
G.Vagliasindi, A. Murari
and JET EFDA contributors

EFDA–JET–R(08)03

An Automatic Fuzzy Logic Classifier
based on Classification and Regression

Trees for Confinement Regime
Identification on JET



“© – COPYRIGHT ECSC/EEC/EURATOM, LUXEMBOURG – 2008”

“Enquiries about Copyright and reproduction should be addressed to the
Publications Officer, EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”



An Automatic Fuzzy Logic Classifier
based on Classification and Regression

Trees for Confinement Regime
Identification on JET

G.Vagliasindi, A. Murari
and JET EFDA contributors*

1Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi-Università degli Studi di Catania,
95125 Catania, Italy

2Consorzio RFX-Associazione EURATOM ENEA per la Fusione, I-35127 Padova, Italy
* See annex of M.L. Watkins et al, “Overview of JET Results ”,

(Proc. 21 st IAEA Fusion Energy Conference, Chengdu, China (2006)).



.



An Automatic Fuzzy Logic Classifier based on Classification and 
Regression Trees for Confinement Regime identification on JET. 

 
G.Vagliasindi1, A. Murari2 and JET-EFDA Contributors* 

 
JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK 

 
1) Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi-Università degli Studi di Catania, 95125 Catania, Italy 

2) Consorzio RFX-Associazione EURATOM ENEA per la Fusione, I-35127 Padova, Italy. 
 

1 Introduction 
The tokamak configuration can be operated in different confinement regimes, which can be 

significantly different not only in terms of performance but also of physics interpretation and control 
requirements. The High Confinement regime, the so called H mode [1], is a particularly relevant example. 
Its performance can be more than a factor of two better compared to the L-mode (Low confinement) but it 
is affected by edge instabilities, which require particular measures to avoid disruptions and could be very 
dangerous for the integrity of the entire device in the next generation of machines like ITER. Moreover the 
H-mode of confinement is an auto-organized state of the plasma, which develops spontaneously when 
certain conditions are met. The transition from one mode of confinement to the other presents some 
characteristics of phase transitions already studied in many other physical systems.  On the other hand, the 
details of the plasma evolution from the L-mode to the H-mode state have not been fully understood yet 
neither from the point of view of the dynamics nor of the power requirements to trigger the transition. Even 
the nature of the control parameters remains unclear.  In addition to defying physical interpretation, the H-
mode of confinement presents also some important challenges form the point of view of control. The 
higher internal energy of the plasma, together with the increased plasma shaping used to improve 
performance, render the H-mode significantly more unstable and more prone to disruptions. On the other 
hand, up to now no reliable classifier of the confinement regime has been available for real time operation 
and therefore normally Tokamak devices are controlled in feed-forward, determining a priori in which type 
of regime the plasma will be at every point in time of the discharge. In case of unexpected transitions from 
state to another the control systems can therefore adopt an non optimal strategy which cannot only limit the 
performance but also compromise the equilibrium and contribute to trigger disruptions [2].  In the 
perspective of ITER, in which accessing the H-mode is essential but disruptions can have very harmful 
consequences, it is becoming urgent to develop model to better interpret the H-mode physics and to 
identify the regimes in real time.  

In this technical note, a Fuzzy Logic inference system is developed to both derive intuitive 
understanding of the L-H transition physics and to identify the confinement regime in real time. Given the 
fact that in JET GBytes of data can be acquired per discharge, the approach of Classification and 
Regression Trees (CART) [3] has been exploited for the feature selection, i.e. the identification of the most 
important signals to study the L-H transition (see section 2). It is worth pointing out that the CART method 
is fully non-linear and unbiased. It does not require any form of preliminary signal processing (not even 
normalization) and therefore is considered particularly suited to the exploratory phase of identifying the 
data with the highest explanatory power. The CART trees, trained to discriminate between L-mode and H-
mode regimes using  large set of JET discharges, have also been used as the basis for the development of a 
Fuzzy Logic inference system [4]. The leaf nodes of the trees have been use first to determine the most 
appropriate membership functions for the various variables. Then an automatic method has been developed 
to derive the fuzzy rules from the CART topology. These rules have been determined by following the tree 
branches from each leaf node to the root and making appropriate decisions at each node (see section 3). 
The analysis has been particularized for time intervals far from the transitions, around the time of the L-H 
transition and around the time of the H-L transition.  



The results of the Fuzzy Logic inference system are quite positive (see section 4). First of al the 
derived rules are very sound and quite intuitive; they formalize a body of common sense knowledge about 
the L-H transition that can contribute to knowledge acquisition and deeper studies of the underlying 
physics. The validity of these rules is proved by the classification capabilities of the system, which can 
exceed 90 % over the whole discharge. Further developments of the method and various refinements for 
real time applications are discussed in the final section. 

