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ABSTRACT

This paper reports on a project currently in progress to develop neural network
techniques for the conversion of JET ECE spectra to electron temperature profiles. The
aim is to obtain profiles with reduced measurement uncertainties by incorporating data
from the LIDAR Thomson scattering diagnostic in the analysis, while retaining the
faster time resolution of the ECE measurements. The properties of neural networks are
briefly reviewed, and the reasons for using them in this application are explained. Some
preliminary results are presented and the direction of future work is outlined.

(1) INTRODUCTION

Neural networks provide a powerful class of algorithms for non-linear data processing.
This makes them well suited to a variety of data analysis tasks in plasma diagnostics. They
have already been used successfully in the reconstruction of density profiles from line integral
data [1], the fitting of complex impurity emission spectra [2,3] and the extraction of plasma
equilibrium parameters from boundary magnetic measurements [4]. In all of these cases the
neural networks have been able to achieve very rapid processing of the data, with accuracy
comparable to or better than that of the standard analysis techniques.

For the present application, a neural network approach is being used because the
network can learn the non-linear transformation required to correct for the combination of
systematic errors present in the ECE T profiles, without needing any independent formulation
of their behaviour. This is discussed further in Section 3.

The LIDAR profiles are used as the "target data" for training the neural network. The
network learns the systematic non-linear transformations needed to convert measured ECE
spectra into temperature profiles, with various magnetics parameters used as additional inputs.
During the training process the network tends to average over the random LIDAR errors.
Once trained, the network should therefore produce profiles in which both systematic and
random errors are relatively small, using only the ECE spectra and information from the
magnetics measurements as input data. The time resolution would then be determined only by
the ECE measurement.

The particular goals of the present study are: (i) to examine different possible neural
network structures and develop a network based on the most promising of these, and (i) to
assess the suitability of this analysis for routine use at JET.
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Following a brief review of the JET ECE and LIDAR diagnostics, the paper explains
why neural networks are well suited to this problem, outlines how they operate and are trained,
and then describes how they can be applied to the analysis of JET ECE data. The current status
of development of this work is described and possible future enhancements and applications
are discussed.

(2) THE JET ECE AND LIDAR DIAGNOSTICS

The JET ECE measurement system has been described at a previous conference in this
series [5]. The emission along a major radius 0.13 m below the plasma mid-plane is collected
by in-vessel antennas and transported by oversized waveguides to the measurement area
outside the biological shielding wall. A variety of measurement instruments is in use, but we
restrict discussion here to the Michelson interferometer whose spectra have been employed in
the present work. The characteristics of this instrument are listed in Table I.

The JET LIDAR diagnostic [6] measures electron temperature profiles by time-of-
flight analysis of the Thomson back-scattered light from a very short pulse ruby laser. The laser
pulse passes through the plasma along a mid-plane major radius and light which is 180° back-
scattered is spectrally analysed in the conventional way to give electron temperature and
density profiles. The essential characteristics of the LIDAR diagnostic are also summarized in
Table 1.

TABLE I: Characteristics of the Two Electron Temperature Profile Diagnostics

LIDAR ECE (Michelson)
Radial spatial resolution ~0.10m ~0.15m
Temporal resolution few ns 15 ms
Repetition rate of measurement 0.5to 1 Hz 60 Hz
Number of profiles per plasma pulse 5to 10 ~ 300 *

* Limited by data acquisition memory.

The dominant sources of uncertainty in these two temperature measurements are quite
different. The purpose of the present work is to exploit these differences to obtain improved
determination of the electron temperature profile.

As is well known, the uncertainties in the electron temperature profiles obtained from
ECE measurements are dominantly systematic. They arise principally from the spectral
calibration of the instrument, which gives an uncertainty on the temperature values, and the
limitations on the accuracy of the calculations of the magnetic field profile, which lead to a
radial uncertainty via the spectral frequency to radius transformation. The JET magnetic
equilibrium code [7] is believed to give generally accurate magnetic field profiles, but it is
difficult to estimate how large the errors might be. From an examination of individual LIDAR
and ECE profiles, it appears that under some plasma conditions the total field error can
correspond to a radial error in the ECE T, profile location of up to 0.15 m near the plasma
centre. The random error in the T, values, due to noise in the measurement of plasma emission,
is generally small.

