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1. INTRODUCTION

A statistical analysis has been performed upon sets of Ohmic, L-Mode and H-Mode electron
temperature and density profiles obtained from the LIDAR Thomson Scattering Diagnostic [1] of the
JET tokamak. The objective of the analysis was to determine whether the profiles could be
represented in terms of the normalised flux parameter y and a set of the engineering parameters
like plasma current I, toroidal field By, line averaged electron density 77, inductance ¢;, elongation
, loop voltage Vo, , the edge safety factor gqo5 and z.4. We intend to use the same models to predict
the profile shapes for D-T discharges in JET and in ITER.

2. THE LOG-ADDITIVE PROFILE MODELS

Assuming that the electron temperature and density profiles in a tokamak depend only on the global
parameters, we adopt generalised log-additive models to describe the profiles [2]. The technique is
described in the following for the case of the electron temperature profile. We adopt the ansatz:

Inlew,v)]=f0<w>+,§f,<w)h,(v)

with 6 being the modelled temperature and (@) = (In[/,, }In[B, Jin[A}In[«]....) .

To estimate the unknown coefficients f;( ) we expandin B-splines: f;(y) = f ay By (w) using cubic
spline functions B, (). The control variables T are normalised to their medn Values in the data set
and both the temperature shape and the magnitude are fitted at the same time. All spline coefficients
are fitted simultaneously with a penalised least squares regression, choosing A, so that

[T, (w)]- (v @)Y
Z[ n[ i(Wj)]_ (IV/,U,-)] +Zl,j;|f1(w)l2dw is minimised.
ij 1

O',',I'
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T,-(u/} )is the jth radial measurement of the ith measured temperature profile and o;; is the
associated error. The second term is the smoothness penalty function, which damps down artificial
oscillations in the estimated f,(y).

We use the Rice criterion to estimate the total error, which consists of variance plus smoothing bias
plus the model bias (the error arising from the use of an incorrect model). The Rice criterion differs
from a least square fit by the denominator and enables us to compare models and optimise a given
model with respect to the smoothing parameter. Adding one parameter at a time during a sequential
selection procedure and minimising

. _ 5
N T v - 6{v', 0, )}/ o;
Cr = 22;\/((_2[ XI gZ;Zlese (ol:/lj‘r:(;?o,:;) then defines a set of dominant variables.

The same fitting process is carried out for the density profiles. Since the line average density is a
control variable, we normalise the density profiles to 7.

Advantages of log-additive models:

- Discharge specific phenomena are eliminated by fitting all profiles simultaneously.

- Physics insight into which global variables influence profiles.

- Compact representation for a class of discharges.

- The fitted profiles may easily be input into analysis codes.

- Extrapolation to new values of engineering parameters possible.

- Self consistent errors, including discharge variability, are estimated using repeated
measurements.

3. JET ELECTRON DENSITY AND TEMPERATURE PROFILE PARAMETERISATION

We have compiled and, using the fitting method described above, statistically analysed a 43-profile
Ohmic data set, a 51-profile L-Mode data set and a 51-profile H-Mode data set. The data were taken
from experimental campaigns from 89 to 92. Table 1 shows the parameter ranges of the JET
operating space covered.
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Table 1 Ohmic L - Mode H-Mode
I,/ MA 1.0-5.0 1.0-49 2.1-38.2
By/T 1.1-34 1.4-29 1.4-29
Jos 28-124 3-17 3-7
Pge / MW 0 0-9.7 0-9.7
Png/ MW 0 0-10.0 0-12.4

Each profile is measured at 50 locations (every 5 cm) along the mid-plane of the JET vessel. The
raw profile data show much radial structure and vary slowly in parameter. We remove the outermost
points near the inner wall, where the dumping of the laser light causes a spurious spike on the profile.
As the spatial resolution of the diagnostic is about 10 cm, the measurement errors are autocorrelated,

and we are able to fit the data with smaller residual errors.
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Figure 1: Examples of predicted temperature profile from model with raw data

3A. ANALYSIS OF OHMIC DISCHARGES

Table 2 visualises the selection procedure of the dominant control variables for the Ohmic data set.
Fitting all candidates in a one variable fit, one finds that the current I, minimises Cg. This parameter
is then selected and paired with all other variables in a two variable fit. The variable that minimises
Cg in combination with |p is then selected as second parameter, and so on for third and fourth

variable.



This sequential selection procedure shows that I is the most important variable in determining the
plasma temperature, followed by the toroidal field By the line average density /7 and qgs. Adding a
fifth variable does not appreciably decrease Cgr, so we choose the four variable model.

Table 2: Rice table for Ohmic data set - temperature profiles

Vars in model 1 Var 2 Var 3 Var 4 Var 5 Var
In[77] 4.64 1.73 1.12 seed seed
In[Qgs) 3.04 1.78 1.36 0.885 seed
In[l,] 1.93 seed seed seed seed
In[By] 3.96 1.58 seed seed seed
In[x] 4.30 1.94 1.56 1.10 0.875
a 4.60 1.91 1.58 1.11 0.865
R 4.47 1.88 1.58 1.06 0.869
Vicop 4.63 1.92 1.53 1.10 0.875
Zofi 1 4.01 1.91 1.55 1.06 0.872
Zoti 2 4.37 1.79 1.57 1.11 0.85
iz 4.21 1.63 1.48 1.05 0.875
Time 4.58 1.876 1.52 0.923 0.793

The resulting model for the JET Ohmic temperature profile is:

In[T(w)]=fo(w)+Fi(w)in[1, /2.552 |+ fg(w)in[Br / 2.710]+ £, (w)In[71 / 2.1712]+ fo ()N Ggeo / G
With gage0 = qos/, / Br the geometric part of the safety factor qgs.

