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INTRODUCTION.

Magnetic reconnection in collisionless regimes, where electron inertia is responsible for the decoupling
of the plasma motion from that of the magnetic field, is a well known process in Astrophysics‘. Recently
this process has also been observed in tokamak plasmas. Specifically, at the high plasma temperatures
reached in JET, sawteeth commonly occur on a time scale shorter than the electron-ion collision time.
These observations have initially motivated the extension of the linear theory of m=1 kink-tearing modes
to the experimentally relevant regimes3-6, leading to the conclusion that these modes can remain virulent
at low collisionality with an initial growth rate which compares favourably with that observed in the
experiments. However, the nonlinear evolution has remained unclear. While Wesson’s” modification of the
Sweet-Parker-Kadomtsev8-10 scaling has given an estimate of the collisionless reconnection time in good
agreement with that observed experimentally, Drake&Kleva’s numerical simulation11 of the merging of two
isolated flux bundles has led to the suggestion that the collisionless reconnection rate is greatly reduced
as the nonlinear phase is entered, i.e. for magnetic island widths comparable with the plasma skin depth.

In order to clarify these issues, we analyze the behavior of a collisionless, incompressible 2-D slab model
where Larmor radius effects are neglected. The main result of our numerical and analytic investigation is
thatwhen the island size is larger than the linear layer but smaller than the macroscopic (equilibrium) scale
length the system evolves faster than exponentially.

THE MODEL.
U +[o,U]=[J,v] vorticity equation M

aF +[o.F]=0 collisionless Ohm’s law (2)

where [A,B] = e, - VA x VB, with ez the unit vector along the z direction. U=V2¢ is the fluid vorticity, ¢ is
the stream function, v=ezxVg is the fiuid velocity, J=—V2y is the current density along z, v is the magnetic
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flux function and Fz\u+a‘2J, with d the skin depth. Thus, [¢,F]= v - VF and the collisionless Ohm law (2)
can be written as dF/dt =0.

Key point: F is conserved on a moving fluid element.

Boundary Conditions and normalizations: The co-ordinate zis ignorable, d, = 0. The co-ordinates x
and yvary inthe intervals x e[-L,, LyJand y e[—Ly, Ly ] with the slab aspectratio e = L, /L, < 1. Periodic
boundary conditions are imposed at the edge of these intervals. The magneticfield is B =Bge, + Vy xe,,
with a constant B,,. All quantities in Egs. (1,2) are dimensionless, with L, = m and t4 = (4npp, )V2Lx /By
determining the length and time scale normalisation.

Equilibrium: ¢, = U, =0, J, =y, = cosx, and F = (1+d)y,.

Initial Conditions: A small tearing-type linear perturbations of the form
(0,8y) = Real{[qaL(x),swL(x)]eY“‘kY} is added to the equilibrium to construct the initial conditions. Here
k = me, with maninteger number. Inthe limit d << L, the solution of the linearized system can be obtained
analytically using asymptotic matching techniques. For 0 < k? < 1the logarithmic jump of &y across the

12
reconnecting layers is A’ = 2k tan(kn/2), with k = (1 - k2)/ .

Regime of interest: the large-A’ regime, defined by

Ad>1 = Macroscopic convective cells (3)
satisfied for low values of mand € << 1such that A’ ~ (8/ nk?). In this regime, the structure of the stream
function is macroscopic, with ¢|_ = ¢, signx, ¢, = (iy/k)v.., everywhere except in narrow layers near the
reconnecting surfaces. Here we choose ¢ = 0.5 (to ensure that only m = 1is unstable) and d/(2L, ) = 0.04,

which gives dA’ = 2.03 thus satisfying condition (3). The current channel in the linear stage has a width
& ~d. The linear growth rate is y| =kd.
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NUMERICAL SOLUTION.

The model equations are solved with a pseudospectral code12 advancing in time the Fourier represen-
tation of the field variables, truncated to 1024x64 (x,y) components.

Regime of interest: the early nonlinear phase, defined by the condition d<w <2L,, where w is the

magnetic island width.

An important consequence of Ohm’s law and of the initial conditions is that the value of F on the rational

surface x =0 is frozen to its initial value, i.e. F(x =0,y, t)=Fy(x=0)=1+ d.
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Fig. 3. Contour plots at t=120: a) ¢; b) w; ¢) J; d) F. Fig. 4. Time dependence of &y anddJ at the X- and O-points, of

vy (-Ly /2,0) and of v, (O,L, /2).

