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INTRODUCTION. A neural network technique used at JET to extract plasma parameters
like ion temperature, rotation velocities or spectral line intensities from charge exchange (CX)
spectra is described. Based on earlier proof-of-principle results /1/ on the application of neural
nets for the analysis of complex spectra such as the Hell (n=4 to n=3) spectrum, the options
for a real-time analysis of complete radial profiles using the simpler C VI CX-spectrum with
fewer components are addressed. A similar attempt has recently been undertaken at DIIID /2/.
Usually spectra are analysed by fitting Gaussian line shapes to all observed spectral
components using a least squares algorithm. The least-squares technique is a well advanced
and established procedure providing high accuracy and error estimates It is, however,
extremely time consuming (>200 ms/spectrum) and human interaction is often required to
provide appropriate initial guesses. In this paper it is shown that in the case of the C VI CX
spectra, neural networks can give a good estimation (better than £20 % accuracy) for the main
plasma parameters (T, v,,). Since the neural networks approach involves no iterations or
initial guesses the speed with which a spectrum is processed is so high (0.2 ms/spectrum) that
real time analysis will be achieved in the near future.

THE C VI SPECTRUM. Fig. 1 shows a typical example of a C VI CX spectrum that a
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recycling neutral hydrogen. Due to the toroidal rotation of the plasma, the active as well as the
passive CX lines are shifted relative to their nominal wavelength position. This means, if one
disregards the continuum level (since it can be determined separately from a line free part of
the spectrum), 9 fit-parameters are required to describe such a spectrum by 3 Gaussians. The
ion temperature is derived from the width of the spectral lines. Since experiments have shown
that the Be II ions do not rotate with the plasma, the toroidal rotation velocity is derived from
the shift of the active CX line relative to the Be Il line.

THE CHARGE EXCHANGE SPECTROSCOPY NEURAL NETWORK. A back-
propagation neural network simulation program has been developed on an IBM-PC in C++
which runs under Windows. For the back-propagation algorithms a commercial library /3/
was used which could be used together with a Digital Signal Processor (DSP) board for the
PC. The DSP board reduced the training time by a factor 12; a significant gain considering
that training often takes several hours. The PC program automatically produces a FORTRAN
subroutine for the forward code, which can easily be transferred to the IBM mainframe and
implemented in the standard analysis codes. In order not to produce a look-up table, but to
make a neural network with a good generalisation ability, two data sets have always been
used, a training set and a test data set, which had a size of about 10% of that of the training
set. Moreover the training was always stopped whenever the error of the test set started to
increase, which is the point when the network starts to memorise insignificant features of the
training set. This status is usually achieved after a few hundred epochs or 1 to 3 hours.

However, good accuracy is already reached after about 1/3 of this time (fig. 2). To achieve a
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spectrum, and only one output neuron representing ion temperature, rotation velocity or line
intensity respectively (fig. 3). It appeared that having only one output neuron made it
considerably easier (reduced convergence time) for the network to learn, compared to a

network with 3 or more parameters as output. It also simplified the decision of when the

network had the best generalisation ability for the different parameters.

CONCLUSIONS AND FUTURE PROSPECTS. The neural network was tested on 30000
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algorithm it is planned to introduce, in a next step, a method to dynamically change the
momentum and learning coefficient and also to implement the conjugate gradient method,
which is believed to be an order of magnitude faster than the ordinary back-propagation
method. On the input side the pre-processing of the data will be improved. Moreover an
attempt will be made to use Bayesian methods ,which have only recently been developed for
back-propagation networks /4/, to choose network parameters (such as the number of hidden

neurons) and to determine the errors of neural network estimations.
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