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Abstract

We analyse the nonlinear stage of magnetic reconnection in collisionless and weakly
collisional regimes. The equilibria we consider are linearly unstable with the mode
structure characterised by global convection cells. We find that the system exhibits a
quasi-explosive time behaviour in the early nonlinear stage where the fluid displacement
is smaller than the equilibrium scale length. The reconnection time is an order of
magnitude shorter than the Sweet-Parker-Kadomtsev time for values of the skin depth
and of the magnetic Reynolds number typical of core of large tokamaks. The
reconnection process is accompanied by the formation of a current density sub-layer
narrower than the skin depth. Mechanisms limiting the sublayer formation are also
discussed.

Introduction

Laboratory plasmas close to thermonuclear conditions exhibit a variety of relaxation
phenomena involving strong magnetic activity. The oldest known and best studied of
these phenomena are sawtooth relaxations{1]. A common feature of these phenomena is
the fact that they become more marked in the largest, hottest devices like JET. In JET,
for example the ratio of the sawtooth period to the crash timescale exceeds three orders
of magnitude. This is not unexpected on general grounds, since the crash time and the
slow evolution should depend on different powers of the relevant Reynolds number (the
magnetic Reynolds number).

Renewed interest in the crash problem was sparked by the observation[2] that at the high
plasma temperatures of these experiments sawteeth can occur on a time scale shorter
than the electron-ion collision time (see Fig. 1). Since the sawtooth phenomenon is
associated with a reconnecting mode, the m=1 internal kink, this experimental findings
have generated considerable interest in the problem of magnetic reconnection in
collisionless regimes, where electron inertia is responsible for the decoupling of the
plasma motion from that of the magnetic field.

Initially, the linear theory of m=1 Kkink-tearing modes was extended to the
experimentally relevant regimes[3-6], leading to the conclusion that these modes can
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remain virulent at low collisionality with an initial growth rate which compares
favourably with that observed in the experiments. As usual, the validity of the linear
theory is limited by the condition that the displacement of the magnetic axis does not
exceed the width of the reconnecting layer, in practice the electron skin depth or the ion
Larmor radius, whichever is larger. However the experiments show that the magnetic
axis usually moves as fast as exponentially for a good fraction of the plasma size, well
into the nonlinear stage.

So far, the nonlinear evolution has remained unclear. While Wesson's[7] modification
of the Sweet-Parker-Kadomtsev scaling[8-10] has given an estimate of the collisionless
reconnection time in good agreement with that observed experimentally, Drake&Kleva's
numerical simulation[11] of the merging of two isolated flux bundles has led to the
suggestion that the collisionless reconnection rate is greatly reduced as the nonlinear
phase is entered, i.e. for magnetic island widths comparable with the plasma skin depth.
This latter result would at least imply that the model studied cannot even qualitatively
account for the experimental findings. This has induced some people to investigate the
behaviour of more general models.

In this paper, it is our aim to clarify how reconnection proceeds in collisionless and
weakly collisional plasmas. We will present the results of numerical and analytic
investigation of a specific model, essentially the model studied in Ref.[12] where
preliminary results were presented. The main conclusion will be that reconnection can
proceed at a rate faster than the Sweet-Parker-Kadomtsev scaling well into the nonlinear
regime, for a wide range of experimentally relevant conditions.

The model and its linear properties.

Our goal is to study the evolution of a reconnecting mode in the early nonlinear phase,
defined by the condition §,, ., <<A <<a, where 3,,,is the width of the reconnection
layer as given by linear theory, A the displacement of the magnetic axis and a the
macroscopic scale length (the plasma minor radius). In this regime the behaviour is
expected to be universal, i.e. independent of the geometry. The model we consider is
essentially an extension of reduced MHD on a slab, where the electron inertia terms,
proportional to the square of the electron skin depth d, =c/w© ,, is added in Ohm's law.
For simplicity we neglect the Larmor radius effects, although these terms are formally
of the same order as the skin depth terms. It is known from linear theory that Larmor
radius effects are not sufficient to decouple the motion of the plasma from the magnetic
field lines, but they can alter the dynamics when other reconnecting effects are present.
We therefore consider the following equations:

o,U +[o,U]=[J,y]+p VU, (1)
O,F +[0, Fl=mV(y—y,)-pV'y, )

where we use the notation 8, = 9/0t and [4,B]=e,-VAx VB, with e, the unit vector
along the z direction. U=V?¢ is the fluid vorticity, ¢ is the stream function,
v=e,x Vo is the fluid velocity, J=-V>y is the current density along z, y is the
magnetic flux function v, the equilibrium flux function, F =y +d’J, with d the skin
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depth. Moreover, we have explicitly added some dissipative effects proportional to the
ion viscosity p,, the electrical resistivity n and the electron viscosity u,. Since the
equations are normalized these dissipation coefficients must be interpreted as the inverse
of Reynolds-like numbers. In the following, however, we will work with collisionless
equations unless specified.

The co-ordinate z is ignorable, 0, =0. The co-ordinates x and y vary in the intervals
xe[-L,, L] and ye[—Ly, Ly], with the slab aspect ratio e=L /L, <1. Periodic
boundary conditions are imposed at the edge of these intervals. The magnetic field is
B=Be, + Vy xe,, with B, a constant value which we take to scale as B, ~¢”'[Vy| in
order to mimic the magnetic field of a Tokamak. All quantities in Egs. (1,2) are
dimensionless, with L and 1, = (41tp,,,)]/2 L,/ B, determining the length and time scale
normalisation.

We consider an equilibrium specified by L, ==n, ¢,=U,6 =0, J, =y, =cosx, and
F, =(1+d*)y,. This choice allows a completely analytic treatment of the linear
problem. One finds that this equilibrium is tearing-unstable to linear perturbations of the
type (9,dy)= Real{[(p L(x),8y L(x)]e”*”‘y}, with k =me and m an integer number, and
with ¢, (x) and 8y, (x) respectively odd and even functions around the two equivalent
reconnecting surfaces at x =0 and at x =+ _. In the limit d << L_, the solution of the
linearized system can be obtained analytically using asymptotic matching techniques.
For 0<#k®<1, the linearized mode structure in the ouwter region is

SWL=\|JmCOS[K(x|—TC/2)] and (p,‘=(iy/ksinx)8wL, with y_, a constant and

K E(I—kz)vz. The logarithmic jump of 8y, across the reconnecting layers is

A'=2k tan(mc/z). In the choice of the slab aspect ratio we are moved by conflicting
requirement. On the one hand, in analogy with the internal kink, we are interested the
large-A’ regime, defined by

Ad>1, (3)

which can be satisfied for low values of m and €® <<1 such that A’ ~(8/nk?). In this
regime, the structure of the stream function is macroscopic, with
o, ~@_signx, ¢, =(iy/k)y,, everywhere except in narrow layers near the
reconnecting surfaces. For A'd >>1, the eigenfunctions in the vicinity of the layer at
x=0 take the form 8J, ~ -y (2/nd?)" exp(-x*/2d?) and o, ~ ¢_ erf(x/2"*d), which
match onto the outer solution for |x|>d. Thus, the current channel in the linear stage
has a width &, ~d . The linear growth rate is v, = kd .

On the other hand we want just one mode (m=1) to become unstable. This sets a lower
bound on the aspect ratio € =1/2, hence an upper bound on A’=8.12. Most of our
studies were carried out with d =1/4, thus satisfying the large A’ condition as well as
allowing a good scale separation ( d /2L, =0.04).

General properties of the nonlinear collisionless model.
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In this section we discuss some properties of Egs. (1-2) in the inviscid (dissipationless)
case.