2 CART for features selection 
In order to build a system that identifies the confinement regime and, at the same time, provides intuitive 
understanding of the phenomenon under observations, the first step is the selection of the most relevant 
signals among the available ones in order to keep the system as simple as possible. To perform this feature 
extraction process Classification and Regression trees have been used.  
Classification and Regression Tree is a non-parametric statistical method, which uses a decision tree to 
solve classification and regression problems using both categorical and continuous variables. The method 
was introduced by Breiman et al. [3] to build a decision tree, which describes one output variable as a 
function of different explanatory variables called also predictors. When the output is categorical, CART 
produces a classification tree, whereas if the output is continuous it will produce a regression tree. The 
method can be roughly summarized in three steps. 
During the first stage, an overgrown tree is produced using a recursive partitioning technique to select 
variables and split points. Several criteria are available for determining the splits, described in detail in 
Breiman et al.. In the application described in this paper, the Gini criterion has been adopted. According to 
this method, to find the best variable for splitting a node, the algorithm checks all possible splitting 
variables (called splitters), as well as all possible values of the variable to be used to split the node, aiming 
at the maximization of the average “purity” of the two child nodes. For a binary target variable, for 
example mode L or H, the aim of the split is to group all the inputs into a group of L mode samples and 
another group of H mode ones. Since a complete separation is typically not achievable with one single 
variable, the procedure is repeated for the child nodes until pure terminal nodes are obtained.  
The tree obtained at this stage is called maximal tree. It closely describes the training set and usually shows 
overfitting of the training data. A subsequent step is, then, required to converge on a better a compromise 
between the tree complexity and its predictive power. This second step in CART algorithms is therefore the 
pruning of the maximal tree, which results is the creation of smaller subtrees obtained by successively 
cutting terminal branches. The pruning relies on a cost-complexity method, in which both the tree accuracy 
and complexity are considered. This method relies on a complexity parameter, called α, which is gradually 
increased during the pruning process. Beginning from the terminal nodes, the child nodes are pruned away 
if the resulting change in the predicted misclassification cost (a measure of the accuracy) is less than α 
times the change in the tree complexity. Thus, α is a measure of how much accuracy a split must add to the 
entire tree to counterpart the additional complexity. As α is increased, a series of trees with decreasing 
complexity is obtained. 
The last stage is the selection of the optimal tree among the various pruned trees derived during the 
previous step. This selection is based on the evaluation of the predictive error also called misclassification 
or relative cost. The goal consists of selecting the optimal tree maximizing the relative cost and minimizing 
the tree complexity (i.e. the number of nodes) so that the information in the learning data set is fit but not 
overfit.  In general this step would need an independent set of data to be accessed, but this requirement can 
be avoided using the technique of cross-validation (CV). It consists of dividing the entire sample randomly 
into N (usually 10) sub-samples, stratified by the response variable. One sub-sample is then used as the test 
sample and the other N - 1 (e.g., nine) are used to construct a large tree. The entire model-building 
procedure, i.e. tree growing and pruning, is repeated N times, with a different subset of the data reserved 
for use as the test dataset each time. Thus, N different models are produced, each one of which can be 
tested against an independent subset of the data. Trees within the sequences are matched up, based on their 
number of terminal nodes, to produce an estimate of the performance of the tree in predicting outcomes for 
a new independent dataset, as a function of the number of terminal nodes or complexity. Using this 



method, a minimum cost is obtained when the tree is complex enough to fit the information in the learning 
dataset, but not so complex that noise in the data is fit as well. The final tree obtained has various nodes at 
which different variables are used for the splitting criteria.  
One of CART features is the evaluation of the importance of the different explanatory variables, i.e. the 
variable provided as input during the building of the tree, to describe the output trough the so-called 
“variable ranking method”. A variable that is not selected in the final tree could be considered as less 
important in describing the dataset than the variables that appears in the tree. To estimate a variable 
importance, the sum across all nodes in the tree of the improvement scores that the variable induces when it 
acts as a primary splitter is performed.  
The importance values so produced allow ranking the different input signals from high to low importance. 
In this way, CART can be used for feature selection, being able to identify the most important variables to 
describe the output. 
Since the aim of the work is also to try to derive an intuitive understanding of the confinement mode 
transition in a tokamak plasma, the shots have been divided in three subsets and analyzed separately. The 
three subsets include data around the transition from L to H, around the transition back from H to L, and 
away from the transitions in steady state L and H mode phases. In more detail, the first two datasets include 
data acquired 300 ms before and after the L→H and the H→L transition. The last one is obtained using an 
interval of 500 ms in L mode, between 1200 ms and 700 ms before the L→H transition and interval of 500 
ms in H mode, between 1200 ms and 700 ms before the H→L transition. 
The three subsets have been provided to CART in order to build three different trees. According to the 
variable ranking provided by CART the following signals have been evaluated as most relevant: 
 
Table 1: the four most relevant variable for the three different subset. The signals are sorted in descendent order of  
importance. 

