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1. THE IMPORTANCE OF B

In principle the mhd limitation on B could be a constraint on the achievement of ignition.
However it seems that an experiment designed to give ignition with the presently anticipated
level of energy confinement would be within the simple form of B limit, By, ~ 3 I(MA)/Ba.

With the achievement of ignition, attention turns to economics and it has always been
recognised that in this context high B is desirable, most simply because the plasma pressure
measures the benefit and the magnetic field the cost.

A more recent concern has been the need to drive the toroidal current. B also plays a role
here in that the poloidal beta determines the amount of bootstrap current and hence the amount
of current drive which must be provided.

The general analysis of these matters is of course complex but their contribution to the
basic economics can be sketched.

The "benefit" of the reactor is the power it produces and since the power density is roughly
proportional to n2T?2, that is to p2, a plasma volume V gives a benefit ~p2V. In the present
context this benefit is reduced by the power required to drive the current. Since only the non-
bootstrap fraction, (1 - fgg), of the current requires power, this loss of benefit is proportional to
I(1 - fs). Thus, using the approximation fgg = %Bp where B, = IpdS/(uoI2 / 81t) the
total benefit can be written

Benefit = ¢c; p2V - ¢3 I(3 - Bp).

The cost function is, in reality, complicated but we shall represent it by B2V. This basically
arises from taking the cost to be proportional to the volume of material, with the ratio of this
volume to the plasma volume being given by ratio of the magnetic stress B2/2|1, to the material
stress. This argument applies most obviously to the electromagnetic components but, for
example, is also relevant for the forces on the vacuum vessel due to disruption currents.

Thus, using the above relations, the benefit/cost ratio takes the approximate form

I

Benefit
= c3B’p?—cy—7=(3-Bp) M

Cost

where B=p/(B%/ 2y, )

Although there are functional dependencies for I and V, equation (1) represents adequately
the case for high B and high By,

The dependence of stability on B is complex, involving geometry, profiles, and the
influence of a conducting shell. There are also uncertainties as to what physics should be
included outside the ideal mhd model. Within the ideal model it is possible to resolve the

17



stability issues by numerical calculation for each case. However, this does not readily lead to an
insight as to the underlying behaviour. This aim of this talk is to outline the factors involved
and to give simple models which, while not precise, represent the role of each factor.

2. MHD B-LIMITS - INTRODUCTION

When tokamaks first became thought of as providing the best route to a reactor their stability
properties were only vaguely understood. Real progress toward understanding B-limits started
with two almost simultaneous developments, the derivation of a theory of high-n ballooning
modesl!-3] and the advent of 2-D toroidal computer codes(4l to study global modes. However
the results of the computer calculations required some interpretation.

It was generally anticipated that the mhd B-limit would result from a balance between the
pressure/curvature destabilising force and the line bending implied by ballooning. This gives

ldp B’/u,
Rdr (qR)?
and
£
B"’_s
q2

where q = 21t a €B/pl and € = a/R. In terms of I/aB

44

However when the first comprehensive
calculations[5] were analysed[6] an T
approximately linear dependence on 1/q was oL
found, so that B ~ I/aB. The calculations were 5 (%)
for JET and the results are given in figure 1. 4

Further calculations were subsequently
carried out by Sykes et al.[7], and Troyon et 2t
al.[8],

An interpretation of this result follows[9] % i 3 3

: 1MA)

from an analysis of the shear/ pressure aB,
gradient, or (s, &) ballooning mode diagram  rig 1. Oprimised B-limit as a function of I/aB (from
which relates Wesson, J.A. in Stringer, T.E. Comp. Phys. Comm.

24, 337 (1981))
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_2oRa’dp o rdg @)

B2 dr qdr
The definition of B is
2 Japrdr
B=—20
a’B* /2y,

and through integration by parts this can be written in terms of d,

a arz
{ el 3)

The essential results are obtained using the approximate stability boundary o = 0.6s
which shows the benefit of shear for stability. Using this result in equation (3) leads to

Bn = —0.30—1— I:i[iz]rz’dr. 4)

This formulation gives a precise optimum By, but before turning to this optimum it is of
interest to see the dependence of By, on the current distribution.
Integration of equation (4) by parts leads to

_ R (25 2g¢_1 2
Bm = Ogm[".o BG dr—gaBea :|.

Thus By, is almost a function of 1j, and with some approximations can be manouvred into
the form(10]

I 1
Bn = Ca—B(f “a‘;) 5)

It is clear from equation (5) that it is advantageous to concentrate the current towards the
axis thus producing a high ¢; However the axial value of q is limited by the sawtooth
instability. This can be specifically allowed for by returning to the form of equation (4).

Since qo is constrained by the internal kink mode to be above a critical value around one,
the total available shear is limited by q, — qo. In equation (4) the optimal distribution of shear

has all of the shear in the outer region. The result is that for maximum [, all of the current is
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carried in the central region and all of the pressure gradient lies in a current free outer region as
shown in figure (2). This defines q(r) and, using equation (4), leads to a B-limit of the form

I
Bmn = g;‘é-

The full optimisation gives g = 5.6 but from a practical point of view the value will depend
upon the degree of optimisation and on other physics.