We note that Ohm's law can be interpreted as a conservation law for the quantity F,
which is recognised as the toroidal component of the canonical electron momentum,
averaged over the distribution function. F is simply advected by the flow, which means
that the value of ¥ on a given fluid element is conserved. Related to this property is the
existence of two families of invariants:

I, = [ dxdyf (F)
and
I, = fdxdyUg(F)

where f(F) and g(F) are arbitrary functions. In addition the total energy is also
conserved:

E =3 [dedy[(Vo) +(Vy) +d*(V'y)’]

We now show that the conservation of F generically implies the formation of
singularities. Consider a hyperbolic stagnation point of the flow (X-point). Such points
are for example the X- and the O-points of the isolines of y when the initial conditions
for Eqs. (1-2) are the linear eigenfunctions. Assuming x to be the direction of the
stable manifold one can approximate the equation of the fluid element as
de/dt =-v (t)x/d. Then the fluid elements converge exponentially to the X-point

according to x =x,e™’, A(f) =] v,(t)dr. If F has nonzero derivatives along x, these

derivatives are exponentially amplified. Moreover, if F is analytic in the complex x-
plane in a strip containing the x axis, the width of the strip will shrink exponentially.
Thus the occurrence of a singularity at ¢ = +co is generic and does not occur only when
the system evolves to a state of zero flow (a new equilibrium).

The formation of a singularity in F brings about a related current sheet around the X-
point of the flux function, as discussed more in detail in the next sections.

We now present a more general heuristic argument as why singularities are expected in
the evolution of fields satisfying equations like Eqs.(1-2) in the dissipationless case.
Assume smooth initial conditions. The existence of derivatives of arbitrary order implies
that the Fourier spectrum must decay at least exponentially at large wavenumbers. This
means that although the spectrum will usually have a power law range, this would
extend up to a maximum wavenumber, say k,,, where the exponential portion of the
spectrum begins. Naturally k,, will change with time as the fields evolve. Three
possibilities can in principle occur:

1) k,,(t) stays bounded as t - +.

2) k,,(t) grows indefinitely as ¢t — +oo. The solution exists at all the times but the
spectrum spreads as times goes on.

3) k,,(t) becomes infinite at some finite time 7,. Then the field becomes singular and
the solution ceases to exist.

The first option is not possible for generic initial conditions. Assume for the moment
that k,,(¢) stays bounded. Then, upon truncating the equations to some wavenumber
k, >> k,, one can replace the continuum system with a finite number of Fourier modes,



at the price of introducing an exponentially small error. However such a system will in
general evolve into a power-law spectrum all the way to k, (see Ref.[13]). This
violates the assumption that the spectrum decays exponentially for & > k,,.

The third option is also unlikely to occur. Indeed a consequence of the existence of
pointwise invariants like the vorticity has been used to show that the solution of the two-
dimensional Euler equation remains C® for all the times when the initial conditions are
C”[14]. Although no proof is known for Egs.(1-2) it is commonly thought that 2-d fluid
equations possessing topologic invariants have the same properties. In Eqgs.(1-2) the
quantity # is such an invariant. Thus one concludes that a singularity will in general
occur but only at ¢ = +co.

Numerical Results: dissipationless case.

The numerical investigation of Eqgs. (1,2) has been carried out with a pseudospectral
code[15] which advances in time the Fourier representation of the field variables,
truncated to 1024x64 (x,y) components. The initial conditions are chosen to
approximate closely the linear eigenfunctions of the unstable model with small
amplitudes. The spatial symmetries of the initial conditions, namely reflection
symmetries with respect to the reconnection line and with respect to the four points
x=%L, /2, y=+L, /2 are preserved during the nonlinear evolution.

Fig. 2 shows sections of dy =y -y _, v, =—0¢ /0y, J and F across the X-point (y = 0)
at various times. Initially the systems evolves linearly until ¢ ~80, when the magnetic
island reaches a width of order d. The linear layer width ~d is visible from these
graphs. For ¢ >80, the width of the profile of v, 8, =(v,),., » /(8,v, )M, as well as

that of dy, remain of the order of the skin depth (Figs. 2a,b). By contrast, the current
density profile (Fig. 2c) develops a sub-layer whose width around the X-point,

5,=(8%67/8J)" <d, keeps shrinking with time (see also Fig. 3d). Here, 8J=J-J,.