The uncertainties in the LIDAR temperature profiles are primarily random and due to
the statistics of the limited number of photoelectrons in each spectrometer channel. The
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systematic uncertainties, from factors such as the calibration of the relative response of the
spectrometer channels, are believed to be small.

The estimated values of these uncertainties are summarized for the two diagnostics in
Table II.

TABLE II: Sources of Uncertainty in the Two Electron Temperature Measurements

LIDAR ECE
Random error in profile <0.05m <0.02m
location
Systematic error in profile <0.05m upto 0.15m
location
Random error in temperature Typically < 7% of Teo S 2%
values
Systematic error in 5 3% + 10% (absolute),
temperature values 1 5% (relative)

(3) OVERVIEW OF NEURAL NETWORKS AND THEIR APPLICATION TO ECE

The discussion of neural networks in this paper is directed specifically at the present
application. More general overviews can be found in [8] and [9].

Large numbers of simultaneous measurements are available from the two T,
diagnostics, typically four or five profiles suitable for this analysis per JET plasma pulse. By
comparing many pairs of simultaneous measurements, it should be possible to average out the
statistical fluctuations in the LIDAR data. Similarly, any small differences between individual
profiles due to the different integration times of the two measurements (for example if the
profile is perturbed by a rotating MHD structure) should also be suppressed by the averaging.
However, the difficulty which arises in making these comparisons is that the two sources of
systematic error in the ECE temperature profiles cannot be separated. To estimate the ECE
calibration errors by a direct comparison with LIDAR requires an accurate knowledge of the
magnetic field profile, so that ECE frequencies can be associated with the correct LIDAR
spatial points. Alternatively, the total field profile could be estimated by associating the ECE
frequencies with the LIDAR radii which have the same temperature, provided that the
uncertainties in both temperature measurements are small. However, when both sources of
uncertainty are present, the relationship between ECE spectra and LIDAR profiles is complex
and non-linear. A neural network can learn the required transformation from ECE spectrum to
T, profile from the available data, without the dependence of the field on the magnetics
parameters, or the form of the ECE calibration errors, being specified independently.

The power of the neural network technique arises from a property known as the
"universality” of the network which . expresses its ability to learn any non-linear
transformation. This can be translated into the present context as follows. If the LIDAR errors
are randomly distributed around the true temperature, if the ECE random errors are small, and
if a large number of training examples covering the whole range of the input parameter space
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are used, then a suitably constructed and trained network will reproduce from a given ECE
measurement the "average" profile which LIDAR would have measured. Hence, it is in
principle possible to obtain profiles from the ECE which have low random error, the low
systematic error of the LIDAR and the time resolution of the ECE measurements. In practice,
we must determine how well the network does learn the transform from the available data, and
how the network can be structured to optimize its performance. These questions are discussed
further in the later sections.

Many different neural network architectures have been developed in recent years for a
variety of applications. In the present case we use a particular class of network known as the
multilayer perceptron (MLP). This is a relatively simple class of network, which has
nevertheless found application to a vast range of practical problems. It can be regarded as a
class of non-linear functions which map a set of input variables to a set of output variables.
Any particular transformation is governed by a set of network parameters whose values can be
chosen with the aid of a set of examples of the desired mapping. This is the process referred to
above as network training.

The structure of a multilayer perceptron is illustrated diagramatically in Figure 1. In this
figure, the small circles represent nodes, each of which is associated with a numerical value,
and the lines represent the parameters which control the calculation of the node values. The
network consists of a number of layers: an input layer, an output layer and one or more hidden
layers, each containing a number of nodes. The input layer has a node for each of the input
data points in a given measurement, while the output layer has a node for each of the output
data values. The optimum selection of the number of hidden layers and the number of nodes in
these layers is determined empirically during the network training. For this application, it is
anticipated that reasonable results will be obtained using only one or two hidden layers, each
having a comparable number of nodes to the input and output layers.

