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Abstract Modelling of ICRH in a Tokamak, with special emphasis on finite banana width
effects, is discussed. Comparison between simplified fnodclling and experimental results is
used to illustrate the importance of finite orbit width effects. These effects can be modelled
more rigorously with an orbit averaged Fokker-Planck equation, its derivation and solution by
a Monte Carlo method is outlined. Results from a code solving the equation along these lines
are presented.

1. INTRODUCTION

Ion Cyclotron Resonance Heating (ICRH) has proved to be a successful method for
auxiliary heating of Tokamaks. In JET it is one of the main heating methods with a potential of
coupling about 25 MW of RF-power into the plasma [1]. There are several advantages with
ICRH: the fast magnetosonic wave, which carries the ICRH power, can penetrate and deposit
the power efficiently at the centre of large dense plasmas; the power deposition profile can be
tailored to some extent by moving the cyclotron resonance, which can be utilised for minority
current drive aimed at sawtooth stabilisation [2]; the generation of the RF-power is based on
well established technology. The ability of ICRH to deposit power efficiently at the centre of
large dense plasmas makes it a reactor relevant method for auxiliary heating. In view of this, it
is important to understand and model ICRH physics. Modelling of ICRH is quite complicated.
There are two main processes that have to be considered, viz., propagation and absorption of
the launched waves and the evolution of the velocity distribution(s) of the resonating ions. As
an added complication, the wave propagation and the velocity distribution(s) depends on each
other, making self-consistent calculations necessary. Another complicating factor is the orbit
topology of fast ICRH accelerated ions, especially the finite width of trapped banana orbits. In
recent years it has become apparent that it is important to include the finite orbit width in
simulations of ICRH [3,4,5]. In this paper ICRH modelling, with special emphasis on the
inclusion of finite banana width effects, is discussed.
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Comparisons between experimental results and simulations of ICRH are of importance,
particularly for assessing the accuracy of the modelling and for identifying areas where
improvement is needed. In order to facilitate comparisons with experimental results a code,
named PION-T, was developed. It is based on simplified models, making it relatively fast and
suitable for routine analysis of discharges. The code calculates the time evolution of the power
deposition and the velocity distribution of the resonating ions. Furthermore, the velocity
distribution is taken into account in the power deposition model. A short description of the
PION-T code together with a brief review of comparisons between experimental results and
simulations are given in Section 2. Good agreement between experimental results and the
POIN-T simulations is found when the characteristic power densities are low to moderate.
However, for high power densities and low concentrations of resonating ions clear
discrepancies are observed. These discrepancies are believed to be caused by finite banana
width effects. The importance of such effects can be understood if one considers that the
resonating ions in JET often are accelerated up to energies in the MeV range. Fig. 1 shows a
trapped 1 MeV hydrogen orbit with a turning point close to the centre of the plasma, such an
orbit is typical for ICRH accelerated ions in JET. As can be seen, the orbit is shaped like a
potato rather than a banana. The typical width of potato orbits, dp, is given by [6]:
8p = A23R, where A = 2qp/R, q is the safety factor, p is the Larmor radius and R is the
major radius. For the orbit shown in Fig. 1 the width, with typical JET parameters (R = 3m,
B, =3T, q=1, is about 30 cm, i.e. a significant fraction of the plasma radius. In order to do
a more quantitative assessment of the importance of finite orbit width effects, a simplified
model for taking the finite banana width into account was implemented in modified version of
the code, PION-TO. With PION-TO one obtains good agreement also for cases with high
power densities. From this and other related studies [3,4,5] it is clear that a rigorous treatment
of the effect of finite orbit width on the evolution of the distribution function of ions accelerated
by ICRH is needed. '

