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INTRODUCTION. We discuss magnetic reconnection in collisionless regimes, where electron inertia is
responsible for the decoupling of the plasma motion from that of the field lines. These regimes have become
relevant in high temperature laboratory plasmas. For example, sawtooth relaxations at JET occur on a time scale
shorter than the average collision time. The linear theory of m=1 modes has been recently extended to
experimentally relevant regimes [1]. The conclusion from linear theory is that these modes can remain virulent
at high temperature, with an initial growth rate, y,, which compares favourably with that observed in the
experiments. Specifically, it was found that y, ~w d for d>p; v, ~©® ,,dmpz’3 for d <p, where
d=d,/r, with d, =c/ o ,, the inertial skin depth and r, the g=1 radius; p=p; /r,, with p; the ion (sound)
Larmor radius; and @ 4, = L, / v 4 is the Alfven frequency.
Since the linear theory breaks down for very small magnetic island widths, a nonlinear analysis is called for.
Recent nonlinear studies [2,3], which assumed that collisionless magnetic reconnection evolves according to a
Sweet-Parker process, gave contraddicting results.
In this paper, we analyze the behavior of a collisionless, 2-D fluid slab model in the limit p/d — 0. Our main
result is that, when the island size is larger than the linear layer but smaller than the equilibrium scale length, the
reconnection rate exhibits a quasi-explosive time behaviour, during which a current density sub-layer narrower
than the skin depth is formed (4].
THE MODEL. The equations we solve are

a,U +[e,U]=[J,v] vorticity equation Q)]

o,F+[o,F]=0 inertial Ohm's law )
where [A, B] =e, VAx VB, with e the unit vector along the ignorable z direction (0, =0), ¢ is the stream
function, v =e, x V¢ is the fluid velocity, y is the magnetic flux function, U=V2¢ is the fluid vorticity;
J= —Vzw is the current density;, F =y +d?J is the z-canonical momentum. Eq. (2) implies dF/dt =0: F is
conserved on moving fluid elements. The boundary conditions are periodic. The co-ordinates x and y vary in
the intervals x e[— L., ij and y |- L, Lst with the slab aspect ratio € = L, /L, <1. The magnetic field is
B=B,e, +Vyxe,, B, =constant. All quantities are dimensionless, with L, =n and 1, = (41rp,,,)]‘2 L. /B,
determining the length and time scale normalisation. At equilibrium: ¢,=U, =0, J, =y, =cosx, and
F, = (1+d%)y,. The initial conditions are the equilibrium plus a small tearing-parity perturbation of the form
(0,8y) = Real{[q),‘(x),&p,‘(x)Jey”""‘y}, with k =me and m an integer number. In the limit d << L,, the
solution of the linearized system can be obtained analytically using asymptotic matching techniques. For
0 < k? <1, the logarithmic jump of 8y, across the reconnecting layers is

12
A’ =2« tan(xn/2), K E(l—kz)/ 3)
We are interested in the large-A' regime, defined by
A'd>1 = macroscopic convection cells, L., ~ L,. )

which can be obtained for low values of mand £ << 1 such that A" ~ (8/ nk?). In this regime, the structure of
the stream function is macroscopic, with ¢, = @_ signx, @, = (i / k), everywhere except in narrow layers
near the reconnecting surfaces. The current channel in the linear stage has a width 8, ~ d. The linear growth
rateis vy, =~ kd.
NUMERICAL SOLUTION. The system of Egs. (1,2) is solved numerically with a pseudospectral code
truncated to 1024 X 64 (x, y) components. We concentrate on the early nonlinear phase, specified by the
inequalities

d<w<2L, 5
where w is the magnetic island width. An important consequence of the inertial Ohm law is that the value of F
at x =0 is frozen to its initial value, i.e. F(x=0,y, )= F,(x=0)=1+d*. The solution shown in Figs. 1-4
has been obtained for £ = 0.5 and d/(2L,)=0.04 = dA’ ~2.03.
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Fig. 1. Cross sections of a) normalized Sy, b)
normalized v,; ¢) J; d) F versus x at y=0 and
various times, indicated by arrows.