Figure 1: A sketch illustrating the internal
structure of a multilayer perceptron neural
network. The small circles represent the
network nodes, while the lines are the
parameters controlling the calculations

which link the nodes. In the present case,

Input layer
Output layer

each node in the input layer corresponds to
an input data value (ECE data point or

magnetics parameter) while the output nodes
. P . ! i Hidden layer(s)
represent the predicted T, profile values. .

The network processing represented in Figure 1 consists of calculating successively the
values at the nodes in each layer (starting at the first hidden layer) by a weighted sum over the
values in the immediately preceding layer. Defining the value at node 7 in layer /as Vj ,

V= QW Vi) + B,) M

36



where n’ runs over the nodes in layer /-1, W, ,» are the weights linking each pair of nodes in
the two layers, and the B;,, are biases which can be added to each node. The function f('),
which is applied during the calculation of the hidden node values, is typically chosen to be the
tanh function, plotted in Figure 2. For the calculation of the output layer values, the function
f() is not applied, so that the final layer of weights simply perform a linear transformation. It is
the inclusion of this function which gives the network the ability to produce non-linear
transformations, rather than simple matrix multiplications. The exact form of the function is not
critical, but for applications of the present type it is desirable to have a linear central region
with a smooth transition to non-linear (saturation) behaviour at the extremes. The ranh
function possesses these properties, and has the advantage that during network training its
derivatives can be calculated very efficiently [9].

1

Figure 2: A sketch of the tanh(x) function.
This function is applied to the weighted

sums used to calculate the value at each
hidden node. It gives the network the
ability to generate arbitrary non-linear

mappings.

tanh(x)

1
-3 X 3

Network training consists of minimizing a suitably chosen error function such as:

ES =YY e {T"(R)-T*(R)} @

where the 7P represent the network output temperature values, the 7ZP are the LIDAR profile
points, each of these at the radii R;, and the x are weights which reflect the estimated size of
the LIDAR statistical errors at each point. The sums are made over all the radius values
(j index) and all the measured profiles in the training data set (p index).

The mathematical technique used to achieve this minimization is based on a procedure
known as error backpropagation. This is an efficient algorithm for evaluating the derivatives of
the error function with respect to the weights and biases. These derivatives can then be used in
one of a variety of standard non-linear optimization schemes, such as gradient descent,
conjugate gradients etc. We have chosen to use the limited memory BFGS quasi-Newton
method which is particularly well suited to this type of problem [9].

Several aspects of the training process are important in determining the behaviour of
the network. The two most crucial of these are:

(i) It is essential that the training data covers a range of the input parameter space at least as
large as that for which the network will be used. If the » input parameters are regarded as
defining an n-dimensional space, then the training data are points in this space which determine
an n-dimensional volume. The network must only be used on data which lies within this
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volume. Otherwise the results are unpredictable since it has no basis on which to make its
transformation. A simple example of this would be using the network on data taken at a value
of the toroidal magnetic field outside the range in the training data set. Since the network
would have not learnt to correct the ECE calibration errors at the required frequencies, its
output would be meaningless. More subtle problems could arise if the network was used, for
example, at a low value of toroidal field (which had been included in the training), but at a
plasma current level above those found in the training data set for this field.

(i) The network will, during training, learn any systematic errors in the training data and they
will be transferred to the network outputs when it is used.