L→H H→L Steady-state 
Symbol Description Symbol Description Symbol Description 

Wmhd 
Magnetohydrodynamic 
energy βN Beta normalized over 

diamagnetic energy βN Beta normalized over 
diamagnetic energy 

βN Beta normalized over 
diamagnetic energy BT Toroidal magnetic field BT Toroidal magnetic field 

Te Electron temperature FDWDT Time derivative of 
diamagnetic energy Lid4 Outer interferometry 

channel 

BT80 
Axial toroidal magnetic field 
at ψ=0.8 q95 Safety factor at ψ=0.95 FDWDT Time derivative of 

diamagnetic energy 
 
In addition to these parameters, it has been considered important to test also the influence of geometrical 
parameters that can account for the position/shape of the plasma inside the vacuum vessel. Among the 
various possible geometrical parameters, the choice has been limited to the plasma elongation and radial 
and vertical position of the lower X point, since these are thought to be the ones most influential on the L-
H transition. Several tests have been performed using both the geometrical parameters and the ones which 
have produced a better results are the radial and vertical position of the X point. These parameters have 
appended to the others in all the subsets used to obtain the results described in the following.  

3 From CART to the Fuzzy Inference System 
Once the most relevant variables have been selected with the exploratory procedure described in the 

previous section, they have been used to build new trees. In particular it has been decided to build three 
different trees, one for each of the time intervals specified at the end of the previous section. The obtained 
trees have then been the starting point for the definition of three Mamdani Fuzzy Inference Systems (FIS) 
in a completely automatic way.  
The first step in developing any Fuzzy System consists of the definition of the membership functions (mf) 
for each input and output variable. This choice comprises the selection of the number of membership 
functions for each I/O, the type of mf (e.g. triangular, trapezoidal, sigmoidal, …) and the parameters that 
represent the shape of each membership functions. In the case of confinement regime identification, the 



number of membership functions for each input variable has been fixed to three. This choice has been 
dictated by the restrictions imposed by the MATLAB Fuzzy Toolbox which is, at the moment, a 
fundamental tool. Indeed, the Toolbox does not allow for the selection of multiple memberships in the rules 
definition but just for a single membership or its negation. So, in order to permit the correct and automatic 
translation of the CART rules to Fuzzy rules it has been necessary to limit the choice of mf to three; in the 
case of three mf any rule can indeed always been expressed either as the assertion of one mf or as the 
negation of another. It is worth mentioning that, as shown later, this constraint on the number of 
membership function does not constitute a severe limitations for the case under study, neither in terms of 
final performance nor in terms of explanatory power of the method. The type selected for the mf has been 
the trapezoidal one since it provides enough flexibility to cover each variable domain by dividing it in three 
different regions. 
The trapezoidal curve is a function of a vector x and depends on four scalar parameters a, b, c and d as 
given by 
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The parameters a and d locate the “feet” of the trapezoid and the parameters b and c locate the “shoulders.” 
(see Figure 1) 

 
Figure 1: Schematic example of a trapezoidal membership function. 1 and 8 represent the feets of the trapezoid while 5 

and 7 represent the shoulders. 
 

As far as the output variable is concerned, being this just a categorical attribute, Low or High mode 
of confinement, it can only be divided into two fuzzy partitions. 
 
Once defined the type of membership functions to be used, the subsequent step consists of retrieving from 
the tree the information required to formulate the FIS. This automatic formulation can be achieved in three 
main steps: a) extraction of the crisp rules from the CART tree; b) determination of the membership 
functions from the set of crisp rules obtained in the previous step; c) formulation of the fuzzy rules on the 
basis of the CART tree crisp rules and the mf. The algorithms necessary to perform these steps are 
described in detail in the next three subsections. 



3.1 The extraction of the rules from the trees 
The CART provides, for every tree, a text file which contains the structure of the tree. In particular, 

for each node the splitting variable is reported together with the two child nodes, the splitting value and the 
number of input samples that are classified into the two child nodes. An exampled is shown in the 
following diagram 1. 
 
 

********************************************* 
*              Node 1: BNDIAM               * 

*                 N: 21000                  * 
********************************************* 

********************************* 
*            Node 2             * 
*            N: 8553            * 

********************************* 

********************************* 
*            Node 18            * 
*           N: 12447            * 

********************************* 
Node 1 was split on BNDIAM 
A case goes left if BNDIAM <= 0.59149 

 

 
Diagram 2: the first set of lines report the node label and the splitting variable, together with the total number of samples 
available at that node. The second set of lines report, instead, the two child node with their respective label and the 
number of samples that are separated into them. Finally, the last set of lines indicate again the splitting variable and the 
splitting values specifying also the rule governing the Node. 
 