This sub-layer is also visible in the profile of F across the X-point (Fig. 2d). The
contraction of this sub-layer is extremely rapid in time, as shown by the graph of
&*F/ox® versus y for x =0 and several times in Fig. 3b. At f~125, it has become so
narrow that it can no longer be resolved by our truncated Fourier expansion, and so the
simulation is stopped. Also shown in Fig. 3a and 3c are the profiles of dy and of
v, =0¢/0x along the reconnection line (x = 0) at various times, from which it is clear

that only a limited number of Fourier harmonics along y are involved in the early non-
linear evolution. Contour plots of ¢, vy, J and F are shown in Fig. 4. Note that the
convection cells retain approximately their linear shape well into the nonlinear phase
(Fig. 4a). Also note the development of a current sheet around the reconnection line
(Fig. 4c) and the preservation of the topology of the isolines of F (Fig. 4d). Finally,
Fig. 5 summarises the time behaviour. It is remarkable that the mode growth remains
very rapid throughout the simulation. Indeed, the growth of ¢, as well as that of dy
and &J at the X-points, accelerate in the early nonlinear phase, which is symptomatic of
an explosive behaviour. However, the mode growth slows down when w approaches
L

X *
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Analytic Approach.

The conservation of F allows the formal integration of the collisionless Ohm's law (2):

F(x,p,t) = F[x,(x,y,0]= (1+d*)coslx, (x,y,1)] , 4)

where x (x, y, t)=x—-&(x, y, t) is the initial position of a fluid element situated at
(x,y) at time 7 and & is the displacement along the x direction defined by the equation
defdt=v,, E(t=-x)=0. In order to proceed, we note that the numerical results

suggest that the spatial structure of the stream function does not vary significantly with
time throughout the linear and early nonlinear phases. This motivates the ansatz:

o(x, y, )=V, () g(x)h(y) +u(x,y,t) , 5)

where A(y)~k”'sin(ky), g(x)~¢,(x)/¢, contains the linear scale length d and
u(x,y,t) develops the rapid scale length 8(¢) ~ &, observed in the numerical simulation.
We assume u << v, and J,u ~ v 0,g, which is consistent with the near constancy in time
of the width of v_ across the reconnecting layer (Fig. 3d), as well as that of the ratio

vy(O, L, /2,t)/ vx(—Lx /2,0,[) (Fig. 5). This assumption allows a parametrization of the

system of Egs. (1,2) in terms of the displacement A(¢) = ‘[(; v, (t)dt.

By integrating the equation of the fluid element along the line y =0 (across the X-
point), dx/dt = v,_, and neglecting a small contribution from u(x,y,?), one gets

—jdx'/g(x')= jvo(t')dt' =A0). (6)

This equation can be inverted for a typical shape of the function g(x). In the large A
regime, this function can be approximated as g(x)=x/d for |x|<d and g(x)=+1 for
|x|>d. This is equivalent to the statement that convective cells remain large throughout
the early nonlinear stage without developing small scales (to the leading order).
Inverting Eq. (6) one gets the dominant contribution to the function x,(x, y, ¢) in three
characteristic spatial ranges bounded by the linear scale d and by the nonlinear
microscale 8(¢) = d exp[—A(t)/d]:

x, ~ x(d/8) for |x| <& (7a)
x, ~ dIn(e|x|/8)sign(x) for d>|x|>8  (7b)
x, ~ Asign(x)+x for |x|>d (Tc)

Analogous relations are obtained along the ky =n line, crossing the O-point, by
swapping x and x,. A sketch of the dependence of x, on x is presented in Fig. 6. Thus
we see that near the X-point along the x direction, F(x,,) (and hence J) varies over a
distance 3(¢) which becomes exponentially small in the ratio A/d. Conversely, around
the O-point F(x,) flattens over a distance |x|~ A from the O-point. We stress again that
the formation of a sub-layer is the combined result of the conservation of ¥ on each
fluid element and the flow pattern around the X-point (O-point), which acts to increase
(decrease) the local curvature of the F profile ( Fig. 2d).