The model used in PION-TO takes into account the enhanced slowing down
experienced by energetic ions as a result of their orbits reaching out to the colder parts of the
plasma. However, in an accurate modelling of the energetic ions it is not enough to take this
effect into account. One must, in addition, include neo-classical transport and RF-induced
spatial diffusion, both have been shown to be of importance for describing the energetic ions
[7,8]. The evolution of the distribution function of the resonating ions, including the effects
due to large banana width, can be described by a three dimensional orbit averaged Fokker-
Planck equation. The derivation of the orbit averaged Fokker-Planck equation and its solution
by a Monte Carlo method is outlined here. Furthermore, results from the Monte Carlo code
FIDO, which solves the orbit averaged Fokker-Planck equation along the lines given in this
paper, are presented.
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2. SIMULATIONS WITH THE PIONT-CODE

The PION-T code calculates the time evolution of the ICRH power deposition and the
velocity distribution(s) of resonating ions. In the power deposition calculation deviations from
a Maxwellian velocity distribution are taken into account.

The power deposition is modelled by a formula described by Hellsten and Villard [9],
and further developed by Hellsten and Eriksson [10]. The model is heuristic and was obtained
by analysing results from the toroidal full wave code LION [11]. The formula expresses the
flux surface averaged Poynting flux for a single mode in a toroidal Fourier expansion as sum
of two flux surface averaged Poynting fluxes. One representing single pass, or strong,
absorption, Pj(s), and the second representing weak absorption, P(s)

P(s) = kP1(s) + (1 - ¥)P2(s)

where s is the flux surface label, x = a2 (2 - a), and a is the single pass absorption coefficient
across the midplane. The functions Py and P, are composed of contributions from ion
cyclotron absorption by resonating ions and direct electron absorption via electron Landau
damping and transit time magnetic pumping (TTMP). The contribution from a resonating ion
species, Py, to P; depends mainly on the Doppler broadening of the cyclotron resonance, i.e.
on the toroidal mode number, N, and the averaged square parallel velocity, < v,,i2 > of the
resonating species; whereas the contribution Py;, to P2 depends on the absorption strength and
averaged electric field along the cyclotron resonance. The normalised averaged electric field is
a calibration function which has been obtained from analysis with the LION code. It turns out
to be rather insensitive to specific equilibria and scenarios. In order to make the code fast, the
absorption coefficients needed in the model are calculated using the WKB approximation.
However, more accurate calculations can in principle be used. For further details about the
power deposition model the reader is referred to Refs. [5,9,10].

In order to reduce the computing time the full 2D velocity distribution is not calculated.
Instead, the pitch angle averaged velocity distribution is calculated together with a model for
obtaining the averaged square parallel velocity of the resonating ions. The evolution of the
pitch angle averaged velocity distribution is described by the following Fokker-Planck equation
[12]

120 e 12 e fes I 2} 1 2 i )2
ot v? av{[ * +28v(l3V ) F+2I3V av}Jrv2 vl DRF(V)BV

1
Dge =KIE,? |

-1

2
dp

]n—](k.val—uz /md)*'E—:]nn(kJ.Vm/mci)

13



where the collision coefficients, a and B can be found in Ref. [13], K is a constant related to
the absorbed power density, Ey and E. are the left and right hand components of the electric
field, respectively.

The averaged squared parallel velocity is obtained from the following formula

o 2 2 .
1
< VI|2 S= {ugff(V)F(Vanzdv, Heffz = .5[1 + (——: J }/ [1 + (: J + (—-—: ) }

where v+ ~ vy, vy is the characteristic velocity associated with pitch angle scattering [13]. The
above models have been benchmarked against the 2D code BAFIC [12,14] and found to be in
satisfactory agreement. '

Finite banana width affects are included in a simplified way in a version of the code
called PION-TO. In this version the fast ions are assumed to be trapped with their turning
points close to the cyclotron resonance. The collision coefficients o and B are then averaged,
for each velocity, over the fast ion orbit. In the calculation of profile quantities, like the fast ion
pressure and the collisional power transfer to the background plasma, the finite banana width is
also taken into account.