(4) IMPLEMENTATION FOR JET ECE AND LIDAR DATA

To train and test the networks being constructed in this first phase of development,
approximately 2000 ECE and LIDAR profiles have been selected, from about two months of
continuous JET operation. The data have been screened to remove any defective points, and to
ensure that the ECE and LIDAR measurements are in all cases simultaneous to within 50 ms.
A number of one dimensional magnetics parameters have also been selected. These are: the
vacuum toroidal field, the plasma current, the toroidal beta, the plasma inductance, the plasma
elongation at centre and edge, the plasma triangularity, the plasma vertical displacement, and
the plasma major and minor radii. Some of these quantities are not directly measured, but are
outputs from the magnetic equilibrium calculations. This should not affect the analysis, since
the network will automatically learn any systematic errors in these quantities during training,
and compensate for them when it is used. In principle, the raw magnetics measurements from
which these parameters are calculated could be used directly as the training inputs, but the
physical quantities are preferred in this first investigation so that some insight into the relative
importance of the different parameters can be obtained.

The data set has been divided into three groups. The first group is used for training
various network configurations, with different numbers of hidden nodes. The second,
validation, set is used to assess the performance of these various configurations, and the third
set is used to test the network which is finally selected.

Some pre-processing is required before the input data is fed to the neural network. The
purposes of this pre-processing are to eliminate any bias which might arise during network
training due to very different numerical values for the various input parameters, and to simplify
the transform which the network must learn. The pre-processing applied is as follows: .

(1) The magnetics parameters are scaled to zero mean and unit standard deviation, the scale
factors being determined from the training data. This prevents the very different numerical
values arising from the various units of measurement (eg tesla for magnetic field, amperes for
plasma current) from influencing the network.

(ii) The ECE spectra are pre-processed by being converted to approximate T, profiles within
fixed major radius limits using the vacuum magnetic field profile. This simplifies significantly
the complexity of the transform which the network must learn. The network will just make a
radial shift of the profile points, rather than needing to learn how to select the second harmonic
region of the spectrum and then normalize the frequency scale according to the magnetic field.
To facilitate comparisons, all the T, profiles (LIDAR, ECE input to the network and the
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network output) are transferred to a fixed grid of 11 points uniformly spaced in major radius
between 2.8 m and 3.8 m.

(iti) All T profiles are scaled by the ECE profile average of that measurement. This scaling is
applied to both the ECE temperatures and, during training, to the LIDAR temperatures, in
order to have values ~1. The correct absolute temperatures are recovered by re-scaling the
network outputs. This scaling means that the network does not need to learn during training
that its transformation should not depend on absolute temperature values (to within a
multiplicative constant), that is, that the transformation of any profile is invariant under a linear
scaling of temperature values.

The computations reported here are made on IBM RS/6000 workstations which have a
peak performance of 50 Mflops. Even with this computing power, and using efficient learning
algorithms, many hours of execution time are generally required to train a network. When the
network is used however, very little execution time is used since there is only a small number
of floating point operations in the forward pass calculation.

(5) PRELIMINARY RESULTS

For the first examination of the performance of neural networks on this dataset, we
have omitted the x weighting factors from Equation (2), and considered only networks having
two layers of adaptive weights, that is, a single hidden layer. In order to perform some
optimization of the network architecture, networks having from 1 to 20 hidden nodes have
been trained using the training dataset. The performance of these networks was then compared
using the validation set, and the network with 7 hidden nodes in one layer was found to give
the best results. Finally, the performance of the selected network was checked using the test
set.

The quantities used to assess the performance of the networks and to compare the
results from the network with those from the conventional analysis are rms errors, defined in
similar fashion to the error function in Equation (2):

11
- @) ®

J4

11 2
RMS =\/71TZT1TZ=1 {TTesr(Rj)_ TLp(Rj)} (4)
P j

where P is the number of instances in the data set, and 77es! can represent either the network
output Te profile, or the profile obtained from the conventional analysis (that is, the profile
obtained from the ECE spectrum using the magnetic field profile calculated by the equilibrium
code). This is certainly not the only possible choice for measures of network performance, but
has been adopted for the first analysis because of its simplicity.