Fig. 3. Contour plots at t=120: a) ¢; b) vy, ¢} J;
d) F.

Fig. 2. Cross sections of a) dy; b) &'F/ox’; ¢)
normalized v, versus y at x=0. Also, d) time
dependence of the logarithm of the inverse scale
lengths Sq,'l (solid line) and & _,_l (broken line).
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Fig. 4. Time dependence of 8y and 8J at the X-
and O-points, of v.(-L./2,0) and of
v,(0, Z,/2).

RELEVANT PHENOMENOLOGY. The linear phase conventionally lasts until ¢ ~ 80, when the magnetic
island reaches a width of order d. For >80, the width of the profile of v,, 8, =(v,),.; 2 /(8,V,), ., as
well as that of Sy, remain of the order of the skin depth (Fig. 1a,b and Fig. 2d). Therefore, the convection cells
retain approximately their linear shape well into the nonlinear phase (Fig. 3a). By contrast, the current density
profile (Fig. 1c) develops a sub-layer whose width around the X-point, § , = (61&1 18J )4‘2 < d, keeps shrinking
with time (see also Fig. 2d). This sub-layer is also visible in the profile of F across the X-point (Fig. 1d). The
contraction of this sub-layer is extremely rapid in time, as shown by the graph of 82 F, / ox? versus y for x =0

and several times in Fig. 2b. Note the development of a current sheet around the reconnection line (Fig. 3c).
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Also, note the preservation of the topology of the isolines of F (Fig. 3d). Finally (Fig. 4) the mode growth
remains very rapid throughout the simulation. Indeed, the growth of ¢, as well as that of 6y and 8/ at the X-
points, accelerate in the early nonlinear phase, which is symptomatic of an explosive behaviour (eventually, the
mode growth slows down when w approaches L, ).

ANALYTIC TREATMENT. The numerical simulations suggest the following ansatz:

O(x, ¥, 1)=V,(g(x)h(y) +u(x,p,0) (6)
where A(y) ~ k7' sin(ky), g(x)~ (p,,(x)/(pw contains the linear scale length d and u(x,y,t) develops the
rapid scale length 5(¢)~8, observed in the numerical simulation. The relevant ordering is u <<v, and
0,u~v,0,g. Integration of the collisionless Ohm's law gives F = F,(x,), where x,(x, y, t)=x-&(x, y, 1)
is the initial position of a fluid element situated at (x,y) at time ¢ and £ is the displacement along the x
direction defined by the equation &€ /dt = v, E(r= —0)=0.At y=0,

1
~fag(x) = [u () =0(o). %)
The function A(¢)>0 represents the amplitude of & outside the reconnection layer, where g(x)=~1. In the
linear phase, -y, = A <d. When A > d, the magnetic island width w ~ 24, so that the early nonlinear phase
can also be characterised by the inequality d <A < L,, or alternatively #, <t <t,,, with A(t,) ~d and 1,, the
characteristic turnover time of the macroscopic eddies in Fig. 3a. Inverting equation (4) in the limit d <A < L,
we obtain x, = x,(x, t), which depends on the time-dependent scale length
8(t) =dexp|-A(1)/d|. (8)
Thus we see that near the X-point along the x direction, F(x,) (and hence J) varies over a distance 8(¢) which
becomes exponentially small in the ratio A/d . Conversely, F flattens over a distance lx‘ ~ A around the O-point.
The formation of a sub-layer is the combined result of the conservation of F on each fluid element and the flow
pattern around the X-point, which acts to increase the local curvature of the F profile (Fig. 1d). Integrating the
equation y +d*J = F, where J z—&iw, we find that y has an integral structure such that any fine scale
variation of F is smoothed out over a distance ~ d. Asymptotic evaluation of y at the X- and O-points in the
early nonlinear phase gives
wr = w(0.0,0)~1-12(0), o =w(0,2L,.0)~1+1(a2) ©
Now set F = F,(x)+8F. Then, y +d’8J = 6F , and at x = 0, where 8F = 0, we find 8J = -8y /d? . Thus, an
asymmetry develops in the values of &y and of J between the X- and O-points. The spike of the current density
at the X-point has an amplitude &8/, ~ 0.5(7L/d)2. Integrating the vorticity equation over the quadrant
S:|_O <x<L,,0<y< LyJ gives
a,J'dedy=§Jd\p. (10)
A C

where C is the boundary of S. With the ansatz (6), and neglecting corrections n”i(kzd 2) contributed by azvcp, we
find

