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ABSTRACT

We analyse the nonlinear stage of magnetic reconnection in collisionless and weakly
collisional regimes. The reconnection time turns out at least an order of magnitude shorter than
the Sweet-Parker-Kadomtsev time for values of the skin depth and of the magnetic Reynolds
number typical of the core of large tokamaks.

INTRODUCTION

Laboratory plasmas close to thermonuclear conditions exhibit a variety of
relaxation phenomena involving strong magnetic activity, the best studied being
probably sawtooth oscillations[1]. A common feature of these phenomena is the
fact that they become sharper in the largest, hottest devices like JET[2].

Renewed interest in the sawtooth crash problem was sparked by the observation
that at the high plasma temperatures of these experiments sawteeth can occur on a
time scale shorter than the electron-ion collision time. For example, Fig. 1 shows
the position of the peak of the soft X-ray emissivity during a typical sawtooth
crash in JET. By interpreting the position of the peak as the position of the
magnetic axis, one can see that the displacement behaves roughly exponentially
with time, covering a large fraction of the plasma radius in a timescale of order of
100ps.

Since the sawtooth phenomenon is initiated by a reconnecting mode, the m=1
internal kink, those experimental findings have generated considerable interest in
the problem of magnetic reconnection in collisionless or weakly collisional
regimes, where electron inertia is responsible for the decoupling of the plasma
motion from that of the magnetic field (See Refs.3-4 for an extended list of
references).

The timescale predicted by the linear theory of m=1 kink-tearing modes is in
good agreement with that observed in the experiments[3]. However the validity of
the linear theory is limited by the condition that the displacement of the magnetic
axis does not exceed the width of the reconnecting layer, in practice the electron
skin depth or the ion Larmor radius, whichever is larger. In order to explain
experimental results like those shown in Fig. 1, a nonlinear analysis is required.
In particular one needs to understand the dynamics in the early nonlinear stage,
Ojinear <<A<<a, where A is the displacement, 3., the width of the
reconnection layer as given by linear theory and a is the plasma radius.

133



134

MODEL AND RESULTS.

Our study of collisionless reconnection employs an extension of reduced MHD
on a two-dimensional slab, where the electron inertia terms, proportional to the
square of the electron skin depth d, =c/wp, is added in Ohm's law. Larmor
radius terms, although formally of the same order as the skin depth terms, are
initially neglected as they are not sufficient to decouple the motion of the plasma
from the magnetic field lines. We therefore consider the coupled equations:

o,U+[o,U]=[J,w]+n, VU, (1)
OF+[0.Fl=nV?(y -y,)-pV'y, (2)

where [A,B]=e,-VAxVB, with e, the unit vector along thez direction.
U= V2(p is the ﬂu:d vorticity, ¢ is the stream function, J =-V?2 Y is the current
density along z, w is the magnetic flux function, Y, is the equilibrium flux
function, F= \u+d J is the total electron canonical momentum in the toroidal
direction and d is the skin depth. The dissipative effects we have included are the
ion viscosity W;, the electrical resistivity 1 and the electron viscosity p.. Since
the equations are normalised these dissipation coefficients must be interpreted as
the inverse of Reynolds-like numbers.

The co-ordinates x and y vary in the intervals x e[—Lx, Lx] and y e[—Ly, Ly],
with the slab aspect ratio €=L, /L, <1 (Here we choose €=1/2). Periodic
boundary conditions are imposed at the edge of these intervals. Length and times
are normalised to the slab width and to the (poloidal) Alfven time respectively.

The initial condition is a tearing-unstable equilibrium without flow,
Jo =¥, =cosx (L, =m) with the addition of a small m=1 perturbation in the
unstable direction. Most of our studies were carried out with d/2L, =0.04 so
that the logarithmic jump A’ of the linear eigenfunction across the reconnecting
layers is such that A’d > 1. In this large- A’ regime the mode structure has global
character, resembling the ecigenfunctions of the m=1 internal-kink,
¢ =~ ¢, signx everywhere except in narrow layers near the reconnecting
surfaces. Moreover, with our choice of &, only the m=1 mode is unstable.

The collisionless equations (i; =, =m=0) were studied numerically and
analytically in Ref.4. Here we only summarize the main results.

Initially, in the linear stage, the system evolves exponentially with a growth rate
y=d until A=d. By this time the current density perturbation 8J=J-J
around the X-point has become of the order of the equilibrium current density.

In the nonlinear stage a current spike of width ddevelops around the X-point. An
analytic calculation based on the conservation of F shows that 8] behaves like
8J=(A/d)In(d/x) at a distance x from the X-point, x<d. The logarithmic
singularity is cut off by a new nonlinear time- dependent microscale
§(t)=dexp[-A(t)/d] so that at the X-point 8Jx =(XA/d)?. No singularity occurs
in the flux function to the leading order: Syy =A% for x <A.