RELEVANT PHENOMENOLOGY.

The linear phase conventionally lasts until t ~ 80, when the magnetic island reaches a width of order
d

For t > 80, the width of the profile of v, as well as that of &y, remains of the order of the skin depth
(Figs. 1a,b and Fig. 2d). The convection cells retain approximately their linear shape well into the
nonlinear phase (Fig. 3a).

By contrast, the current density profile (Fig. 1¢) develops a sub-layer whose width around the X-point,
keeps shrinking with time (see also Fig. 2d). This sub-layer is also visible in the profile of F across the
X-point (Fig. 1d).

The contraction of this sub-layer is extremely rapid in time, as shown also by the graph of 82F/ ax2
versus yfor x = 0 (Fig. 2b). The simulation is stopped when this layer has become so narrow that it can
no longer be resolved by our truncated Fourier expansion.

Note the development of a current sheet around the reconnection line (Fig. 3c) .

Also note the preservation of the topology of the isolines of F (Fig. 3d).

Finally (Fig. 4) the mode growth remains very rapid throughout the simulation. indeed, the growth rate
of ¢, as well as that of &y and 3J at the X-points, accelerate in the early nonlinear phase, which is
symptomatic of an explosive behaviour (the mode growth slows down only when the island size w
approaches the macroscopic scale length L,).

66



ANALYTIC TREATMENT.

The fact that the spatial structure of the stream function does not vary significantly with time throughout
the linear and early nonlinear phases suggests the ansatz:

o(x,y,1) = Vo(t)g(x)h(y) +u(x,y,t) (4)

where h(y) ~k~'sin(ky), g(x) ~ oL (x)/¢.. contains the linear scale length dand u(x,y,t) develops the rapid
scale length &(t) ~ 8 ; observed in the numerical simulation.

Assume u << v, and d,u ~ v,d,g. These assumptions allow an analytic treatment of the system of Eqgs.
(1,2).

* Integrate the coliisionless Ohm’s law (2) with the method of the characteristics. This yields F = F(x, ),
where xq(x, y, t)=x —E(x, y, t) is the initial position of a fluid element situated at (x,y) at time tand &
is the displacement along the x direction defined by the equation d&/dt = v, E(t = —«) = 0. The ansatz
(4) allows one to neglect u(x,y,t). One finds:

X t
- fax/g(x) = fuotyat =20, (5)

where the function A(t) > O represents the amplitude of £ outside the reconnection layer, where g(x) = 1.
Inthelinearphase, -y, = A < d.When A > d, the magneticisland width w ~ 2, so that the early nonlinear
phase can also be characterised by the inequality d < A < L,, or alternatively ty < t < tp, with A(tg) ~ dand
tp the characteristic turnover time of the macroscopic eddies in Fig. 3a.

* Invert Equation (5) to obtain x, = x4 (X, t). Inthe limit d< A < Ly, the new time-dependent scale length
appears:

3(t) = dexp[-A(t)/d], (6)

such that x, has the following behaviour around y = 0:

X, ~ (x/8)d for x| < &;
Xo ~ [k + 8!n(|x|/&)]sign(x) for d>|x|> &
Xo ~ Asign(x)+ x for [x|>d
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where d = (dg/ dx);lo ~ d. Thus we see that near the X-point along the x direction, F(x, ) (and hence J)
varies over a distance §(t) which becomes exponentially small in the ratio A/d. Conversely, around the O-
point F flattens over a distance x|~ 4.

Physical meaning: The formation of a sub-layer is the combined result of the conservation of £ on each

fluid element and the (hyperbolic) flow pattern around the X-point, which acts to increase the local
curvature of the F profile (Fig. 1d).

* Obtain v by integrating the equation v + d?J=F (see appendix At). Asymptotic evaluation of y atthe
X- and O-points in the early nonlinear phase (A > d) gives

V001 L v vf0sty 1+ () "

Key point: an asymmetry develops in the values of dy and of J between the X- and O-points. The spike
of the current density at the X-point has an amplitude 8Jy ~ O.5(k/d)2.

* Integratethe vorticity equation (1) over the quadrant S:[O <xs<ly0s<sy<lLy ] suchthat JS[(p,UbXdy =0.