The velocity distribution influences the power deposition in mainly two ways: (i) the
parallel component affects the Doppler broadening of the cyclotron resonance and to some
extent the absorption strength (ii) the perpendicular component affects mainly the absorption
strength. From the Fokker-Planck calculations one can calculate the enhancement in absorption
strength, Y, =p,/ pz” caused by the presence of a high energy tail, where pgq is the power
density absorbed the actual distribution and pzd is the power absorbed by a Maxwellian

distribution with the same density. For the calculation of the absorption coefficients in the
power deposition model an absorption strength corresponding to a Maxwellian distribution
enhanced by a factor 7y is used, making the absorption strength in the power deposition model
consistent with the Fokker-Planck calculation. The flow chart of the PION-T code is shown in
Fig. 2.

Comparison between experimental results and simulations with the PION-T code have
been carried out [S]. A few of the results will be reproduced here. Fig. 3 shows a
comparison between the measured and calculated perpendicular fast ion energy content (the
measured one is obtained by taking the difference between two different measurements of the
plasma energy which put different weights on the parallel and perpendicular components [5])
for JET discharge #19650. The heating scenario was hydrogen minority heating in deuterium
and was characterised by the following parameters: Te = 9keV, Tj = 6.5keV,
ne = 51019 m3, f=48MHz, Bg=3.1T, Prr = 9.5MW. In this discharge the power

density was fairly low because the resonance was off-axis and the power level moderate.
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Fig. 3 Anisotropic fast ion energy content of
discharge #19650 measured and
calculated by PION-T. The curves
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are for the Gaussian power deposition
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Fig. 2 Flow chart of the PION-T code.
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Large banana width effects should therefore not play a major role. As can be seen in Fig. 3 the
PION-T code reproduces the measured fast ion energy content quite well. In order to
investigate the sensitivity of the results with respect to the width of the power deposition
profile, a simple power deposition model with a Guassian shape and variable width has been
used. The result of calculations with this model deposition are also shown in Fig. 3. The
simulations show that the fast ion energy content is quite sensitive to the width of the power
deposition. It is not possible to reproduce the experimental results unless the width of the
deposition is close to the one calculated with the PION-T code. This and similar simulations of
other discharges give support for classical slowing down of the ions. Furthermore, they
indicate that the peaked deposition profiles predicted by power deposition codes are consistent
with experimental results. However, for discharges where the absorbed power densities are
large and the slowing down times are long, which is the case for most high power ICRH
discharges in JET, discrepancies between simulations and experiments appear. Fig. 4 shows a
comparison between simulations and measurements of the fast ion energy content for two JET
discharges, #12295 and #12298. Discharge #12295 had an RF-power of 4.5 MW whereas
#12298 had 8 MW. The cyclotron resonance was close to the magnetic axis for both
discharges, which resulted in high power densities for discharge #12298.
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Fig. 4 Anisotopic fast ion energy content
measured and calculated (the
calculations with PION-TO includes
finite orbit width effects),

(a) discharge #12295,
(b) discharge #12298.
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The PION-T code, without taking large banana width into account, can reproduce the fast ion
energy content of #12295 but severely overestimates it for #12298. However, by using the
PION-TO version of the code which takes the finite width of the banana orbit into account, the
experimental results for #12298 can be reproduced as well. The conclusion one can draw from
these simulations is that the proper inclusion of large banana width effects in the Fokker-Planck
calculations is an important problem to address.

3. FOKKER-PLANCK TREATMENT INCLUDING LARGE BANANA
WIDTH EFFECTS

There will be an effect on both the distribution function of the resonating ions and the
dielectric properties of the plasma when finite orbit width effects are taken into account. The
latter being indirectly affected via the distribution function, Here, however, the discussion will
be limited to how finite orbit width effects can be included more rigorously in Fokker-Planck
calculations of distribution functions.

The purpose of paragraphs 3.2 and 3.3 is to give an outline of the derivation of the
orbit averaged Fokker-Planck equation and its solution by a Monte Carlo method. However,
many details, which can be found in Refs. [15], have been left out. A derivation of the orbit
averaged Fokker-Planck equation involving only the collision operator together with
calculations of neo-classical ion fluxes can also be found in ref. [16].

Results from the Monte Carlo code FIDO are presented in paragraph 3.4. However,
before turning to the orbit averaged Fokker-Planck equation it is worthwhile to briefly discuss
orbits of high energy ions.