The flux function can be expressed in terms of /' by means of the proper Green's

function. Here we neglect the derivatives along y, which is justified in the large A
limit. Moreover we replace the Green's function defined in the box with the one defined
in the plane. This is a valid approximation in the range of interest x <A << L,:

w(xy.0) =4[ e FHRG,y,nat, @®)
where % = x/d. One can notice that y has an integral structure such that any fine scale
variation of F is smoothed out over a distance ~d. Asymptotic evaluation of the
deviation from the equilibrium Sy at the X- and O-points gives

SWX""%)‘Z(t), 8“’0:@(‘12)- 9)

The conservation of F implies 8F =0 on the reconnection line, so 8/ =—38y/d*. Thus
we have demonstrated that an asymmetry develops in the values of dy and of J between
the X- and O-points. The spike of the current density at the X-point has an amplitude
87, ~0.5(\/d)’.
It is useful to analyse the behaviour away from the X-point obtained from Eq. (8). The
leading contributions to Sy are:
Sy =-122+0(Ad) for x <d (10a)
Sy =-1p2-dx+0(d*) ford<x<<lL, (10b)
There are however subdominant logarithmic corrections to Eq. (10a) which turn out
important when computing the current. This can be done directly from the expression
&J = (8F - dy)/d*:

&=-1\ for x <& (11a)
& ~—(A/d)In(x/d)-L[1+In(x/d)} +6(A/d) ford<x<d  (l1b)
& =8(A/d)exp(~x/d)=0 for x>d (11¢)

Let us now integrate the vorticity equation (1) over the quadrant
S:[O <x<L,0<y< Ly]. Using Stokes theorem, we obtain

8,[.v-dl=§ . odp+§.Jdy =§ Jdy . (12)

where C is the boundary of S, i.e. the quadrangle XOXO which connects the critical
points of the two symmetric islands. We have use the fact that dp=0 on C. By
exploiting the symmetry with respect to (L, /2,L,/2) one realises that it is enough to
integrate along the lines OX and XO'. As a rule the integrals along XO gives only a
subdominant contributions in the large A limit.

The Lh.s. of Eq. (12) is dominated by the integral of v, (the integral of v, contributes to
order 6(ekd)). Using the ansatz (5), and neglecting corrections contributed by ai(p , We
find
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0,.v-dl ~ ~(2¢c,c.,/k*d)d*r]dr*, (13)

where ¢, =d (dg/ dx)x=0 =5(1) and ¢,(f)=1+(d/ covo)(axu)x is a factor of order unity,
which depends weakly on time (e.g. 1 <c¢, <1.4 in Fig. 3d).
The r.h.s. of Eq. (12) can be written as

§oJdy ==L aTo,u) - [ a@w)aw)], .

The first integral at the right hand side can be evaluated exactly:

- also,w) =8y, —dy,—(svk-dy})/2d . (14)

xX=

The second integral is bounded to 8(k*)\), which is subdominant both in the linear and in
the nonlinear phase.

Using an interpolation formula between the linear and early nonlinear limits of the
r.h.s. of (14), we obtain an equation for the evolution of A(t) = A(¢)/d:

d*0[di? = A+, At (15)

where f=y,t and c,~1/16c,c, can be taken constant. The solution is
~fn RETY: I
X(t)z[(l—a)/(l——ae“)] e', where a=|3—(Bz—1)l/2, p=1+5/c,, and we have

chosen the time origin so that A(0)=1. Thus, once the early nonlinear regime is
entered, A(r) accelerates and reaches a macroscopic size over a fraction ~ln(a"/3) of

the linear growth time. This acceleration is clearly visible in Fig. 5. Detailed
comparison of the prediction of Eq. (15) and the result of the numerical experiment is

however made difficult by the resolution which limits A to k= In(d/$,,,)=3.7.

This explosive growth will eventually turn into a slower growth as A approaches the
macroscopic scale length. It is interesting to ask whether there is bound on the growth
of A. Within this model there is an overall bound to the maximum attainable velocity
set by the energy conservation law. This means that, asymptotically, A cannot grow
faster than linearly in time. In this range A would cease to be the displacement as it
would grow bigger than the macroscopic length. However other physical limitations to
the displacement growth would intervene much earlier. Some of them will be discussed
later.