In the case a child node is a terminal one, this information is also reported, as shown in the following 
diagram 2. 
 

********************************************* 
*               Node 6: IPLA                * 

*                  N: 503                   * 
********************************************* 

================================= 
=        Terminal Node 3        = 

=             N: 2              = 
================================= 

********************************* 
*            Node 7             * 
*            N: 501             * 

********************************* 
Node 6 was split on IPLA                 
A case goes left if IPLA <= -.439215E+07 

 

 
Diagram 2: the only difference with Diagram 1 is the labelling of the left child node as a Terminal one. 
 

A schematic description of the terminal nodes is also reported by CART. For each terminal node, 
labeled with a specific number, the number of samples discriminated at that node is provided (the Learn 
column) together with the Class to which these samples belong.  
 
Table 2: schematic description of terminal nodes. Column 1 is the node number, column 2 the number of samples 
provided to the node, columns 3 and 4 are the number of samples belonging to each class according to the node 
classification. 

Terminal Node Target Class Counts 
Node Learn Class 1(L-mode) Class 2 (H-mode) 

1 174.00 0.00 174.00 
2 17533.00 17533.00 0.00 
3 8.00 8.00 0.00 
4 2.00 0.00 2.00 
5 1000.00 1000.00 0.00 



6 258.00 0.00 258.00 
7 678.00 678.00 0.00 
8 261.00 0.00 261.00 
9 305.00 0.00 305.00 

10 120.00 120.00 0.00 
11 1.00 1.00 0.00 
12 14.00 0.00 14.00 
13 17165.00 0.00 17165.00 
14 45.00 45.00 0.00 
15 93.00 0.00 93.00 
16 294.00 294.00 0.00 
17 49.00 0.00 49.00 

 
In order to derive the FIS from the CART classification, the CART output file is scanned 

automatically to determine the splitting value for each variable used as splitter. At the same time for each 
terminal node a rule is determined. The definition of these rules is performed in the following way. First 
the leaves corresponding to the terminal nodes are searched in the document. For each terminal node, the 
corresponding branch is scanned up to the root and a specific rule is devised for each intermediate node, on 
the basis of the inequality defined at each node.  
To explain the algorithm in a more intuitive form, let’s suppose that a FIS has to be derived from the tree in 
Figure 3. The tree is built using three predictors and discriminates the samples in two classes, Class 0 and 
Class 1. If we want to determine the rule for Terminal Node 1, we start by finding its father node, in this 
case Node 2, and the splitting variable and value for the father node. At the level of node 2 the rule which 
permits to discriminate whether the samples in Node 2 belong to the Terminal Node 1 or not is if x2<=a2,1 
(in this notation xj is the j-th input variable and ajk is the k-th splitting value of the j-th variable). To 
complete the rule, it is necessary to reach the root node. In this case, since the father node for the Terminal 
Node 2 is Node 1, we have to find the node which has Node 2 as child node. Looking at the figure it is 
Node 1 and the rule for Node 2 is if x1<=a1,1 then Node 2. Since Node 1 is the root node the search is 
finished and the whole rule for Terminal Node 1 whose samples belong to Class 0 is: if  x1<=a1,1 AND 
x2<=a2,1 then Class is 0. 

The rule derived for the terminal node 1 is vey simple but more complicated cases have to be 
considered. For instance for Terminal Node 4 the its rule is: if x1>a1,1 AND x3>a3,1 and x2<=a2,2 then Class 
is 0. 

TERMINAL 
NODE 1
Class 0

TERMINAL
NODE 2
Class 1

TERMINAL 
NODE 3
Class 1

TERMINAL
 NODE 4
Class 0

TERMINAL 
NODE 5
Class 1

NODE 1

NODE 2 NODE 3

NODE 4

x1<=a1,1

x2<=a2,1 x3<=a3,1

x2<=a2,2

 
Figure 3: example of classification tree with three explanatory variables and five terminal nodes. 

 



The output of the automated process jut described is a matrix with as many rows as the total number 
of terminal nodes and as many columns as the total number of predictors plus a column reporting the class 
to which the terminal node belongs. 
 

Table 3: tree rules matrix for the tree depicted in Figure 3. 
 x1 x2 x3 Class 
Terminal Node 1 x1≤a1,1 x2≤a2,1 - 0 
Terminal Node 2 x1≤a1,1 x2>a2,1 - 1 
Terminal Node 3 x1>a1,1 - x3≤a3,1 1 
Terminal Node 4 x1>a1,1 x2≤a2,2 x3>a3,1 0 
Terminal Node 5 x1>a1,1 x2>a2,2 x3>a3,1 1 

 
In the case of the simple pedagogical tree of Figure 3 each variable appears in each branch just once, 

so the determination of the final rule is simple. In the case of the slightly more complicated tree of Figure 
4, some variables appear more than once while going up to the root node. There are four possibilities which 
are represented by terminal nodes 1, 2, 5 and 6.  

