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Abstract. Expressions for Coulomb collision rates in the magnetised plasma physics
and nuclear fusion literature are reviewed. General collisional momentum and energy
exchange rates are given for plasma particle species assumed to be in local thermodynamical
equilibrium. Specific expressions for a simple plasma are then compared with those presented
in numerous standard references. Differences by factors of order unity are found in several
sources and are linked to the replacement of the reduced mass by the test particle mass at
some stage of the derivation.

1. Introduction

Binary Coulomb collisions between charged particles, characterised by a cubic dependence
of the collision rates on the relative particle velocity, are one of the distinguishing features
of plasma physics and play a crucial role in a variety of transport, relaxation and dissipative
phenomena in magnetically confined plasmas [1-20].

The problem otestparticles of species moving through a Maxwellian background of
field particles of species was solved half a century ago [1-5]. The results are summarised in
a variety of plasma physics sources, including review articles by Trubnikov [6] and Hinton [9],
and are generally expressed in terms of four velocity-dependent relaxation rates associated
with test particleslowing down
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andenergy loss
1 JKZ  16yeng W(v)

t,e
V() = =2 = (4)
ss K2 ot mdv3, 03
Note that due to conservation of energy, these four relaxation rates are related as follows,
t,
VS (0) + Vi (0) +vd (v) = 2 (v). (5)

In the aboveKs = mev2/2 is the test particle kinetic energyy, V¢ and Ty are the particle
density, flow velocity and temperature of the field particles,

Ny = / fdv, ngVy = /vfgdv, gng'l'/sz /%m§|v—vs]2f5«dv. (6)
andv is the test particle speed mormalised by the field particle thermal speegy v
_ . _ Vs 2 _ 2l
1) = U = _7 V = . 7
ss VTg Td my ( )
The error function®(v), and the Chandrasekhar functidb,v), are defined by
2 [V e 1 do
S - — = |d—p—
()= /0 et W)=, [cb v dv} ®)
and take on the following values in the limits of= 0, 1 andeo,
. .2V .
1I)anOCD(wu) = 1I)anom =0, ®(1) =~ 0.8, l!mnooqn(v) =1, 9)
. 2v . 1
zl)ITqu( )= 1I)an0 3712 =0, PY(1) =~ 0.2, J@mlv( )= J@m 552 =0. (10)

Here we have used the relatid®/dv = 27~ 1/2exp(—v?). The charge related constant,

egez InAgg

, 11
871780 =Yss (11)

Yse =

contains the logarithm, ge, of the ratio of maximumg sy, and minimumy ,in, Scattering
distances between test and field particles,

INAsg = I (rmax) , (12)

Mmin

which is known as the Coulomb logarithm. The minimum distance can be approximated as
the larger of the deBroglie length and the classical distance of closest approach [REF],

h ey )
2usg(U)’ 477535”% (u)?
whereu = vs — vy is the relative velocity(-) denotes an average over bdtfand fy and s«
is the reduced mass,

I min ~ max( (13)

MsMy
= = . 14
Hsg Mo+ My Ug's (14)
The maximum distance is typically approximated as the effective Debye length [REF],
1/2
 qeff _ 8OTS
18~ (502 a9
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with the summation performed over all speceshose thermal velocity exceeds the average
relative velocity, ¥, > (u). The NRL Plasma Formulanf15] suggests the following
expressions for electron-electron collisions,

INAee~ 30— In (né/ 21,9 2) . T.<10eV (16)
~31—1In (né/ 2Te—1) , T.> 10eV,
for electron-ion or ion-electron collisions,
INAgi = InAe ~ 30— In (né/ 218 22) : Time/m < Te < 10226V (17)
~ 31— In (né/ 2Te—1) , Time/m < 10Z2eV < T,

~37-In (n217%222A71) . Te<ZTime/m,

and for ion-ion collisions between ion species i andith charge stateZ andZ’ and atomic
masse andA,

In/\ii/ = In/\i/i ~31—1In

/ / 72 712 1/2
ZZ (A+A) (n.Z Lz ) ] (18)

ATHAT AT T
The Coulomb logarithm has only a weak dependencespiis and the combination of and
d, with typical values in the range of 15-20.