3 jSdedy = §CJd\u. 8)
where C is the boundary of S. The dominant contribution to the |.h.s. comes from vy (appendix A2):
LI 9
athdedy~ 5d A/dt?. 9
The dominant contribution from the r.h.s. of Eq. (8) can be evaluated exactly (appendix A2):
§0de ~Byy —dyo - (dwk - dwd /20 (10)

+ Finally, Use an interpolation formula between the linear and early nonlinear limits of the r.h.s. of (10),
to obtain an equation for the evolution of A(t) = A(t)/d:-

&2/ =i +cit:e>0 (11)

where t=v.t and ¢ can be taken constant. The solution is A(t)= [(1 - a)/ (1 ~aedt )T/sef, where
a=p- (B2 - 1)1/2, B =1+ 5/c, and we have chosen the time origin so that X(O) = 1. Thus, once the early
nonlinear regime is entered, A(t) accelerates and reaches a macroscopic size over a fraction ~ In(a‘V 3 ) of
the linear growth time. Eventually, we can expect this quasi-explosive growth to cease as A approaches
Ly.
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CONCLUSIONS.

* A collisionless, incompressible 2-D slab model of magnetic reconnection has been investigated with
numerical and analytic methods, to study the dynamics when the island size is larger than the linear
layer but smaller than the macroscopic (equilibrium) scale length.

* When the instability parameter A’ is large and global convection cells develop the process does not
follow the standard Sweet-Parker scenario8.9. Rather, the reconnection rate accelerates when the
island size exceeds the skin depth (d < A <L,).

* Physically, the acceleration is caused by of the intensification of the electromagnetic torque

<§ dj xB-di= ichdw as the system enters the nonlinear regime. This torque is mainly contributed by the

average J,B, force between the X- and O-points within a magnetic island.

* The formation of a narrow scale length less than the skin depth (already noted by Wesson7 and by
Drake&Klevall) is due to the combined effect of the conservation law and of the flow paftern around
the X-point.

* Eventually, the reconnection rate slows down only when the magnetic island width approaches the
dimension of the system (A =L,).

* One expects that the current spike will be eventually limited by effects not taken into account in the
present model like collisions, 3D geometry and possibly secondary instabilities. Further work needs to

be done to determine the relevant ones for the interesting applications.

* The present analysis opens the possibility to understand the rapidity of the relaxation phenomena
observed in low collisionality plasmas.

69



REFERENCES

[11 V.M.Vasyliunas, Rev. Geophs. Space Phys. 13, 303 (1975).

[2] A.W.Edwards et al, Phys. Rev. Lett. 57, 210 (1986).

{31 F.Porcelli, Phys. Rev. Lett. 66, 425 (1991).

[4] H.L.Berk, S.M.Mahajan and Y.Z.Zhang, Phys.Fluids B3, 351 (1991).

{5] B.Coppi and P.Detragiache, Phys. Lett. A168, 59 (1992).

[6] L.E.Zakharov and B.Rogers, Phys. Fluids B4, 3285 (1992).

[7] J.Wesson, Nuclear Fusion 30, 2545 (1990).

[8] P.A.Sweet, in Electromagnetic Phenomena in Cosmic Physics, ed. by B.Lehnert (Cambridge
University Press, 1958}, p. 123.

[9] E.N.Parker, J. Geophys. Research 62, 509 (1957).

[10] B.B.Kadomtseyv, Fiz. Plasmy 1, 710 (1975) [Sov. J. Plasma Phys. 1, 389 (1975)].

[11] J.F.Drake and R.G.Kleva, Phys. Rev. Lett. 66, 1458 (1991).

[12] S.A.Orszag and G.S.Patterson, Phys. Rev. Lett. 28, 76 (1972).

APPENDIX.
A1) Solution: wy(x,y,t)= %Jme_}i_“F()“(',y,t)d)“(', where % = x/d, which shows that v has an integral

structure such that any fine scale variation of F is smoothed out over a distance ~ d.

A2) The manipulation of Eq. (8) involves the neglect of subdominant terms. In the r.h.s. we neglect
corrections O(kzd) contributed by a§<p. Exploiting the reflection symmetry with respect to x=L,/2,
y=Ly /2, the second integral in Eq. (8) can be written as

§ v = —2jOL’ dy(Jayy) -2 jOL 2 CIERT)

X=

The first integral at the right hand side can be evaluated exactly to yield the r.h.s. of Eq. (10).

The secondintegral gives a contribution of order k%A , which is negligible when A’d ~ 8d/mk? > 1, and which
is significant only in the linear phase when A'd ~ 1.
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