For each of the networks which has been trained, the value of ERMS has been
calculated for the validation data set, and the network with 7 hidden nodes gives the smallest
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result. The corresponding values of EpRMS have also been evaluated for each instance in the
test data set using both the profiles calculated by the 7 hidden node network and the
conventional analysis as 77¢s! | Figure 3 shows a scatter plot of these two error measures for
all instances in the test set. The oblique line corresponds to equal errors, so that the points
which lie above this line represent instances for which the network generated a lower RMS
error than the conventional analysis.
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Figure 3: A scatter plot comparing rms 2'1000 i ++ 4T ++
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included. The bias towards values above ++
the 45° line indicates that the network F+
outputs tend to have lower rms errors. 0 ) .
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Figure 4a shows a typical example of the profiles generated by the network, together
with the corresponding LIDAR profiles and ECE profiles obtained from the conventional
analysis. In Figure 4b, the equivalent profiles are shown for the measurement which gave the
smallest rms error between network and LIDAR profiles of all the data in the test set.
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Figure 4: A comparison of T, profiles from the conventional ECE analysis (crosses), LIDAR T, profiles
(squares) and the network outputs (circles). The estimated statistical error of the LIDAR profiles is shown by
the dashed lines. Part (a) is a typical example, and part (b) is the measurement with the lowest rms error of all
the data in the test set.
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These results are very encouraging and suggest that worthwhile improvements over the
conventional analysis may be obtained from the neural network. However, it must be stressed
that these are very preliminary results and that many issues remain to be addressed before a
firm conclusion can be reached. In particular, the k factors must be reinstated, and much more
careful optimization of the network architecture is needed. Also, it should be noted that when
the number of units in the hidden layer is less than the number of output units then the outputs
are not independent. An optimized network structure should be able to achieve better results
with more hidden units, and so remove this limitation.

(6) POSSIBLE FUTURE DEVELOPMENTS

If the results of this initial investigation are satisfactory then a number of further
developments can be foreseen, both short term (to optimize the present application) and long
term (possibly for application in Next Step tokamaks).

The most important extension of the present work which is immediately required is a
technique for estimating how well the network is performing for any given set of input data.
Since the network has been trained to produce outputs which look like T, profiles, it may not
be easy to determine, simply by examining the outputs, whether or not the network is behaving
correctly, within its trained parameter space. The question of networks providing such
reliability estimates is a general one in neural network research. A variety of techniques is being
actively pursued [10], some of which should be applicable to the present analysis.

The network structure described in the preceding sections makes a minimum of
assumptions about the physical behaviour of the spectrum-to-profile transformation and the
associated errors. This is considered the best choice for the first attempt at constructing a
network for two reasons. First, it minimizes the likelihood of placing constraints on the
network which may be invalid or unnecessary, and secondly it generates a standard network
structure to which many previously developed algorithms can be applied with little or no
modification. However, it may be possible to construct a network which can be trained to
produce more accurate results if we make use of our physical understanding of the problem.
The network would be structured in such a way that it can only produce mappings from ECE
spectrum to T profile which are consistent with this understanding. In this case the training
process should be much more efficient, since the number of mappings which the network is
able to generate (and hence the number of incorrect mappings which the training must exclude)
has been greatly reduced. A network which separates the correction of the ECE spectral
calibration and the magnetic field profile calculation is illustrated in Figure 5. The two halves of
the network would operate independently on separate sets of input data (ECE and magnetics),
and their outputs would be combined in the same way that spectra are normally converted to
profiles. This network structure would however be more complex to train, since the two halves
would have to be trained simultaneously using the same set of training data. An advantage of
this approach would be that the intermediate outputs, from the two halves of the network,
would be accessible. The calculated total field profile would have to be treated with caution
since it would have limited accuracy, particularly when the T, profiles are flat. On the other
hand, the deduced ECE calibration correction (the output from the upper half of the network)
might be used to determine a more accurate calibration, and also could be a very useful aid in
monitoring the stability of the ECE system's spectral response.
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Figure 5: A possible network structure which reflects our knowledge of the transformation from ECE spectra
to T, profiles. The correction for the FCE calibration errors and the determination of the total magnetic field
profile are made separately, and the two results are combined in the same way as for the conventional

analysis.