When the test particles are likewise Maxwellian and the thermal speed of the heavier
species is comparable to or smaller than that of the lighter species, then for each combination
of sandg, the four rates (1)—(4) reduce to a single characteristic collision frequency. This
reduction has lead to some differences, typically by a factor of order unity, in the definition
of this basic collisional rate in the topical literature. While such differences are generally
benign provided accuracy to within a factor two is sufficient, they become unacceptable when
higher levels of accuracy are required. Moreover, they can generate confusion and lead to
errors when expressions obtained from different sources are combined, as is often the case.
In this article, we examine the definitions of collision rates found in roughly twenty common
references, and benchmark these against symmetrical expressions [8—10].

Below we present a brief derivation of Coulomb collision rates for Maxwellian test and
field particles following the account given by Hinton [9] and Hazeltine and Waelbroeck [10].
The discussion is divided into exchange rates of momentum and energy, presented in sections
2 and 3, respectively, followed by a comparison with expressions found elsewhere in the
literature in section 4. To prevent confusion, all expressions are given as collision rates,
v (units of inverse time) rather than collision times(units of time); the two are always
related ast = 1/v. Unless otherwise stated, Sl units will be used throughout, except for
the temperatures which are given in electron volts. To convert any S| (mks) expression to
Gaussian (cgs) units, simply replaggby 1/4x, ug by 4n/c® andB by B/c.

2. Collisional momentum exchange

The collision rate betweentestparticles,s, andfield particles,s, is typically defined as the
time required to change the direction of the test particles by a right angle from their initial
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flow direction. Hence, the term collision rate tacitly assumesnentum exchangenless the
exchange of some other quantity, e.g. energy, is explicitly stated.

2.1. General momentum collision rates

In analogy with the slowing down rate of a single test particle species, given in (1), we define
Vs as the rate of change of the fluid momentum, which can be expressed as the friction force,
Fs«, resulting from successive binary collisions between spexaesis,

Fsd = / MsVCsy( fs, fy)dV = —MsNsvsg (Vs — V). (19)

This friction force appears in the momentum equation for the plasma sgecies
d
MsNs (ﬁ +Vs- D) Vs=—0ps—0O-Ms+esns(E+VsxB) + Z Fs¢, (20)
S
whereng, Vs andTs are the particle density, flow velocity and temperature of spegies

1
ns:/vfsdv7 nsVs:/stdV, gnsT5:/§%|V—Vs|2fst, (21)

and[ls is the deviation of the stress tensor from the scalar pregaensTs. Hence,vse
measures the deceleration of the flow of spesidse to collisions with species,

dVs d 0
E——g"sg(vs—vs’)a dt at+Vs O, (22)

where we neglected all other terms in (20). Note tkRai involves a velocity space
integral of the Coulomb collision operat@sg«( fs, fy), such thats¢ depends on the velocity
distributions of both the tesfs(v), and field,fy(v), particles.

To obtain an explicit expression fotes, one can average (1) over the shifted Maxwellian
test particle distributionfs = fsm(v — Vs); as will be demonstrated shortly, it is not sufficient
to simply insert ¥ = vrginto (1), as the non-linearities in the integral generate errors of order
unity. Alternatively, the desired result may be obtained by direct calculation of (19) from
some approximation of the Coulomb collision oper&lgy, often taken to be the largeMq
limit known as theLandau-Boltzmanoperator,

Cse = }r/:z v / fs(v) fy (v ( ) Xsg (v, V')dV/ (23)

whereu = v — V' is the relative velocityy = |u] is the relative speedjs the unit dyadic and
190 19

Xsg(V,V) = rr_lsﬁln fs— M av = Infy (24)