3.1 High energy ion orbits

As can be seen in Fig.1, the effect of increased energy on a trapped ion orbit is not just
to make the banana width larger. In the regime 8y 2 r, where 8y, ~ €1/2 gp is the standard
banana width; € = 1/R; q is the safety factor and p is the Larmor radius, the banana-shaped
orbit is distorted into a potato shaped orbit. The characteristic width, 6p, of the potato orbit is
given by [6]: 8p = A2/3 R, A = 2qp/R.

Since a significant fraction of fast ICRH accelerated ions in JET often enters the regime
dp = 1, information about the orbit topology of such ions is important for calculations of their
distribution function. The topology tumns out to be quite complicated and is beyond the scope
of this paper. Detailed accounts can be found in Refs. [6,17,18]. It is, however, instructive to
consider a few examples of non-standard orbits.

One can use three invariants of the motion to identify an orbit (and to find the orbit
equation), e.g. the energy E = %mvz, the magnetic moment p = mvi / (2B) and the toroidal

angular momentum Py = Zey - mRv) By/B, where v is the poloidal flux. Figs. 1, 5 and 6
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shows orbits for three different triplets of E, 1, Py. For simplicity the orbits shown here are
assumed to be confined to an area with low shear i.e. q = const. Furthermore, the axis have
been normalised to the potato width 8y, which for a 1 MeV hydrogen orbit and typical JET
parameters (R = 3m, By = 3T, qo = 1) is: 8p =30 cm.

The orbit shown in Fig. 1 has E/uBg - 1 =0 and Py = 0 (y = 0 at the magnetic axis).
It is typical for ions absorbing power near the magnetic axis. In Fig. 5 two orbits given by
(E/uBo-1)R/0p = 0.92, P¢2q/(ZcB06p2) = 0.93 are shown. The outer orbit is mirror trapped
whereas the inner orbit is counter passing on the high field side. Finally Fig. 6 shows a
trapped orbit with the inner leg on the high field side given by (E/uBo - 1) R/8p = 0.85,
P¢2q/(ZeBoSp?) = 0.9.

In addition to the orbit types shown here several other exists. In Ref. [6], using some
simplifications, eight topologically different regions in invariant space has been found. Thus,

the problem of treating high energy ions properly is more complicated than just taking the finite
width of banana orbits into account.

-1}

3G04.3043

J01.38173

Fig. 5 Two orbits belonging to the same Fig. 6 Fat banana orbit encircling the axis.

triplet of E, [, Py, the outer orbit is
mirror trapped and the inner one is
counter passing.
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3.2 The Orbit Averaged Fokker-Planck Equation

The kinetic equation describing the distribution function can be written as

%+ zi% = C(f)+Q(f)

where C(f) is the collision operator, Q(f) is the operator describing wave particle interaction
and zi are arbitary phase-space coordinates (summation over repeated indices is understood
throughout this paper).

In a hot tokamak, the time scales for collisions and wave particle interaction are in
general large in comparison with the time it takes for an ion to complete an orbit, T, (the bounce
time). An expansion of the distribution function, f=fy + f] + ....., in Tp/Ts is therefore
advantageous, where Ts is the slowing down time, i.e. the characteristic time for the collisions.
In the following only the behaviour of f on the longer timescale, i.e. the evolution of f, will be
considered.

The unperturbed motion of a particle in an axisymmetric tokamak may be described by
action angle variables (T,é) [15], such that the unperturbed Hamiltonian, Hy, depends on the

action angle variables only, Hgy = HO(T), and the angles evolves linearly in time,

6 =0H, /d]'. Roughly speaking, 8! describes the position in the Larmor rotation, 62 the
position along the guiding-centre orbit, and 63 the toroidal position of the banana centre. The
orbit averaged Fokker-Planck equation describing the evolution of f; is obtained by averaging
the kinetic equation over these angles [15], the result is

of,
-gt—'— <C(fo)+Q(fo)>

where f_=f (T,t) =< f>. Due to axisymmetry and the smallness of the Larmor radius, the

integrations over 8! and 63 are trivial and the averaging simply amount to

Ty

1 2n 2 1
<~-->=2—n-(|;(...)de —El(...)dt

where 7T is the time along the orbit.