The results described above provided a
clarification of the previously poorly

understood factors governing stability.

However subsequent analysis introduced two

o

further important elements. The first was the
recognition of another regime where stable
high pressure gradients can be achieved at
small shear, the so-called second region of

stability. The second factor arises from the
benefits of a large bootstrap current fraction in
reducing the need for external current drive. 9
Since the bootstrap current is driven by a
plasma pressure gradient it introduces a

|

linkage of the g-profile to the pressure profile
in addition to that arising from stability. Fig. 2 Current, pressure and q profiles for optimised B

It was recognised that negative shear[11] " the first region of stability.

gives ballooning mode stability, so that an
inner region with dg/dr < 0 is favourable, but in addition it was found[!2} that even for small
dq/dr >0 there is a region of stability.

However for small shear the ballooning mode equation does not properly describe
stability. The low-n modes then take a different form and if they are unstable when high-n
ballooning theory predicts stability they are called "infernal" modes.

The bootstrap current complicates matters further. As explained above, the simple B
optimisation concentrated the shear and pressure gradient in the outer part of the plasma by
concentrating the current in the inner region. However the pressure gradient will drive a
bootstrap current in the outer part of the plasma, in conflict with the narrow current channel
requirements. Such configurations tend also to have current near to the surface and are therefore
susceptible to external kink modes.

It is seen that with these additional features the overall stability problem is quite involved
and there is not yet a consensus on the optimisation. In the following sections the various
aspects of the problem will be described.
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First we discuss the factors involved in the second region of stability. Then we return to
the first stable region case and impose the constraint of a bootstrap current. Finally we consider
the general case with access to the second region and a requirement of a large bootstrap current
fraction.

3. SECOND STABLE REGION

In the simplest model with circular flux surfaces the potential energy for ballooning modes
takes the form(3]

2
W = I {(1 + A2 Xj—gj ~a(Asin® - cosO)Fz} de, 6)

where
A =s0—-qsinb

and the shear and pressure gradient variables s and « are defined by equations (2).

The term proportional to (dF/d6)2 represents the stabilising effect of line bending and the
a. cos® F2 term gives the destabilising effect of the pressure gradient coupled with the cos8
dependence of the magnetic field. The oA sin© F? term gives the shear dependent
contribution arising from the geodesic curvature, A being related to the shear by the equation

dA

— = s—ocos6, 2.0+
doe

o.cosO giving the 8 dependence of the shear

around the surface. The stability boundary
Stable

s n
1.0+

resulting from equation (6) is shown in figure
3. The origin of the second stable region can
be seen by taking the limit of small s and large
« in equation (4). 8W then takes the positive

Unstable
definite form

2
8W=J {az sin2 0 (E) +F2} de. (7) @
do 0 ]
0 0.5 1.0

Fig. 3 The (s, a) stability diagram for circular flux
surgaces showing the first (1) and second (2) stability

The two terms in equation (7) have arisen
from the local shear as represented by the
o cosB contribution to dA/d6. Thus the

regions.
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second region of stability is generated by a modification of the toroidal equilibrium at low shear
caused by the pressure gradient.

The above (s, ) treatment is inadequate at small o and s, but Pogutse and Yurchenkol!3]
have carried out an extended calculation which gives an analytic stability criteria requirement for
stability is

2+ d0el1-— | = sa?— 3aexp| -~ | > 0, (8)
q° N

where € = r/R. The term s2 + 40€ represent
the balance of shear and pressure gradient in

the cylindrical case first analysed by Suydam. 2
The term 4ce/q2 term is the toroidal
stabilising term introduced by Mercier's
analysis and first given by Ware and Haas UNSTABLE
(14], The term —sa? represents a normally

destabilising effect which is reversed with

. . STABLE
negative shear. For a given shear s(r),

ey

criterion (8) gives a critical value of the 0 1
pressure gradient factor a(r). The result

depends upon the particular configuration but  gig 4 Sketch of typical (s, ) stability diagram.
the general form is illustrated in figure 4.

4. BOOTSTRAP CURRENT IN FIRST STABLE REGION

The bootstrap current density is given approximately by

) 11d
B = CB(%{) B_ed—[r) ®

This immediately shows an inconsistency in the calculation of the first stable region limit
introduced in section 2. In the optimised configuration shown in figure 2 the pressure gradient
is concentrated in the outer region where j = 0. In the absence of a negative current drive,
equation (9) imposes a limit on the smallness of j in the pressure gradient region. To see the
effect the B limit calculation can be repeated with the constraint by equation (9){14]. Ampére's
law gives

- B oo
Hoj = Rq(2 s)- (10)
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Thus in equation (9), we use equation (10) to substitute for jg = j, and on the right hand

side dp/dr is given by the relation o, = 0.6s.
The result is

1
where the factor p = 0.3/cg €2 introduces the reduction in shear arising from the bootstrap

cu]rrent. Sincel we are concerned here with the outer region we can use the approximation

€2 = (a/R)?2. The solution for q is then

2
r

q = qa(—)““
a

and substitution into equation (4) gives a maximum

1-3p

€ q, 2 -1
= 1.2—5—-—-.

