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INTRODUCTION. We consider the regime 8, 2r < &<A¥ =8 /R, where 8, ~& gp is the standard
banana orbit width, e =#/R, g, =q(0) and A =2g,p/R. In this regime, the banana-shaped orbit is distorted
into a potato-shaped orbit with a characteristic width of the order of & ,. For a 1 MeV Hydrogen ion and typical
parameters of the JET Tokamak, &, ~0.3 m is about one third of the plasma minor radius. A correct
description of the high energy ion orbits is important to assess their effects on the energy balance and on MHD
modes active in the central region of a Tokamak plasma (internal kinks, fishbones, TAE).
ORBIT EQUATION. The orbit equation for the particle guiding centres can be obtained from the invariance
of the energy, ¢ =mv’/2, magnetic moment, p=mv}/2B, and toroidal canonical momentum in
axisymmetric plasmas, P, =(Ze/c)y -mRv B,/ B, where y 20 is the poloidal flux function. We consider a
standard low-B Tokamak equilibrium where the departure from concentric flux surfaces is of order €.
Neglecting higher order corrections, let us set v, =zxv (A+ ecos9)”, where v, =(2uB,/m)" and
A= (é.’/ uB,) -1 are constants of the motion. We define v, =cP, [Ze . The orbit equation can be written as
v,/v,, =t(A+ecos8)” =(Ze/mcR,,vm)(\u—w,). (1)
Let us introduce the dimensionless variables 7 = /5, A = (R/Sp)l, V= (2q0/88p2)\y s W, = (2q0 /B3 )Ww
where the characteristic potato width
8, =(20,v,,/QR,)" R, @
is defined here as a constant of the motion. For the sake of analytic progress, we shall assume that the fast ions
are confined near the magnetic axis in a region of low magnetic shear, i.e. (dIng/dInr) << 1 for r<8 .1In
this case, we can approximate  ~ 7*. Then, the orbit equation can be cast in the more compact form:
i(i"';COSS)W =F-y,. (3)
_ The potato range is defined by the inequalities
$,<1,  Asl @)
ORBIT CLASSIFICATION. A classification of the orbit types can be obtained by studying the intersections
of the orbits with the poloidal midplane. Squaring Eq. (9), we are led to consider the real non-negative roots of
the quartic polynomial
F(R)=isr-(7-9,), ©)
where the plus sign corresponds to intersections on the low field side (9 = 0) and the minus sign corresponds to
intersections on the high field side (8 = ). The total number of intersections can be either 0, 2 or 4,
corresponding to 0, 1 or 2 orbits. Limiting orbits correspond to the tangency of the straight lines g, (F) = AtF
with the quartic f(7)=(#* - {,)’. Thus, the loci of these orbits in the (A,\,) plane are obtained from the
solution of the system

F=0 A=—A P2
{ - {l Fr+1/16F ©)

OF[oF =0 V, =P FI/4F
Elimﬁinating 7 , we obtain two curves in the (A, \fz_) plane (Fig. 1). The curve obtained choosing the minus sign,
A_(y,), corresponds to the locus of the counter-passing stagnation orbits. No orbits exist below this curve.
The curve obtained choosing the plus sign hasa cuspat 7 =1/2 = A= v , = 3/4. Thus we can identify two
brancAhes: the lower branch, k’,(\b.) which corresponds to the locus of the pinch orbits, and the upper branch,
A..(w. ), which corresponds to the locus of the co-passing stagnation orbits. The cusp itself corresponds to a

triple zero of F, i.e. to a pinch orbit where the inner loop degenerates to a point. The two branches together form

theAboundziry between the one-orbit and the two-orbit regions of Fig. 1. Transitional orbits correspond to values
of A and v such that the
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intersections between the curves g,(f) and f(F) occur either at 7 = 0 (orbits tangent to the axls) oratrF=Fr,
(marginally trapped orbits). Thus we are led to consider the two addmonal parabolic curves A= ¥ (locus of
the orbits that are tangent to the magnetic axis) and A —( y,) for w 20 (locus of the marginally trapped
orbits). These two parabolas, in addition to the two curves of Fig. 1, give rise to eight regions in the (A,\uw)
plane, corresponding to as many distinct topological orbit types, plus a ninth region where no orbits exist, as
shown in Fig. 2. Limiting and transitional orbits can be found on the boundaries and corners among these
regions. A complete orbit classification and representative examples are given in Table 1 and Figure 3.