At this point it is not necessary to use the action angle invariants and one can change
coordinates to some other, more convenient, set of invariants I = I(]).

The local collision operator conserves particles and can therefore be written as a
divergence. In the coordinates xi = (I,é) one has
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The components of aic and df__j can be obtained by transformation from expressions, €.g. in
Ref. [19] of the collision operator written in local velocity coordinates (v, X), X = v/v|. The
Jacobian of the transformation, g1/2, can be shown to be independent of the angles, 6, the

averaging of the collision operator is therefore simple

<C(f)>=g™? %[g1/2(< al > f+<dl > %)]

The general form for the quasiiinear operator has been derived by Kaufman [20] and its
specialisation to ICRH is discussed in e.g. [15]. It has the form

-172 O j of
<Q(fo)>=g™"" 51‘{[81/2[)1’& a_I(’)]

The components of the tensor DgF will not be reproduced here. But they are all proportional to

2
do k.5
—Et——n(l)c—(l.)'i' 'Vg

’

Ze (- [& = i
zm_e V.L[E+]n+l(k_!_p) + E—In—l(klp)]e *Udt

where N is the toroidal mode number in a Fourier decomposition of the wave electric field, n
gives the harmonic at which cyclotron interaction takes place, E; and E. are the left- and right
hand polarised components of the electric field, respectively, p is the Larmor radius and v g 18
the guiding centre velocity.

As can be seen, both the collision and RF-operators can be written as divergencies in
invariant space. The collision operator involves orbit averages of local collision coefficients,
whereas the RF diffusion tensor is obtained by summing the "kicks" in energy an ion receives

as it passes through cyclotron resonances along its orbit.
3.3 Monte Carlo Solution Of The Orbit Averaged Fokker-Plank Equation

The three dimensional Fokker-Plank equation can be solved by computer codes using
finite element or finite difference methods. An alternative method is to use Monte Carlo
techniques. The advantages with this method include: the central part of the computer program

is in principle not very complicated and there are no particular problems with boundary
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conditions. A short discussion of the Monte Carlo operators needed to solve the orbit averaged
Fokker-Planck equation is given below.

When solving the orbit averaged Fokker-Planck equation with a Monte Carlo method, a
large number of "particles" must be followed in invariant space. The invariants of a "particle at
time step t , are changed to those at the next time step (tn+] = ty + At) according to

Ii(tg41) = Ti(ty) + AL

The components of the Monte Carlo operator, AI', are stochastic variables, whose

expectation values and convariances are

E[ar']= dd” At, C[AI*,AIi]_ddiAt

where the time drivatives of the expectation values, pi, and covariances, i, are obtained from
the orbit averaged Fokker-Planck equation by following the time evolution a distribution
function representing a single "particle" at t = ty, fo(i,tn) = g"l/ZS(-f —io),

J.I af0 ]/2d3

I=<a.>+g™V [g”2 <d" >+Djl )]

ap
4o _ (v -w)(ui- u’)%%"g”zd% —<di+d¥ > +Di + Di. =<2d¥ > + 2D,
The Monte Carlo operator can now be written as a sum of two components

AL = %At + AREKJAE

where EK are uncorrelated stochastic variables with zero expectation values and unit variances;
the matrix Aik must fulfil relation: Aik Ajk = doli/dt. How to solve the equation for All is
outlined in Refs. [15,21].

The procedure to follow in a computer program using the above Monte Carlo operator
is the following: calculate the orbit averaged collision coefficients and the RF-diffusion tensor;
evaluate the two components of the Monte Carlo operator and store them on a grid in invariant
space; load the "particles” with a Maxwellian distribution; advance a time step At by applying
the Monte Carlo operator, which is found by interpolation in the pre-calculated table, to each
particle; repeat until the end of the calculation. A Monte Carlo code named FIDO working
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Fig. 7 Volume integrated flux surface

along these lines have been developed. For further information about the FIDO code see
Ref. [22].