Finally, there are two issues which may determine the longer term future of this type of
analysis for ECE data, in particular its relevance for Next Step tokamaks. For larger and
hotter plasmas the difficulties of calculating the plasma internal magnetic fields will become
greater. Similarly, the problems of routinely making accurate spectral calibration measurements
will also become greater on future machines. Hence, if suitable Thomson scattering
measurements are available, then a neural network technique may provide the most accurate
interpretation for ECE measurements. Alternatively, neural networks may be useful on both
present and future machines because of the speed with which they operate. Dedicated
hardware for implementing neural networks already exists, eg [4], and there is potential for
very high speed processing for real time applications. There is therefore the possibility that if
the network is robust enough and reliable enough that it could be used to process ECE data in
real time control applications.

(7) SUMMARY

_ This paper has shown that neural networks are potentially a valuable tool in the
interpretation of ECE data. It may be possible to use them to reduce considerably the
systematic uncertainties in ECE derived Tg profiles. This would be achieved by training a
network to convert ECE spectra to profiles, using LIDAR T, profiles as the target. The result
should be T, profiles with the low systematic uncertainty of the LIDAR measurement, the low
random uncertainty of the ECE measurement, but the same time resolution as the ECE, data.
The only other input data required are various one-dimensional magnetics parameters.

The results obtained so far, while still preliminary, indicate that even a simple network
structure with limited training, can produce profiles which are closer on average to the LIDAR
profiles than the conventional analysis. It is anticipated that optimization of the network
structure and more extensive training will improve on these results.

In the future, it is planned to investigate network structures which are more closely
adapted to this problem. It is hoped that this will yield networks which can be more efficiently
trained to give more accurate results.

42



(8) ACKNOWLEDGEMENTS

The authors wish to thank C Gowers and P Nielsen for helpful discussions about the
nature of the LIDAR errors, P Stott for originally suggesting the investigation of this topic,
and D Holden for his contribution to the development of the neural network software.

(9) REFERENCES

[1] C M Bishop, I G D Strachan, J ORourke, G P Maddison and P R Thomas, (1993)
"Reconstruction of tokamak density profiles using feedforward networks" Neural
Computing and Applications (Springer Verlag) Vol. 1, No. 1 pp 4 - 16.

[2] C M Bishop, C M Roach and M von Hellerman (1992) "Automatic Analysis of JET
Charge Exchange Spectra using Neural Networks", submitted to Nuclear Fusion.

[3] C M Bishop and C M Roach "Fast curve fitting using neural networks"

Rev. Sci. Instrum. 63 (10) 4450 (1992).

(4] C M Bishop, P Cox, P Haynes, C M Roach, M E U Smith, T N Todd and D L Trotman
"A neural network approach to tokamak equilibrium control" in Neural Network
Applications, (Springer Verlag) Ed. J G Taylor, pp 114 - 128 (1992) .

[S] D V Bartlett, D J Campbell, A E Costley, S Kissel, N Lopes Cardozo, C W Gowers,

S Nowak, T Oyevaar, N Salmon, B Tubbing "Overview of JET ECE measurements",
Proceedings of EC-6, the 6th Joint Workshop on ECE and ECRH
(Culham Laboratory Report CLM-ECR 1987).

[6] H Salzmann, J Bundgaard, A Gadd, C Gowers, K B Hansen, K Hirsch, P Nielsen,

K Reed, C Schrodter, and K Weisberg "The LIDAR Thomson scattering system on JET"
Rev. Sci. Instrum. 59, 1451 (1988)

[7] E Lazzaro and P Mantica "Experimental identification of tokamak equilibrium using
magnetic and diamagnetic signals” Plasma Physics and Contr. Fusion 30 1735 (1988)

[8] JHertz, A Krogh and R G Palmer (1991) "Introduction to the theory of neural networks"
Addison Wesley.

[9] C M Bishop (1993) "Neural networks and their applications", invited review article,
accepted for publication in Reviews of Scientific Instruments.

[10] C M Bishop (1992) "Validation of neural network solutions: an illustration from
multiphase flow monitoring”, submitted to Neural Computation.

43