Due to the grazing nature of Coulomb collisions in the larg&glnlimit, the above collision
operator can be recast into the well knofagkker-Planckiorm,
d 10 d 1 92
=—— |Agf Deefs)| = —= - (Agef :Dgy f 25
Co¢ = =50 |Assfs— 550 - (Dsg s) 5y (Assfs) + 55050 Desfs (25)

which describes the cumulative effect of multiple small angle deflections. The Vegtand
the tensoDgg, Often denoted a\v)gq /At and(AVAV)gq /At, representlynamical frictionand
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velocity space diffusigrrespectively, and are clearly related to the slowing down, deflection
and dispersion rates given by (1), (2) and (3).
In order to calculat€sqpy, it is useful to introduce the so-call&bsenbluttpotentials,

/ / fs’(vl) /
0(v) = [ulV)av,  he(v) = [ av, (26)
and expresés¢ andDgg as velocity space gradients of these potentials,
Y ms '\ dhy oY 9%0¢
Asg_zmg (1+m§> 3y Dsg_zmgavav' (27)

The Rosenbluth potentials are easily evaluated for Maxwellian field particles with zero flow
velocity, Vg = 0, and finite temperaturéy,

g (V) = "1 [Ud—¢+(l+202)¢(v)} , hem(v) = V”T—Z@

2v dv (28)

The dynamical friction vector and velocity space diffusion tensor can now be evaluated as

Assm = Zy;fg”% {¢<v> - vz—ﬂ , (29)
seNg Ty 1 v
Daa = g = s [IF(0) +35F2(0)] (30)
where
Fi(v) = U%Jr(sz—l)cb(v), (31)
F(v) = (1— 202) D(v) — 1)3—?)). (32)

Inserting (28) into (27), differentiating with respectwpand substituting the results into (25)
yields the collision operator for Maxwellian test and field particles with zero relative flow
velocity, Vs = Vg, but potentially different particle densities and temperatures, [4—6, 9, 10],
2’)/sgns/ Tsl O} I'T'ls/Ts dod
o= e, (%) [ (0T e @
As expectedqq\ Vanishes wheils = Ty.

To evaluate the friction forcefsg, the collision integral in (19) is performed with the
above expression f@sq), but with the assumption of a small but finite relative flow velocity
between the field and test particlégs — Vy| < vrs. Typically, the calculation is performed
in the frame of reference of the field particles, such that fyy(v) and fs = fsu(v — V).
Expanding the latter in the small rati@/vTs and computing the integrals yields the desired
collision rate [9, 10],

_ 8YssNy
3t/ 2uggmg(vE +v2 4)3/2
It should be noted that Spitzer derived a general expression for the momentum exchange rate
but in his result only the thermal velocity of the field particles appeared in the collision rate
[REF]. Substitutingys¢ from (11) into (34) yields
2Y2ng727%6 In ey
 1278/2eZ pusgmg](Ts/ M) + (Ty /Mg )|3/2°

Vsd (34)

Vs¢ (35)
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Table 1. The ratio of the velocity-dependent slowing down, (1), and energy loss, (4), rates
evaluated with y = v, with the momentum, (34), and energy, (53), exchange rates for
Maxwellian test and field particles. Note that the errors are twice in the latter case since
the integrals involve higher powers of velocity.

ei ie ee,ii
L(vr)/vs¢ 3mY2/4~133 1 327)Y2W(1)~15
J(vr)/ve, 3nY?/2~266 2  627m)Y?W(1)~3

S

where Zs = es/e and Zy = ey/e are the charge states of specieand s, respectively.
Alternatively, writing out the reduced mass in (14) gives the following explicit form

2Y2ng727%6* In ey 1+ms/my
1273/2e2me/ 1% [1+ (Tg/mg)/(Ts/mg)]3/2°

Note from (35) thahsmsvsg = NgMy vy, CONSistent with momentum conservation in Coulomb
collisions, which requires th&tss + Fys = 0. However, the ratiovgg /vys = (Ns/Ng ) (Mg /M)
shows that for comparable particle densities but disparate masses, the fluid of light particles
is subject to much stronger scattering than the fluid of heavy patrticles.

