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1. INTRODUCTION

The hot core plasma in tokamaks is surrounded by the scrape-off-layer (SOL), a region of
relatively cold plasma with open field lines intersecting the limiter or the divertor target
plates. Previous theoretical work has revealed that instabilities in the SOL plasma can
strongly influence the SOL plasma behaviour and, in particular, the SOL width, x, [1-4].
The SOL stability analysis (resembling that of open traps) shows that there exists a critical
ratio of the thermal energy and the magnetic energy, Ber. If the SOL beta is greater than this
critical value, B¢, the magnetic field cannot prevent the plasma displacement and a strong
MHD instability in the SOL occurs. In the opposite case only slower resistive instabilities
can develop. The resistive instabilities depend strongly on both the volume (Spitzer)
conductivity and the sheath conductivity near the end plates. In this paper a theoretical
investigation of the SOL plasma stability is presented for JET single-null and double-null
divertor configurations. The dependence of the stability threshold on the SOL beta and on
the sheath resistance is established. Applying a simple mixing length argument gives the
scaling of the SOL width.

2. DISPERSION RELATION

The plasma is described by the macroscopic single-fluid MHD model. For the case of a
strong magnetic field a simplified system of reduced equations can be applied [3]. The
behaviour of linearised perturbations around an equilibrium state are studied by means of the

Fourier Ansatz e'KT leading to the following dispersion relation for the growth rate y.
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K1 denotes the transverse viscosity, )| (XL) the parallel (perpendicular) thermal conductivity
and oy the Spitzer conductivity. A new coordinate system with £ the coordinate along the



G(2) is adopted.
The eigenfunction in the unstable region I (see Fig. 2) is given by the ansatz

01(5)=Cy [k-cos (k- (1-s))+a-sin (k-(1-5))], k*=B"-(y+8)-(1/¥-7) (4)
For the stable region II the eigenfunction has the following dependence
¢p(s)=Cy-[k-ch(x-(1-s))+a-sh(x-(1-s))], k2 =p* (y+8)-(177+7). (5)

It is easily verified that these eigenfunctions satisfy the boundary conditions at both target
plates. Using the matching conditions between the two regions
01(0) = ¢,(0), 9¢;(0)/ds = 99,(0)/ds yields the dispersion relation
k+o-tan(k)  k+a-tanh(k)
k-(k-tan(k)—a)  x-(k-tanh(x)+a)’
The stability threshold is given by B:r = (2.365)2 = 5.6. The growth rate for arbitrary B" is
displayed in Fig. 2.

(6)

The corresponding diffusion coefficient obtained from the mixing length argument is in
physical variables
X1 =D, = /o (B /Be) - Co/Ly. 9
In comparison with the linear dependence on B* for the double-null case a quadratic
dependence occurs. Making use of the diffusion equation the SOL width for the single-null
divertor is estimated as
X = (B* /BZr)'C/mpi with the scaling xo ~ L - R™VZ.aV/4. 112 g1, (8)

The final result states that xg cannot exceed the value ¢/ Op;-

DISCUSSION

The stability analysis concerning interchange modes in SOL plasmas has been carried out for
single-null and double-null divertor geometry. Applying a mixing length argument scalings

for the transport coefficients and the SOL width were derived in different regimes. The
longitudinal loss mechanisms take into account the hydrodynamical regime (A; <L) with

= L%| / Xy and the kinetic regime (A; > L;) with 1y =Ly /C,. The ideal MHD interchange
instabilities define a stability limit for the SOL plasma beta, B5;. At lower beta values
(B* < B:r) resistive interchange instabilities occur and the resulting turbulence determines the
SOL width. Itis shown that for the volume (Spitzer) resistive beihg the dominant dissipation
process the perpendicular transport x| ~ % ~ Dy B’ /ﬁzr is the same for single-null and

double-null divertor configurations. For the sheath resistance the transport coefficient scales

2 * 2 *
c C
as XT ~ (B, ] —% for the single-null divertor and xT ~C—2 B* S for the
opi \Ber Ly o5 \Ber /) La
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magnetic field line and the local orthogonal coordinates (x, y) in the transverse (R, Z) plane is
introduced. In this system all quantities have only weak dependence on £ and do not change

sign except the quantity R(£ ) which is defined by
- = 1 dpP
kxV(1/B)|- [kxVPg|}- Bg/ng = — - —2

([ (1/ )] [ 0]) 0/no R(D)  modx

along £ as indicated in Fig. 1. Since R(£) is the most important term, the weak dependence of

the other quantities on £ can be neglected. This ordering is suitable for taking into account

. k%, and does change its sign

small-scale transverse perturbations, where the transverse wave length is smaller than the
SOL width. From Eq. (1) we can restore the differential equation. In particular, the
component along the magnetic field line, i.e. along ¢, is given by
9 CL 3 , G(4) |
oZ [Y+ki'DM] o¢ [y+l/t"+k_2L-xl]

where @’ is the perturbed electrostatic potential, (BV) = V| =09/ 94, and the operator k% X

@ - [y+Kkp]- @+ =0, (2

is replaced by the constant 1/ 1. This allows to reduce the order of the differential equation

but still accounts for longitudinal losses. In the case of free-streaming losses onto the target
plates at ion sound velocity, Cq, Ty is estimated as Ty =L, /Cg, where 2L is the distance

between the target plates along B. The hydrodynamic region is characterised by t = Lﬁ ! A

The differential equation needs to be completed by an appropriate boundary condition as
done in Ref. [5]. Neglecting small dissipative terms, i.e. W1, Xy and 1/, equation (2) and the

boundary condition are rewritten in more convenient, dimensionless variables

) 1 0 = G(¢) 0 -
Here ¢ = ¢ ®'/T, s = £/L), G(f) = G(£)/G, where G is a characteristic value such
that -1 < G(£) < +1, B*=15-G/C4 = Lj/(x9-R)-B, where B=4nP/Bj is the

usual beta for SOL parameters, y =7y / (G)]/z, 5=k -Dy/ (G)”Z, =0, (? + 6) with

2 \1/2 2

®,; . .

o, =[ Ly ) [k E ) . It is emphasised that in this dimensionless form B* appears,
o’ 1°¢

which is of order unity, instead of the small B (= 1074 )

The pumped divertor, which was recently installed at JET, is a single-null divertor. For this
magnetic field line geometry the curvature term G(£) in Eq. (2), plotted in Fig. 1, changes
sign while the average part is approximately zero. Numerical evaluation shows that the

closer the field is to the separatrix the more G(£) assumes a step-function dependence. For
analytical treatment we assume that G(£) = 6 (£—¢,) is a step function. However, the

simplest situation with constant G(#) = 1 can be regarded as a suitable model for a double-

null divertor. For the single-null divertor the step-function model for the curvature term

101



double-null divertor. The dependence on beta is stronger for the single-null geometry due to
the partial compensation of regimes with favourable and unfavourable curvature. The basic
result is that with increasing SOL beta the difference between single-null and double-null
disappears. Near the ideal MHD stability threshold the transport coefficient is

2
~ S —Ci. Consequently, the MHD instabilities regulate the SOL width and allow
X y g
e Ly
p1

c

values up to xg ~—.
pi
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Fig. 1) The dependence of the driving Fig. 2) The growth rate for single-null
curvature term along the field line for divertor
single-null divertor.
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