In the case of terminal node 1, the final rule is if x1 ≤ a1,1 AND x2 ≤ a2,1 AND x1 ≤ a1,2 then Class is 0. 
Since we are on the left side of the first splitting, therefore for values of x1 ≤ a1,1 surely a1,2 is smaller than 
a1,1. The first inequality x1 ≤ a1,1 is then overridden by the third x1 ≤ a1,2 so the rule can be refined in this 
way: if x1 ≤ a1,2 AND x2 ≤ a2,1 then Class is 0. 

In the case of terminal node 2, instead, the final rule is if x1 ≤ a1,1 AND x2 ≤ a2,1 AND x1 > a1,2 then 
Class is 1. Since a1,2 < a1,1 and the third inequality is x1>a1,2 the refined rule is if a1,2 < x1 ≤ a1,1 AND x2≤a2,1 
then Class is 1.  
 

For Terminal Node 5 the rule is if x1>a1,1 AND x3>a3,1 AND x1<=a1,3 then Class is 0. In this case 
a1,3> a1,1 therefore the refined rule is if a1,1<x1<=a1,3 AND x3>a3,1 then Class is 0.  

For Terminal Node 6 the rule is if x1>a1,1 AND x3>a3,1 AND x1>a1,3 then Class is 1 and, like in the 
first case, the first inequality is overridden by the third one and the refined rule become if x1>a1,3 AND 
x3>a3,1 then Class is 1. 
 

TERMINAL
NODE 3
Class 1

TERMINAL 
NODE 4
Class 1

TERMINAL
 NODE 5
Class 0

TERMINAL 
NODE 6
Class 1

NODE 1

NODE 2 NODE 4

NODE 5

x1<=a1,1

x2<=a2,1 x3<=a3,1

x1<=a1,3

TERMINAL
 NODE 1
Class 0

TERMINAL 
NODE 2
Class 1

NODE 3

x1<=a1,2

 
Figure 4: another example of classification tree with three explanatory variables and six terminal nodes. 

 
Also in this case the output of the rules derived from the CART tree can be expressed as a matrix of the 
following form: 



 
Table 4: tree rules matrix for the tree depicted in Figure 4. 

 x1 x2 x3 Class 
Terminal Node 1 x1≤a1,2 x2≤a2,1 - 0 
Terminal Node 2 a1,2<x1≤a1,1 x2≤a2,1 - 1 
Terminal Node 3 x1≤a1,1 x2>a2,1 - 1 
Terminal Node 4 x1>a1,1 - x3≤a3,1 1 
Terminal Node 5 a1,1<x1≤a1,3 - x3>a3,1 0 
Terminal Node 6 x1>a1,3 - x3>a3,1 1 

 
The tree rules matrix so obtained is, then, used for both creating the membership functions for each input 
variable and for determining the fuzzy rules of the FIS. 

3.2 From the tree rules to the fuzzy membership functions 
According to Table 2, rules can be ranked depending on the number of total samples they are able to 

classify. Defining for a variable the membership functions is a sort of division of all the possible values a 
variable can assume, the so-called Universe of Discourse, in different classes of membership. 
 

In order to create the proper membership functions a way to extrapolate the information contained in 
the tree rules has to be devised. To this end, all the portions of the rules involving the same variable, i.e. 
each column of the tree rules matrix, should be evaluated together. 

 
The adopted procedure, aimed at coping with quite general cases, has been developed. On the basis of the 
rules which involve the same variable, i.e. a full column of the tree rules matrix, two functions (lij and hij) 
are created having the forms described in the following depending on the rule itself and the class to which 
the terminal node belongs to. 
If the i-th terminal node belongs to class L, depending on the type of rule involving the variable j, the 
function lij is calculated as follows: 
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If the i-th terminal belongs to class H depending on the type of rule involving the variable j, the function lij 
is calculated as follows: 
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with  1<i ≤ N  and 1<j ≤ M and 1<k ≤ Pj  
where 
N is the total number of terminal nodes 
M is the total number of predictors 
Pj is the total number of different splitters for the j-th variable 
xj is the j-th variable 
ajk is the k-th splitting value of the j-th variable 
wi is a number comprised between 0 and 1 representing the ratio between the samples node i is able to 
classify and the total number of samples classified by all terminal nodes taken into consideration. 
 