It is interesting to compare the above result with the approximate expression obtained by
evaluating the velocity-dependent slowing down rate, (1), at the test particles thermal speed,

i.e.at\g=vrs,
t
Ves(VT) 3 400 2\ P(vr) VTs
=/ (1+v7)——, T = —. 37
Ved 57 (1407 or Uy (37)

Vg = (36)

This ratio is equal to unity for ion-electron collisions, ta'8?/4 ~ 1.33 for electron-ion
collisions and to 87)Y/2W(1) ~ 1.5 for like-particle collisions, see table 1.

2.2. Momentum collision rates for a simple plasma

Let us write down the various combinations of tesstand field,s, particle species explicitly
for a so-callecsimple plasmathat is, for a plasma with a single ionic particle species. Quasi-
neutrality, expressed by = Zn;, will be assumed in the following; in a multiple ion species
plasma, it can be shown thatin subsequent expressions should be replaced bgftaetive
charge stateZes,

NeZeff = Y z2. (38)

Selectings = e ands = i, we obtain theelectron-ion collision rate vej, by inserting
Ze=1,7,=Z, m > me and thusuej = me into (35) or (36),
v 2202268 InNei  2Y2neZet InAg (39)
el — — .
1273/262mg/ *T2/? 120%/262mp/ 2T/
In the above expression we have assufjéde < m/me, and thus excluded the case when
the ions are much hotter than the electrons such that their thermal speeds become comparable.
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The complementaripn-electron collision ratevie, is found by setting=1i, s = e, and
thus insertingZe = 1, Zj = Z, mi > me and ej = Mg into (35),
21/2mY 2nez2ef In Ao (me)

Vie = — (40)
e 127[3/285m-re3/2

m

Note that the two rates differ by the product of the ratio of electron and ion masses, which
is much smaller than one, and by the ratio of electron and ion densities, which is equal to
Z. Moreover, by virtue of quasi-neutralityenevei = Min;vie, Momentum conservation is
fulfilled under these approximations.

Let us next consider like-particle collisions. Selectsng s' = e, for whichpee = me/2
andZe = 1, we obtain theslectron-electron collision rate/ee,

nee4 |n /\ee Vei In /\ee -~ Vei

= = ~ 41
1271'3/283I’T%QT€3/2 2127 InNgj  2Y/27° (41)

Vee

which differs fromvg; only by the ratio of ion to electron densities, which is equal t&@,1

and the factor of 121/2, which comes from a combination of the reduced mass and the sum
of thermal velocities in (34). Similarly, then-ion collision rate v;i, in a plasma composed

of a single ion species, is found by settig s =i, and thus insertingj = mj/2 andz; =Z

into (35),

Conz%'InAi neZ%tnAy (me\YA(T\YP 22
= 12%3/28(§m1/2-|_i3/2 - 127?3/283”}1/2?3/2 ~ <ﬁ) (f) WV&.
We find thatv;; differs from vg; by the product of the square root of the mass ratio, the
3/2 power of the temperature ratio, the square of the ion charge state and the factor of
1/2%2, which once again originates from a combination of reduced mass and the sum of

thermal velocities in (34). The relations between the four collision rates can be conveniently
summarised as follows,

1/2 3/2 52
ey ey (M), [(Me Te Zz 1
Vie-Vii-Vee-VeiN(ﬁ)Z-(ﬁ> (f) mml, (43)

clearly expressing the efficient scattering of the light electrons by the heavy ions. The
approximate sign reflects small differences in the Coulomb logarithms, (16)—(18).