Numerical results with dissipation.

We now discuss how a small amount of dissipation modifies the previous
phenomenology. We have not investigated the case p, #0 so we will only consider
n, # 0 and/or 1 # 0 in this section. The goal is to investigate how the spike evolution is
affected, so one is usually interested in the behaviour of the model (1-2) with finite
values of d but sufficiently small dissipation coefficients. In particular the
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It is interesting, however, to compare the previous collisionless results with a pure
resistive case, d =0 but n#0. To this end, we have initialised the system with the
same eigenfunctions. It is possible to show that linear theory is unaffected by a change
of the pair of values of (n,d) if the growth rate and the quantity m+d’y are held
constant. This corresponds to n=3.x10" when d =0. The nonlinear stage is however
completely different as seen from Fig. 7. In particular the development of the current
sheet proceeds in a much slower fashion than in the collisionless case. In general we do
not find any particular reason why the system should not follow the Sweet-Parker
behaviour. It must be pointed out, however, that a detailed analysis would require
smaller values of the resistivity which, in turn, would violate the large A condition for
our system.

We now investigate whether the resistivity can act as spike-limiting mechanism. By
inspecting Ohm's law (2) using the expressions for the flux function and for the current
given by Eqgs. (10-11), one can see that the resistive term in the spike region is bounded
to 0(mA?/d?) which is smaller than the Lhs. of Eq. (2) (which is
Y(AdN/ dt) 2 9(Y M) for small values of 1. In other words the resistivity term is a
regular perturbation (the order of the differential operator is too low) and it is not
effective as a small scale cut-off. This situation persists as long as 1 <7,,..4". This also
the condition to neglect the resistivity in the linear theory.

On the other hand, the electron viscosity term is 8[u,(A/d)(1/x*)] and can balance the
leading collisionless terms at a sufficiently close distance from the X-point. Thus the
electron viscosity is an efficient spike-limiting mechanism. It should be remarked that
one does not necessarily thinks of a true (collisional) viscosity at this point: any process
acting as a current hyperdiffusivity would be a potential candidate.

This ideas have been confirmed by running simulations with p, =0 and n up to
N =15x10" and n=0 with p, in the range 4.x107 <p, <6.4x10°,

We have not run simulations with d <" because it is not possible to use small enough
values of the resistivity without violating the large A condition. In the rest of this
section we present our conjectures about the likely behaviour in this regime.

When d <n'” the electron inertia terms are negligible in the linear phase and the
displacement grows with y, .. ~n"" until the displacement is of order of the width of
the linear layer A ~ 3, ~n"’. In the nonlinear stage the behaviour will initially follow
the Sweet-Parker scenario with the layer width shrinking as 8__. . ~(n/A)"? while the
displacement grows as a power law A ~n>. If d <n"? (strong collisionality) nothing
can stop the displacement from reaching the macroscopic size A =x~1 when
8, oninear = (M)"?. In this case the reconnection proceeds in a purely resistive fashion and
needs the characteristic Sweet-Parker-Kadomtsev time Tyg ~ N> % (T pne Tresistive) -~ 10
be completed. When however the skin depth falls in the intermediate range
n"? <d <"’ (moderate collisionality) a new regime occurs[16). In this case the inertia
terms become important when 8§ _...~d. This occurs at some value of the
displacement A\ ~1n/d> after a time ¢ ~d™'. Afterwards we expect that the
reconnection will proceed essentially in a collisionless fashion until A =~1. The
reconnection time is therefore controlled by the electron inertia, . ~d™' <<Tyg,
throughout the collisionless and the moderate collisionality regimes. Of experimental
interest is the borderline between these regimes, which is typical of large tokamak
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sawteeth: here the reconnection time turns out at least an order of magnitude shorter
than the Sweet-Parker-Kadomtsev time: 1,/ Tyq ~ 1 "° >10.