Once constructed the different lij(xj) and hij(xj) for the N terminal nodes, these functions are added up to 
obtain only two functions for each input variable: 
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Then, fixed a threshold, the xj values at which the functions Lj(xj) and Hj(xj) have an absolute variation 
above this threshold are determined. Two vectors L and H are, then, created to store the xj values of the 
cross overs and the absolute values of the corresponding variations in Lj or in Hj. 
Now a criterion to construct the membership, capable of coping with the very different configuration the L 
and H functions may assume, is needed. In this perspective, it is required to keep in mind that 4 parameters 
are required in order to define the trapezoidal membership function as described in equation 1 and in 
Figure 1. 
In general, membership functions which we need to reproduce are of the following three forms, illustrated 
in Figure 5:  
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where MIN and MAX are the minimum and maximum value of the j-th variable respectively. These three 
functions represent the general three forms that the mf can assume in the present version of our algorithm 
for the automatic formulation of a FIS from a CART tree. 

1

0
β α α+δα-δβ+δβ-δMIN MAX 

Figure 5 
 
Several possibilities can arise: 
 
1. The two L and H vectors are empty. 

This could happen in two cases: whether the j-th variable does not appear in the tree or it appears 
only in the least important rules which discriminate very few samples. In this case, in order to 
maintain a similarity with the full construction of the FIS, three fake membership functions are 
created with the following form: 
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2. One of the two vectors L and H is empty. 



There are two sub cases:  
a. The non empty vector has just one element. In this case, two memberships would be enough 

but, in order to maintain a standard in all the membership definition we devise three 
membership starting from the single element. Calling α this element, an interval δ is calculated 
considering the values 5% below the maximum the variable can assume and then three 
memberships are defined in the following way:  

[ ]
[ ]

[ ]

1

2

3

Fj

Fj

Fj

MIN MIN

MAX MAX

µ α δ α δ

µ α δ α α α δ

µ α δ α δ

⎧ = − +
⎪⎪

= − +⎨
⎪

= − +⎪⎩

 

 
b. The non empty vector has two or more elements. If this vector has just two elements, called 

α and β , with α > β , δ is calculated as in the previous case and the membership are defined in 
the following way: 

[ ]
[ ]
[ ]

1

2

3

if   ,   [    ] otherwise
Fj

Fj

Fj

MIN MIN

MAX MAX

µ β δ β δ

µ β δ β δ α δ α δ β δ α δ β δ β α α δ

µ α δ α δ

⎧ = − +
⎪⎪

= − + − + + < − − +⎨
⎪

= − +⎪⎩

 

The case with more than 2 elements can be reduced to the case with two elements just 
considering the two values which have the highest absolute value of the variation in Lj or in Hj. 

 
3. The two vectors have one element each. Calling the two elements αL and αH and assuming without 

lack of generality that αL < αH, the membership are defined in the following way: 

[ ]
[ ]
[ ]

1

2
 

3

if  ,  [   ] otherwise
Fj L L

Fj L L H H L H L L H H

Fj H H

MIN MIN

MAX MAX

µ α δ α δ

µ α δ α δ α δ α δ α δ α δ α δ α α α δ

µ α δ α δ

⎧ = − +
⎪⎪

= − + − + + < − − +⎨
⎪

= − +⎪⎩
 
4. One of the two vectors has one element while the other two. Let’s assume, without lack of generality, 

that the vector calculated from Lj has one element, αL, while the other has two elements, αH and βH 
with αH >βH. In this case, the two values for devising the membership are selected in the following 
way: 

( , )
( , )
L H

L H

min
max

β β β

α α α

=

=

⎧
⎨
⎩

 

The membership functions are then calculated like in case 2b. 
 

5. Both vectors have two or more elements. Considering the case both vectors have two elements and 
lets call them αL and βL with αL >βL and αH and βH with αH >βH respectively. The values for devising 
the membership are selected in the following way  

( , )
( , )
L H

L H

min
max

β β β

α α α

=

=

⎧
⎨
⎩

 

and the membership are calculated as in case 2b. 
The cases in which the vectors L and H have more than two elements can be reduced to the case with 
two elements just considering the two elements which have the highest absolute value of the variation 
in Lj and in Hj. 

 



Figure 6 and Figure 7 report two examples of derivation of the membership function through this 
technique. In particular Figure 6 is an example of case 3, with just one element for each vector and αΗ < αL. 
Figure 7, instead, depicts an example of case 5 with two elements for each vector and β=βL and α=αH. 
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Figure 6: example of case 3 with αΗ < αL 
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Figure 7: example of case 5. In this case the vectors have two elements. 

3.3 From the tree crisp rules to the fuzzy rules 
 
Once the membership functions are defined, to complete the FIS it is required to define the fuzzy rules. A 
fuzzy rule in the form if…then… is composed of an antecedent, the part between if and then, and the 
consequent, the part after the then. 
Also in this case we start from the tree rules matrix. Each rule has already a form similar to a fuzzy rule 
apart from the fact that the antecedent is composed of inequalities using crisp values. We have, then, to 
translate the inequalities of the tree rules for the terminal nodes into inequalities based on the membership 
functions defined in the previous section. 
 