3, j(af o)dxdy ~ ~(4c/k*d)d*\]dr* an
8
where ¢ > 0 is a factor of order unity, which depends weakly on time (e.g. 1 <¢ < 1.4 in Fig. 2d). The dominant
contribution from the r.h.s. of Eq. (10) is

i.Jd\szwx—5w()—(5w3(—6w?))/2d2 (12)

Finally, using an interpolation formula between the linear and early nonlinear limits of the r.h.s. of (12), we
obtain an equation for the evolution of A(¢) = k(t)/d:

d2NdE &\ + oy (13)
where 7=y ,¢ and ¢, ~1/16c>0 can be taken constant. The solution is i([)=[§l—a)/(l—ae3')] e',
where o= ﬁ—(ﬁz - 1)"1, B =1+5/c,, and we have chosen the time origin so that A(0) =1. Thus, orice the
early nonlinear regime is entered, A(¢) acceletates and reaches a macroscopic size over a fraction ~ ln(a’”‘) of
the linear growth time. Eventually, we can expect this quasi-explosive growth to cease as A approaches L, .
DISCUSSION AND CONCLUSIONS. Collisionless reconnection in regimes where the instability parameter
A’ is large and global convection cells develop does not follow the standard Sweet-Parker scenario [5-7]. In
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this context, we note a fundamental difference in the nonlinear flow pattern between the collisionless case (F ig.
3) and the resistive case (Fig. 5). The Sweet-Parker scenario applies to the regime n" 2 >>d, where n is the
normalized resistivity (inverse Reynolds' number). It is of interest to study the limit n""? <<d << n"?. In this
regime, the linear phase is dominated by exponential evolution with the resistive growth rate vy, ~ n" &0 1
During an initial nonlinear phase, where n'3 < < n/d?, the displacement A grows algebraicaily in tirﬁe,
A ~n¢?, while the width of the current channel shrinks from 8, ~n'" to ~(n/1)"%. This initial nonlinear
regime is consistent with Sweet-Parker. When A ~ n /dz, also & ~ d . Therefore, the initial nonlinear behavior
must change for A > 1/ dz, as for these values of A the current in the layer is distributed mostly over a distance
~d, independently of X . Assuming that the formation of the current spike (cf Eq. 10) is impeded (see below),
we can expect a resumption of exponential growth in this later nonlinear phase, with A o« exp(d ).
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Fig. 5 Contour plots of a) the stream function ¢ Fig. 6 Time evolution of the normalized
and b) the current density J in the resistive case. displacement £ =1/ n” Y in the regime
n""? <<d << n"3: a) linear plot; b) semi-log plot.

This behavior can be summarized by the following phenomenological equation for &= /n"*:
12

&fdi =[+d8)/(1+)] (14)
where 7 = n"* and d= d/nm. The numerical solution of Eq. (14) is shown in Fig. 6. The growth eventually
saturates when the displacement reaches a macroscopic size (A ~ L_,;). One expects that the current spike will
be limited by effects not taken into account by the present analysis. Such effects may include collisions (most
notably, electron viscosity), velocity-space instability associated with the current density gradient, 3-D effects,
etc. Further work needs to be done to determine the relevant effects for interesting applications. While the
current spike is being formed, the reconnection rate exhibits a quasi-explosive time behavior. Physically, the
flow rotation accelerates following the intensification of the electromagnetic torque J xB-dl = ¢ Jdy in the
early nonlinear regime. This torque is mainly contributed by the average J_B, force between thé X- and O-
points within a magnetic island.

In conclusion, we believe that the inclusion of the electron inertial term in Ohm’s law opens the possibility to
understand the rapidity of relaxation processes observed in low collisionality plasmas.
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