Discussion and conclusions

The previous results have been obtained analysing the simplest possible fluid model
which exhibits collisionless reconnection. The key effect is played by the electron
inertia, therefore we have used a version of the generalised Ohm's law which includes
just the skin depth terms, neglecting the terms associated with the parallel gradient of
the electron pressure. This approximation is valid as long as the skin depth is bigger
than the ion sound Larmor radius, p, <d,. When this occurs one can show that the fluid
approximation is valid.

The linear theory in the opposite regime[3-6] is complicated by the fact that, although
p,>d,, one cannot neglect the inertia terms otherwise reconnection does not take
place. The existence of two distinct scale lengths brings two nested singular layers into
the problem 8, ~d(p,/d)"” and §_, ~p,. The main result is that the growth rate is

enhanced by a factor (p,/d,)”’: y ~y,d,(p,/d,)*”. In this regime it was shown that the
linear theory can be consistently developed within the fluid approximation using the
isothermal equation of state. This equation of state turns out valid at any distance from
the rational surface bigger than the inner layer width: x >§,,. This is enough to carry
out the asymptotic matching at the inner layer. Moreover the condition that resonance
effects do not occur, @ /® <<1, is also fulfilled provided that B is sufficiently small
and the density gradient sufficiently flat. When this occurs, the kinetic treatment is not
necessary to develop the linear theory

The validity of fluid theory in the nonlinear regime when p, > d, is more delicate. The
point is that as the current spike develops the electron velocity distribution becomes
distorted, the current being carried by energetic electrons. At the same time the
nonlinear scalelength associated with the spike becomes rapidly smaller than the inner
layer width & __ . ... <0, Thus no equation of state can be used uniformly in this
regime, and a Kinetic treatment, even in the absence of resonances seems unavoidable.

The width of the current spike predicted by our model becomes rapidly small. When
the displacement has become few times the skin depth, the width of the spike has
decreased to values comparable to the Debye length or to the electron Larmor radius. It
is therefore relevant to ask what are the physical mechanisms which could slow down
the process of the current spike formation. More importantly, to understand the
experimental findings, is to verify whether the fast growth of the displacement can be
sustained even in the presence of spike cut-off mechanisms.

As far as the actual cut-off mechanisms, we have discussed the possible role of
dissipation in the previous section. Other possibilities to be explored include instabilities
of the current sheet. Note that our calculation assumes a well defined parity in the initial
conditions. When this constrained is relaxed, secondary instabilities of different parity
can occur. Another possible current instability (not treatable within our model) is two-
stream instability associated with the distortion of the electron velocity distribution
function{17]. Finally we note that stochasticity associated with three-dimensional
geometry can also be effective, especially since fast electron are generated.
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In conclusion, collisionless reconnection in regimes where the instability parameter A’
is large and global convection cells develop does not follow the standard Sweet-Parker
scenario. In these regimes, the reconnection rate accelerates nonlinearly. The physical
mechanisms for this acceleration has been identified in the electromagnetic torque

§CJ xB-dl = §C Jdy associated with the X-point/O-point asymmetry.

The simple model we have investigated has a number of limitations. However, from
what has emerged from our analysis, we are led to believe that the occurrence of a rapid
nonlinear stage, when the system evolves faster than Sweet-Parker-Kadomtsev
timescale, is a fairly general phenomenon in weakly collisional systems characterised by
large values of the A parameter. We hope that present analysis will open the possibility
to understand the rapidity of relaxation processes observed in low collisionality plasmas.

The authors acknowledge stimulating discussions with F. Pegoraro, F. Waelbroeck,
J. Wesson and L. Zakharov.
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Fig.1. Evolution of the position of the peak of the soft X-ray emissivity during a fast
sawtooth crash in JET.
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Fig. 6. Behaviour of x, vs. x at the X-point (solid line) and at the O-point (broken
line). d =1 and & = 0.1 in this example.



Fig. 7. Contour plots of a) the stream function ¢ and b) the current density J in the
purely resistive case.
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