To perform this step, two different cases have to be considered, depending on the form of the rule related to 
variable xj : 

1. the crisp inequality of the CART tree is in the form xj≤ajk or xj>ajk; 
2. the crisp inequality of the CART tree is in the form ajk-1<xj≤ajk 
 

In case 1, we evaluate the membership which has the highest degree of activation for the splitting value ajk 
and we can distinguish different subcases, depending on the membership function activated and the kind of 
inequality: 

a. if 1
Fjµ  and ≤ , the antecedent for variable jx is 1

j Fjif x isµ ; 

b. if 1
Fjµ  and > , the antecedent for variable jx is 1

j Fjif x isnotµ ; 

c. if 2
Fjµ  and ≤ , the antecedent for variable jx is 

3

1 ( ) / 2
( ) / 2

j Fj j

jkj Fj

kif x is when a
when aif x is not

µ α β

α βµ

⎧

>⎨
≤ +

+
⎪

⎪⎩
; 

d. if 2
Fjµ  and > , the antecedent for variable jx is 

1

3

( ) / 2
( ) / 2

j Fj jk

jkj Fj

if x is not when a
when aif x is

µ α β

α βµ

≤ +

>

⎧

+
⎪
⎨
⎪⎩

; 

e. if 3
Fjµ  and ≤ , the antecedent for variable jx is 3

j Fjif x isnotµ ; 

f. if 3
Fjµ  and > , the antecedent for variable jx is 3

j Fjif x isµ . 

1

0
β αMIN MAX(α+β)/2ajk

 

1

0
β αMIN MAX(α+β)/2 ajk  

Figure 8: Case 1c. The shaded parts of the figure represents the antecedent chosen for variable xj according to the value 
of ajk. 
 
In case 2 we evaluate the membership which has the highest degree of activation for both the splitting 
values ajk-1 and ajk. We define 1k

Fjµ −  and k
Fjµ  the membership functions which are activated by the two 

splitting values respectively and 1k
Fjm
−  and k

Fjm the activations of each membership between [0:1]. Also in 
this case we can distinguish different alternatives: 
 

a. if 1k k
Fj Fjµ µ− =  the antecedent for variable jx is Fj

k
jif x isµ ; 

b. if 1 1k
Fj Fjµ µ− = , 1 1k

Fjm − ≠ and 2k
Fj Fjµ µ=  the antecedent for variable jx is 2

j Fjif x isµ ; 

c. if 1 1k
Fj Fjµ µ− = , 1 1k

Fjm − ≠ , 3k
Fj Fjµ µ= and 1k

Fjm ≠  the antecedent for variable jx is 2
j Fjif x isµ ; 

d. if 1 1k
Fj Fjµ µ− = , 1 1k

Fjm − ≠ , 3k
Fj Fjµ µ= and 1k

Fjm =  the antecedent for variable jx is 1
j Fjif x is not µ ; 

e. if 1 1k
Fj Fjµ µ− =  and 1 1k

Fjm − = the antecedent for variable jx is 3
j Fjif x isnotµ ; 

f. if 1 2k
Fj Fjµ µ− =  and 1k

Fjm ≠ the antecedent for variable jx is 2
j Fjif x isµ ; 

g. if 1 2k
Fj Fjµ µ− =  and 1k

Fjm = the antecedent for variable jx is 1
j Fjif x isnotµ . 
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Figure 9: Case 2c and 2d. The shaded parts of the figure represents the antecedent chosen for variable xj according to the 
value of ajk. 