3.4 Numerical results from the FIDO code

In this paragraph results from the newly developed FIDO code are compared with those
of the simplified model in PION-TO. The aim being to assess the applicability of the
simplified modelling for predicting measured quantities like the fast ion energy content.

The following test case has been used in the simulations: Hydrogen minority heating in
a deuterium plasma, JET sized plasma with a constant current profile (to facilitate the
comparison between the codes) and a total current of 2 MA, ng/(ng + np) = 6%, np = 3.1019
m-3 (1-0.9s2)1/2, T, =Tp = 8 keV.(1 - s2)2, By = 2.8 T, f = 42.7 MHz, the profile of left
hand component of the wave electric field has been assumed to the proportional to E; ~ exp
(- $/0.25)2) and the right hand component E. has been set to zero. Thus, in the PION-TO
calculations the power deposition has been replaced with the above model for E,.

Fig. 7 shows the volume integrated flux surface averaged hydrogen energy density
profile

wH(s)=ij(s)E(‘i—‘Sids

calculated for 6 MW of absorbed RF power.

/ PION-T
PION-TO
! \

« FIDO, N=£30 s
AFIDO, N=+30 Y

Wy, (MJ)

N YR

Fig. 8 Total energy content of the hydrogen
averaged energy density of the lons.
hydrogen ions.
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The FIDO simulations has been carried out for two different toroidal mode number spectra of
the wave field. One with N = 30, which is representative of dipole phasing of the JET
antennas, and one with an asymmetric spectrum of N = + 30. Asymmetric spectra are of
importance for current drive applications, e.g. minority current drive. Here N = + 30 has been
used to clearly demonstrate the effect of an asymmetric spectrum. In addition to curves from
FIDO, profiles calculated with PION-TO and PION-T (i.e. the zero banana width version) are
also shown in Fig. 7. As can be seen, the profile is much more peaked and the total energy
content significantly higher in the zero banana width calculation than in those where the finite
orbit width has been included. The profile from PION-TO is slightly narrower than that of
FIDO for N = % 30, as expected. In line with the findings in Ref. [8], the dominant process
leading to transport of the fast particles is here a neoclassical effect caused by the slowing
down of the fast ions on the electrons. There is a quite significant difference between N =+ 30
and N = + 30. The total energy content is lower and the profile is broader for N = + 30. This
is caused by a substantial RF-induced drift of the fast particles for N = + 30, pushing them out
of the region with high wave field. Since there are less absorbing ions in the centre one has to
incease the wave field strength to achieve the same power.

In Fig. 8 the total energy content of the hydrogen ions has been plotted as a function of
the absorbed RF-power. For high powers the zero banana width calculations, PION-T, gives
energy contents substantially above those which includes finite orbit width effects. The results
from PION-TO are somewhat, but not significantly, higher than those from FIDO with
N ==+ 30. In the case of N = + 30 the resonating ions are increasingly driven out from the
centre as the power increases giving rise to lower energy contents at high power.

From these examples it is clear that finite orbit width effects play an important role.
Furthermore, the simplified modelling in PION-TO yields, for symmetric antenna spectra,
results which are in reasonable agreement with the more complete FIDO calculations.
Simulations with codes like FIDO are necessary for detailed studies and, in particular, for
asymmetric antenna spectra. For further applications of the FIDO code see Ref. [23].

4. CONCLUSIONS

The PION-T code has been used to simulate experimental results for a number of JET
discharges. At low characteristic power densities good agreement can be obtained, giving
support for classical slowing down and the peaked power deposition profiles calculated by
wave propagation codes. However, at high characteristic power densities discrepancies
appear. These discrepancies seem to be caused by finite orbit width effects. When such
effects are included, in a simplified way, in the PION-TO code good agreement can be obtained
also at higher power densities.

Finite orbit width effects can be treated more rigorously with a three dimensional orbit
averaged Fokker-Planck equation. To take these effects into account a code called FIDO
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