, (1, is the slowing down time, which is here assumed to be constant),

F= F[f,\]/(p(f),i\.(f)] = v f, and the characteristic equations are
Vo =)+ 0,73 A=21/3, (3)
where G =do/df and angle brackets denote bounce averaging. The function

g(l V,.0)= < ) is a double-valued function of (k. ,,) within region I of Fig. 1. hence the

need to introduce an index: ¢ = —1 for the inner orbit and ¢ = +1 for the outer orbit. As shown
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in Fig. 2, the characteristic curves in the (i,\[fw) plane can be thought of as originating from a
fixed point at 717,» =0, {,, =—3(16)>* = —0.47 as [ — —oo. Some of the curves intersect the

pinch locus. At the intersection point, a branching of the characteristic curves occurs, as
represented by the diagram of Fig. 2a. An outer orbit in region I evolves into a pinch orbit.
Thereafter, a small perturbation transforms the orbit, either into the adjacent inner orbit in region
I, or into the adjacent trapped orbit in region II. A third branch, which maps the pinch locus
onto itself, is dynamically unstable.

In order to determine which of the two stable branches an orbit will follow, one can use a
statistical method to derive the transition probabilities across the locus of the pinch orbits [1].
The equations of motion are determined by the time-dependent Hamiltonian (1),
AP = HI%, P, ¥, ()], where \, obeys Eq. (2). With reference to Fig. 3a, we identify the

separatrix at a given time, [ =1,, and for given (%)), A = A_[,(7,)], nested into a higher

A=A, (i,) trajectory (an outer orbit).
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Fig 3. (a) Tvpical pinch and outer orbit; (b) Transition probabilities, the bullets correspond to the result of
numerical simulation; (c) Band structure of f,,7.

The probability of transition from C (outer orbit) to A (trapped orbit) or B (inner orbit) 1s

determined as the ratio of the measure, given by action integrals /, = f ﬁdf . i=A:Band C, of
all the trajectories moving into A or B to that of all the trajectories leaving C:

P ,=-1,/I: P ,=-1,/1. (4)

AT
The time derivative of the action integrals can be performed analytically [1]. Graphs of the
transition probabilities along the pinch locus are shown in Fig. 3b.
In order to check the validity of Eq (4), we have numerically integrated the equation of

motion and followed particles which initially had collisionless outer orbits close to the
separatrix. The initial conditions were such that y =0and the initial effective energy

~
A~

Az ~ 2 ~ o p . . . ~ ~ e . .
A, =(x, - V,,) —x, were the same for all particles and , ¥,,,(x,,). X,, >0 was varied. The

mn
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initial conditions were then labelled according to whether the trajectories ended up in trapped or
in inner orbits in the presence of electron drag. The results of this test are summarised in Fig. 3¢
for \,, 2 ¥, (x,) =2 . The relative thickness of the bands in Fig. 3¢ is excellent agreement with
the transition probabilities of Fig. 3b, as exemplified by the numerical points (bullets)
superimposed over these curves. This numerical test clarifies the meaning of the transition
probabilities, as representing the relative number of initial conditions evolving into trapped or

~

outer orbits, for particles with equal initial effective energy A, , assuming a uniform distribution

of these initial conditions. For a more detailed account of the transition probabilities reported
here see Ref. [1].

INFLUENCE OF PITCH ANGLE SCATTERING.

The influence of pitch angle scattering on the transition probabilities has been studied by
integrating the equation of motion numerically and frequently applying a Monte Carlo operator.
The Monte Carlo operator is given by [3]: A&=-EAr/T, % m where
&=v,/v, 1, is the characteristic deflection time for pitch angle scattering and * indicates a

random sign. In Fig. 4 the time evolution of A and A_ (v,F,) (the pinch locus) for typical
cases are shown. Fig. 4a shows the evolution of A and A_ without pitch angle scattering for a
particle which ends up on an inner orbit; Fig. 4b shows the evolution of A and A_without pitch

angle scattering for a particle which ends up on a trapped orbit, and the evolution when pitch
angle scattering has been added. The sharp changes of A,A_ (Ais of course constant in the

absence of pitch angle scattering) occur near the mid-plane on the outer part of the orbit where
|€| has its maximum. With reference to the band structure discussed at the end of the previous
section, variation of the initial condition \y,, leads to a variation of A_ at the starting point. The
A_-thickness, (AA),,,,, of two neighbouring bands when slowing down only is considered

corresponds to the change in A_ over a bounce time shown in Fig 4.
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Fig 4. Time evolution of A and N :(a) a case without pitch angle scattering leading 1o an inner orbit: (b) a

case without pitch angle scattering leading ro a rrapped orbit and including pitch angle scattering.



From Fig. 4 it is clear that the transition probabilities derived here are valid only if the
change in A due to pitch angle scattering over a bounce time, (AL) is much smaller than

(A)\‘)bund'
By using the fact that the change in A occur mainly during approximately a quarter of the

p.a.s.?

bounce period when the local pitch angle is near its maximum, & _, we can estimate the change

m

|ax , T, ’Th
~ —t = . 5
a& lﬁém 41‘-1) |§m| TI) ( )

Now, (ARA),,,,=(9A_/dF )AL +(dA_/dV)Av, where AP, ~mRE, vt,/(47,) and

Av ~—vt, /1, are the changes of 7, and v over an orbit due to slowing down. Using the

in A due to pitch angle scattering as,

an

pa.s

m

relation: 9A_ /oy, =1/(2x,) (%, is the pinch point, see Fig 3a), and estimating x, ~1, we

obtain

p T,
AN, ~ &mlqo L (6)
(ARund | 3,1,

where p is the toroidal Larmor radius. Equations (5) and (6) agree well with the numerical
curves in Fig. 4. With the ordering &, ~(3,/r)"”, the condition |(AX),, |<</(AN),,,] can

pas

T, >>1T (t—][&} (7
\ T JL9oP

Eq. (7) turns out to be a quite severe constraint on T,,. The transition probabilities derived here

now be expressed as

are therefore only valid for very cold plasmas and/or very energetic ions.
When pitch angle scattering is dominating, the following boundary conditions across the
pinch locus apply: the distribution function is continuous, i.e. f, =f = f,, where f  denotes

I
the distribution function just outside the pinch locus for the outer, inner and trapped regions
respectively; furthermore, since no accumulation in the boundary layer is expected, the particle

flow between the regions has to be continuous, i.e. (J,+ ) 7=/ -n, where are the

Joa.
particle fluxes in phase space just outside the pinch locus for the outer, inner and trapped
regions respectively, and # is a unit vector normal to the pinch locus. These three conditions
together with conditions at the boundaries of phase space are sufficient to determine uniquely
the solution of the distribution function. Thus, unlike the case without pitch angle scattering, no

condition related to the dynamics in the transition region 1s necessary!
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CONCLUSIONS.

In the limit of weak pitch angle scattering, i.e. T, >>(1 /T, )8, /q,p)*, the Fokker Planck

equation reduces to a first order differential equation which can be studied by the method of
characteristics. A statistical method which predicts the orbit evolution across the branch points
of the characteristic curves has been developed. In the opposite limit, i.e. in the limit of strong
pitch angle scattering, the evolution across the pinch locus is completely determined by the facts
that the distribution function is continuos across the pinch locus and that the particle flux must

be conserved.
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