4 Performance of the automatically generated Fuzzy Logic Inference system when 
applied to the L-H transition in JET 
 
Following the steps described in the previous section, three fuzzy inference systems were built starting 
from the three different trees developed using CART and described in section 2. 
Since the total number of rules is affected by the number of terminal nodes of the related tree, the 
complexity of the produced FIS depends on the number of nodes retained in the CART trees. Since, as 
shown in Table 2, some of the terminal nodes discriminate a very limited number of samples, the 
corresponding rules may introduce an excessive increase in complexity compared to the additional 
discrimination capability provided by them. Therefore, an investigation of the number of terminal nodes, 
and consequently number of rules, which provide the best results in term of correct classification of 
samples has been performed. At the same time, an investigation of the threshold value which maximise the 
output performance has also been performed. 
Figure 10 reports the results of the above mentioned investigations executed on a test set of 17 pulses and a 
total of 234429 samples, represented by a surface plot of the performance as a function of the numbers of 
nodes and the threshold value.  
Looking at Figure 10, it can be noticed that with a high number of terminal nodes and, consequently, an 
high number of rules in the corresponding FIS, the performance tends to be low and the best threshold 
value is 0.5. This suggests that too many rules may not necessarily increase the discrimination capability of 
the system. On the contrary, being some of them very specific and related to a small subset of the data, they 
may cause overfitting and move the output of the network to a small neighbourhood of 0.5. When moving 
towards a smaller number of nodes, the performance raises and tends to flatten both in the nodes and 
threshold direction. The flattening in the nodes direction may be caused by the data provided as test 
samples. Indeed, being the test data represented by whole pulses data, the majority of them are samples 
distant from a transition. Therefore, L and H samples present very different characteristics in terms of 
values in the space of parameters so that only a small number of rules is activated even if an higher number 
is present. The same reason can explain the flattening in the threshold direction. Being the data mainly 
represented by samples distant from a transition they are well separated by the systems. 
To confirm these considerations, the three FIS were tested on a subset of the full test data. In particular 
they were tested on data taken from the specific interval that were used for training them. So the fuzzy 
inference system developed starting from the classification tree built using data around the L→H transition 
(from now on referred to as LH-FIS) was tested on data around the L→H transition, the FIS developed 
using data in the neighbourhood of H→L transition (HL-FIS) with data around the H→L transition and the 
FIS devised starting from data far from the transition (referred to as SS (steady-state)-FIS) with data far 
from the transition. The results of this tests are reported in Figure 11 a), b) and c) respectively. While the 
results achieved by the SS-FIS (Figure 11.c) are comparable with Figure 10.c although with an higher 
value of percentage of success, being the data similar but without the samples in the more uncertain region 
of L→H and H→L transition, the performance surface of LH-FIS and HL-FIS are slightly different. It is 



possible to observe (Figure 11.a-b) that the flattening of the surface at small node numbers is no more 
present and the maximum performance are achieved with 7 and 11 nodes respectively (see Table 5Error! 
Reference source not found.) indicating that more information is required to distinguish between L and H 
mode samples near to a transition. 
Table 5 resumes the above mentioned results in a numerical way, showing the maximum percentage of 
success for the various developed FIS , together with the number of nodes taken into account to build the 
FIS and the threshold value which best discriminate between L and H mode samples. 
Looking at the maximum percentages of success achievable by the various FIS, it can be noticed that while 
SS and LH are comparable, HL exhibits significantly lower performance. This can be due to a greater 
uncertainty in the H→L transition times contained in the database and, therefore, in a more uncertain 
classification of the samples in the neighbourhood of the H→L transition. It is, indeed, a well known fact 
that the H→L is less defined and more difficult to pin point with the measurements available. This 
uncertainty can lead to both mislearning during the training phase and a wrong estimation of the results 
during the testing phase. 
 
 

3
10

20
30

40
50 55 0.4

0.45

0.5

0.55

0.6
40

50

60

70

80

90

 

Threshold
Nodes number

 

Pe
rc

en
ta

ge
 o

f S
uc

ce
ss

0

10

20

30

40

50

60

70

80

90

100

 
a) 

3
10

20
30

40
48 0.4

0.45

0.5

0.55

0.6
40

50

60

70

80

90

 

Threshold
Nodes number

 

Pe
rc

en
ta

ge
 o

f S
uc

ce
ss

0

10

20

30

40

50

60

70

80

90

100

 
b) 

3

10

20 0.4

0.45

0.5

0.55

0.6
55

60

65

70

75

80

85

90

95

 

Threshold
Nodes number

 

Pe
rc

en
ta

ge
 o

f S
uc

ce
ss

0

10

20

30

40

50

60

70

80

90

100

 
c) 

 

Figure 10: performance of the FIS generated from the CART data on full test data as a function of the number of 
terminal nodes taken into account and the threshold chosen to discriminate between the L and H mode. a), b) and c) are 
the results when the FIS is trained using data near the L→H transition, near the H→L transition and in steady-state 
condition respectively. 
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Figure 11: performance of the FIS generated from the CART data on specific test intervals as a function of the number 
of terminal nodes taken into account and the threshold chosen to discriminate between the L and H mode. a), b) and c) 
are the results when the FIS is trained and tested using data near the L→H transition, near the H→L transition and in 
steady-state condition respectively. 
 

Table 5: performance on full test set and specific test sets 
  Full Test (234429 samples) Specific Test set (~17000) 
  % thr nodes % thr nodes 
L→H 89.66 0.52 3 93.58 0.58 7 
H→L 84.31 0.5 42 87.45 0.48 11 
Steady-state 90.13 0.44 4 96.14 0.56 3 

 

5 Future developments 
 
From the methodological point of view, the described method could be further developed by first of all 
increasing the number and types of membership functions. This would required also the determination of 
more sophisticated methods to derive the fuzzy rules. 
In terms of applications, it would be very interesting to see how the approach performs when dealing with 
other classification problems like ELM discrimination and the prediction of disruptions. 
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