In the nonlinear stage the reconnection proceeds faster than exponentially as far
as numerically observable and arguably until the displacement reaches a
macroscopic size. This is confirmed by an analytic equation for A which predicts



an explosive time dependence in the early nonlinear stage. Thus the overall
reconnection time in the purely collisionless case scales like T, ~d™!, in
substantial agreement with Ref.5.

The nonlinear microscale 8 becomes rapidly small. Thus, additional physical
effects not included in the simple collisionless model eventually come into play
and & is replaced by some other scalelength as a cutoff. In order to understand
the experimental results one must identify which of the many possible cutoff
mechanisms is relevant in a particular situation. Moreover it is crucial to verify
whether the reconnection can proceed at a fast rate even in the presence of spike-
limiting mechanisms.

Here we discuss the role of a small amount of dissipation in the form given in
Eqgs. (1-2). A variety of cases with p, # 0 and/or 10 have been considered, all
of them possessing the same linear eigenfunctions and growth rate but differing
in the nonlinear phase (Fig. 2).

A pure resistive case (1= 3.x107% and d=0) is found to follow the Sweet-Parker
scenario. By contrast, a moderate resistive case with finite electron inertia
(n= 1.5%1072 and d/ 2L, =0.028) behaves essentially in a collisionless fashion:
resistivity (at this value) is ineffective as cut-off mechanism. This is understood
by inspecting Ohm's law (2) using the previously given expressions for the flux
function and for the current. One can see that the resistive term in the spike
region is bounded to O(MA%/d?) which is smaller than the Lh.s. of Eq. (2) as
long as 11<'y“mard2 (or 0" > <d) (the resistivity term is a regular perturbation).
When this occurs the resistivity can also be neglected in the linear theory and it is
never important.

On the other hand, the electron viscosity term is O[p (A /d)(1/ x?)] and can
balance the leading collisionless terms at a sufficiently close distance from the X-
point for any value of p.. Thus the electron viscosity is an efficient cut-off
mechanism. Note that not only the true (collisional) viscosity but also any process
acting as a current hyper-resistivity would be an equally effective candidate. This
idea has been confirmed by running simulations with p, in the range
4.x1077 TR <6.4x107° (with d =1/4). One can see that the microscale (Fig.
2a) is strongly affected by the viscosity. On the other hand the growth of 8Jy is
not slower than exponential even when the viscosity is switched on (Fig. 2b).
Thus the total reconnection time is substantially unaffected. Therefore the
presence of a viscous cutoff (as long as it is smaller than the skin depth) does not
alter the conclusion that reconnection continues to proceed at a fast rate in the
nonlinear stage.

For bigger resistivity, when d < 'r]” 3, the electron inertia is negligible in the linear
phase and the displacement grows with Yy, =N''> until it is of order of the
width of the linear layer A =&,y =M">. In the nonlinear stage the system is
expected to follow the Sweet-Parker scenario with the layer width shrinking as
S nontinear = (N/ M)V 2 while the displacement grows as a power law A=nt’. If
d<11mr (strong collisionality) the displacement reaches the macroscopic size
A =1, where &, inear = ()" %, in the characteristic Sweet-Parker-Kadomtsev time
Tk =N =(T A,fve,,r%simve)'”. If however the skin depth falls in the
intermediate range 11' <d<'r]”3 (moderate collisionality) the electron inertia
becomes again important when 8, inear = d[6]. This occurs at some value of the
displacement A" =m/d? after a time t" =d~'. Afterwards we expect that the
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reconnection will proceed essentially in a collisionless fashion until A =1. The
reconnection time is therefore controlled by the electron inertia,
Tee =d7! <<Tgpg, as long as d<n"2, throughout the collisionless and the
moderate collisionality regimes. The borderline between these regimes is typical
of large tokamak sawteeth and it is therefore of especial experimental interest.
Here the reconnection time turns out at least an order of magnitude shorter than
the Sweet-Parker-Kadomtsev time: T,/ Tspx =1 6<107".

For typical high temperature JET parameters, n”3 =~d=~3.x107 (the skin depth is
normalized to the q=1 radius). After a linear phase, where resistivity and
electron inertia are of comparable importance, the nonlinear evolution of m=1
modes is controlled by collisionless effects. The reconnection time T, . ~1T, /d is
of order of 100ps. Ion Larmor radius effects can shorten this time by up to a
factor three[3,8,9].

The fluid model we have investigated has a number of limitations, as discussed in
Ref.7. However the indications from our analysis are that the occurrence of a
rapid nonlinear stage, when the system evolves faster than the Sweet-Parker-
Kadomtsev timescale, is a fairly general phenomenon in weakly collisional
systems characterised by large values of the A parameter.
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Fig. 1 Evolution of the position of the peak of the soft X-ray emissivity
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during a fast sawtooth crash in JET.
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Fig. 2 Decimal logarithm of a) 8, =(E)38J)”2 and b) 3] at the X-point vs
time. Solid lines: collisionless case. Long dash: with electron viscosity

Me =6.4X 1078, Short dash: pure resistive case = 3.x1073,
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