Taking p = 4, the fractional loss of By, arising from the bootstrap current is

My _ q;’4+3—q;”4 -~
o ATl
and this is plotted in figure 5. Equation (11) is
represented quite well by the approximation
0.4f-
Af;h = %(qa - 12 (2<q,<5). (12)
m 0.3f
Thus the bootstrap current leads to a loss %ﬂﬂ
of Bm in the first stable region as a result of 021
the diminished shear in the outer region of the
plasma. However it is possible to combine a 0.1
high bootstrap current with a configuration in 5
the second stable region, and we shall now 0 | | | 18
consider this case. ° 1 ° a, ’ °

Fig. 5 Showing the fractional reduction in the first

region B-limit resulting from the bootstrap current (11

=%)_
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5. SECOND STABLE REGION WITH BOOTSTRAP CURRENT

The results of the last three sections show that

i) Optimisation of B considering only the first stable regime leads to low shear in the central

region and high pressure gradients in the outer region.

il) In the first regime the pressure gradient driven bootstrap current appears preferentially in

the outer region, consistently with the low shear in the inner region.

iii) The low shear of the inner region allows us to use the second stable regime.

We are thus led to the concept of a high B, high Bp plasma with the central region in the

second regime of stability and the bootstrap current carrying a large fraction of the total current.

We shall shortly analyse this model, but it is first necessary to discuss two complications. The

first is kink modes and the second is infernal modes.

The conventional account of kink modes is concerned with avoiding current gradients at

the edge of the plasma. Such current gradients with a resonance close to the surface can lead to

instability. However at high P the pressure gradient becomes important, but not necessarily

destabilising because for curvature averaging perturbations the average curvature is stabilising.

Infernal modes are pressure gradient
driven instabilities which are not adequately
the
approximation. Ballooning mode theory is

treated by ballooning mode
applicable at large n and the need for a
separate treatment arises at low n. In such
cases it is necessary to resort to 2-D stability
calculations. The inadequacy of the ballooning
mode approximation is associated with the
presence of low shear, and the infernal modes
occur when a region of small shear occurs
close to low n resonant surface. This situation
arises in the presence of a flat or hollow q
profile. Figure 6 shows a stability diagram
calculated by Ozeki et al. [16] for such a case.
It is seen from this figure that it is possible to
arrange conditions such that complete stability

is acheived.

1.0
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Infernol mode
unstable
075 F
nst
kink
N
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S 05 §\n-o ballooning mode
g locally unstabie
N
N
3
025 g
N
05 7o 2.0 3.0

Fig. 6 Stability diagram in (¢Bp, gmin) space (Ozeki,
T. et al. Nuc. Fus. 33 1025 (1993)).

The strategy, therefore, is to optimise the first region stability in the outer region as in the

conventional treatment outlined in section 2 and to make the most of the low shear second stable

inner region by avoiding infernal modes.
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What limits B in the inner region? If ballooning and infernal modes are stabilised, a limit on
the internal B, will be imposed by equilibrium requirements. There is of course no limit to the
total B within ideal mhd. However for the practical case with a given plasma current both Bp
and B are limited by the formation of an X-point. We shall now consider the consequences of
such a B-limitation.

Let us separate the plasma into an inner second stable region O < r < ry and an outer first

stable region i, < r < a. Then
Iy a
J. prdr + j prdr
(o} Ty

_4u,
b a2B2 |:
(13)
l'b 1'[1'% a
J. (p— pp )rdr +pr +J. prdr
b

32B2

where pp, = p(rp). The last two terms in equation (13) give the conventional first regime B limit
which, when the reduction due to the bootstrap current given by equation (12) is included,
takes the form

o r

3 1 1
B = cla:[l - z(qc-l)ﬂ- (14)

The first term in equation (13) gives the contribution from the second regime in the central

region

4 Tp
By = —o

= =7 (p— pp )rdr,

so that

B =B + B2, (15)

the contribution of B; being limited by the total B available at the equilibrium limit. This limit is
given by
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where c, is around unity. The corresponding value of B is (a/ch)QBp, so that

€
- et (16)
P ‘ CIcz

Substitution of equations (14) and (16) into equation (13) gives the scope for an
enhancement from the second region of stability

B _c 1 ,
b ‘! QC[I - %(qc_l)%]

SUMMARY

The economics of a steady state fusion reactor calls for high B to make efficient use of the
magnetic field, and a high (8, for the bootstrap current to reduce the cost of current drive.

The original beta limit is restricted to the first stability regime and requires the current to be
carried centrally. The pressure gradient drives a bootstrap current in the outer region reducing
the B limit.

The B value can be improved by using the second stability regime in the central low shear
region. Within this framework it is possible under some conditions to increase B and Bp until
the equilibrium limit is reached. The total B limit falls with increasing q. as does the fractional
contribution of the second regime.
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