As seen in Figure 2 the electron temperature profile broadens and becomes slightly hollow with
increasing current when the other parameters are held constant. The same effect is also seen with
decreasing toroidal magnetic field for constant current. Since f,(y)# ¢ —fg(y) the profile shape
does not depend exclusively on the ratio |1/By. The Rice table shows that the plasma inductance is
not particularly influencing the temperature.
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Goodness of fit

Our best fit for Ohmic temperature profiles has an average error of 187 eV, which is 12.8 % of the
typical line average temperature. The error bar for predicting new measurements is larger than the
typical residual fit error. With Cg1.5 the error bar for predictions is 22% larger than the typical
measurement error.
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Figure 2: Spline functions for Ohmic electron temperature Figure 3: Spline functions for Ohmic electron density profiles
profiles

Table 3 presents the model selection criteria for Ohmic density profiles. Compared to the tempera-
ture fewer variables are necessary to model the profiles. The normalised Ohmic density profile
depends significantly only on a single parameter: i1 / By, which strongly resembles the Murakami
parameter, and broadens for higher nn / B1. The average current density divided by the elongation
I/a%is the next important variable, but its influence is so minor (Figure 3), that we are inclined to drop
it from the final model and instead adopt the simple expression:

In[n(y)/A)=fo(w)+1fye(w)In[A /B ]+0.2215}

Due to the normalisation of the density profiles, the fit error is 6.65 %, which is greatly reduced
compared to the fitting of the temperature profiles. Including I/a%in the discription reduces the error
to 6.47%.
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Table 3 : Rice table for Ohmic data set - density profiles

Vars in model 1 Var 2 Var 1spline 1ct | 3 Var
In[] 1.664 1.460 1.469 1.405
In[Qgs] 1.799 1.424 1.472 1.396
Infl,] 1.788 1.417 1.472 seed

In[B] 1.877 1.460 1.470 1.405
In[x] 1.923 1.439 1.473 1.404
B/nR 1.841 1.424 1.470 1.392
q s lgs/B 1.878 1.444 1.471 1.387
Vioop 1.884 1.432 1.465 1.375
Zog 1.816 1.362 1.469 1.332
|/ a® 1.775 1.413 1.472 1.394
1 1.774 1.445 1.472 1.407
Time 1.906 1.437 1.437 1.379
ni/B 1.470 seed seed seed

3B. ANALYSIS OF L- AND H-MODE DISCHARGES

We use similar log-additive model for L- and H-mode discharges, fitting unnormalised temperature
and normalised density profiles. In each case, we determined the selection of control variables by
minimising the Rice criterion. In particular we find

in the case of L-Mode profiles:
The dominating parameter is the heating power P, , followed by the magnetic field B;and again the
line average density.

Best fit model:

In[T(v)]=fo(w)+fg(w){In[B;]-0.9447} +0.3{In[ P, |- 1.3504} - 0.4{In[A]- 0.7809}
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Asinthe case of the Ohmic discharges, the line average density is also the mostimportant parameter
for L-mode. The profiles flatten with increasing line density. We also observe a weak dependency
onthe elongation, (Figure 4), which is surprising as the parameter varies relatively little in the dataset.
itinfluences mainly the edge region of the profile where the density profile decreases rapidly at higher
elongations. The resulting model is:

n[n(y)/a]="fo(w)+f,(v){in[A]+1.0784} +f, (v){In[x]-0.51017}
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Figure 3: Spline functions for L-Mode electron density profiles Figure 4: Spline functions for H-Mode electron densily profiles

in the case of H-Mode profiles:
The H-mode temperature shape depends primarily on lp as in the Ohmic case’ followed by Z .4 and
the additional heating power P, and qgs:

Best fit model:
IN[T]=fo(w)+2.234 In{[/,]-0.9775} +0.15656{Z; — 0.2633} +0.118

{IN[P a0 ] 0.1960} + f (w)}{In[Gos ] - 0.1619}

The current |, is the most important control variable for the normalised H-mode density, followed by
the elongation . Increasing Ip results in less peaked, sometimes hollow profiles. Increasing extends
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the flat regions of the profile, resulting in sharper gradients in the edge region. The range of variation
of is small (14.5% for H-mode) in the dataset and the effect might be weaker in a larger sample size.
Best fit model:

In[n(y)]=fo(w) + fy(w){in[l, |+ 0.9775} + 1, (w){in[x ] -}

4. FUTURE WORK

Extension of JET profile data base to further clarify parametric dependencies. Especially include and
compare to profiles from new divertor configuration.

Multimachine database for extrapolation to ITER performance possible.

Testing of alternative log-additive diffusivity model for plasma profiles, with the temperature profile
shape resulting from a radial distribution of sinks and sources.

Hierarchy of models

Profile resilience and diffusivity profile resilience strongly suggest that the appropriate empirical
models for local profile dependencies are the additive log-temperature model and the additive log-
diffusivity model. We therefore distinguish four classes of empirical transport models:

1) Global confinement models: 7 = f (engineering variables)

2) Semiparametric profile models: T = f (y,engineering variables)

3) Semiparametric diffusivity models: y = f (y,engineering variables)

4) Firstprincipal transport models: T =f (physics variables), possibly given by theoretical expressions.
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