TABLE 1: ORBITS IN REGIONS I-IX.

REGION ORBITS ORBIT TYPE(S)
-co-passing, encircling the axis

two
4 . . . .
-counter-passing, encircling the axis

-co-passing, encircling the axis

n o Y two
II: maxyr, ,r;} <A<k, -counter-passing, high field side
two -mirror-trapped, encircling the axis
HI: l <A< mm{rw, } -counter-passing, encircling the axis
) Wo -mirror-trapped, encircling the axis
1v: max{}»”, } <A< mm{ A } -counter-passing, high field side
V: ;@4 <h<P — IV one -mirror-trapped, encircling the axis
Y > one -co-passing, encircling the axis
VI: A> max{Aw, R f,} P g g
VII: =F <X <min{r” A } one -mirror-trapped, not encircling the axis
: A
VIIE A << min{\fj g } one -co-passing, low field side
- e e
IX: A <h no orbits
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SLOWING-DOWN CHARACTERISTICS. In the high energy limit, only the collisional drag by the thermal
electrons is important. The bounce-averaged Fokker-Plank equation for the fast ion distribution function, fa,

has the form
Yo _[1\T 9 (. fo—Zey/c\ &,
&—L) (vﬁ%< - >M+wx Q)

where angle brackets denote bounce averaging, t, is the slowing-down time and S is the fast ion source term.
Using the variables \u k assuming t, = const, and introducing the normalized time f = £/ t_, we obtain

dF 6F 2+~0F 4 . | OF
—A—+ x ] + — =1 {(S), 8
T F T [g(\u ) ] % AS) (8)

where F = v’f, and the function g(ww , ):;o\) =(V-V, )» which is proportional to the fast ion toroidal
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precession frequency, can be expressed in terms of elliptic integrals. The characteristic equations are

dy, (. o ) 4V d. 2\
= = A0 )+ —2, — == 9
d gld, iio) 3 &3 ®
Analysis of this system reveals the existence of an unstable fixed point at
A, =0, g, =-3(16)" ~ -0.47 (10)

The characteristic curves in the ():, \|AJ,’) plane can be thought of as originating from this fixed point at { — —co,
as shown in Fig. 4. Some of these curves intersect the pinch locus. At this time, a bifurcation occurs, as
represented by the diagram of Fig. 5. Part of the orbits will become trapped (region VII of Fig. 2), while the
remaining orbits will become counter-passing (regions I-III). The characteristic curves of the latter orbits are
shown in Fig. 6. In order to assign a probability of transition to either of the two branches of the bifurcation
diagram, the basins of attraction need to be studied.

The loci of co- and counter-passing stagnation orbits are mapped onto themselves during the slowing-down
evolution. A significant inward radial transport has been found for those high energy ions that initially do not
encircle the axis. An example is shown in Fig. 7a. Note that, as the particle loses energy, its orbit must
eventually become a standard one. Therefore, particles that initially do not encircle the axis, either move onto
the axis and then become a passing orbit, as in the case of Fig. 7a, or move a finite distance toward the axis and
then become a standard banana orbit, as in the example of Fig. 7b.
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CONCLUSIONS. We have presented an analysis of nonstandard guiding centre orbits, which is relevant to
MeV ions in a Tokamak. The orbit equation has been simplified from the start, so to enable us to present an
analytic classification of the possible orbits. We have described the topological transitions of the orbits during
collisional slowing down. In particular, the characteristic equations reveal the existence of a single fixed point
in the relevant phase plane, and the presence of a bifurcation curve corresponding to the locus of the pinch
orbits. A significant particle inward pinch has been discovered.
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