(42)

Vii

2.3. Collision rates and transport coefficients

Following Braginskii [11], we define thelectron collision rateve, simply as
21/2n,72e* In A

Ve = Vei = ) (44)
el 127[3/285”%/21_(33/2
and theion collision rate v;, as
. niZ4e4In Nij
Vi=Vj = 320 1/2-3/2" (45)
1273/ 25T,

These rates are of particular importance in the calculation of classical transport coefficients
for a magnetised plasma; note that only transport pard|)ehid perpendicularl() to the
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magnetic field is affected, and that diamagneti¢ {ransport is independent of Coulomb
collisions. For instance, the heat diffusivitiggs, x1s andy,s , can be expressed as
CIISTS Cislsvs ChsTs

%HS_ Vsrns7 Xlis= Qgrns ) Ans = ernsv
where Qs = ZseB/ms is the gyro-frequency ands is given by (44) or (45). The pre-
factor C, first calculated by Spitzer anddrm [7], is a weak function of ion charge
with Ce = (3.197,4.916 6.972 10.63) for Z = (1,2,4,16); to within 2% accuracy it can be
approximated as

Cje = 3.153+2.7005InZ. (47)

The other pre-factors were calculated by Braginskii [11], who expressed the diffusivities in

terms ofze = vg L andg = v, 1,

(46)

Cji=391, Cle=47,  C;=20, cAs:g. (48)

Evidently, inaccuracies in the definition e would result in errors in the classical transport
coefficients, such as (46), and thus the associated neoclassical transport coefficients [17].

3. Collisional energy exchange

The collisional exchange of thermal energy due to Coulomb collisions can be calculated in a
manner similar to the momentum exchange. The general expression for Maxwellian plasma
species was first given by Spitzer [1].

3.1. General energy collision rates

The energy conservation equation for a particle spextas be written as

3/0 3]
é(§+VS-D) pS‘f’épSD’Vs‘f’ns:Dvs‘f’D'qS:gWSS? (49)

whereqs is the heat flux vector andg is the collisional thermal energy exchange rate
between particle specisands),

Wy = [ Smy(v—VoPCse(fs ). (50)

From the collision operator in (33), valid in the largeNg limit, we find that the
collision rate for Maxwellian test and field particles is given by [1,9, 10]

8 YNy (Tg —To) ( ms )
Wse = =3 VsaNs(Tg — Ts). 51
s$ = 12 msmsz(v-zrs-i— V%g>3/2 Ms+ My s¢Ns(Ts — Ts) (51)
We thus define théhermal equilibration ratgor simply thethermalisation rate v, as the
rate at whichls andTy converge to a common value as a result of Coulomb collisions,

dT.
FRPAC (52)
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where we have neglected all other terms in (49). Inserting (51) into (49) and retaining only
the temporal derivative on the left-hand side yields

P> 16 YsgNy Ms
Vss = 3172 memy (V2 +v2 )32 2 (m) Vsg.- (53)

It is thus clear that for a mass ratio of order unity the momentum and energy exchange rates
are comparable, while for disparate masses the energy change of the fluid of light particles is
much smaller than its momentum exchange. Also note\Wjat- Wys = 0, consistent with
energy conservation in Coulomb collisions.

For like-particle collisionss= ¢, the energy collision ratef,does not represent the rate
of heat exchange between two Maxwellian fluids since, by 9= 0. Rather, it measures
the rate at which specissapproach local thermodynamical equilibrium, i.e. the rate at which
their velocity distribution relaxes to a Maxwellian. In this sense, the tharmalisation rate
is better suited to§, andthermal equilibration rateto v{, with s# s'. It is worth noting that
the former is identical to the momentum exchange naig,

As before, we compare the above result with the approximate expression obtained by
evaluating the velocity-dependent energy loss rate, (4), at the test particle thermal speed,

—véﬁ(gm =2 (Ti> Yas(U1) _ g (B) (14 vf) 2L (54)
Ved Ts Vsg Ts Ut

The discrepancy between the two rates, represented by the above ratio, is roughly twice
as large for energy exchange as for momentum exchange.TsRerTy it is equal to 2
for ion-electron collisions, 8Y/2/2 ~ 2.66 for electron-ion collisions and approximately
0.6(2m)Y/2 ~ 3 for like-particle collisions. This is consistent with the fact thgt/vs¢ given
by (53) differs by a factor of By /Ts from the ratio of energy loss (4) and slowing down (1)
rates of a test particle traveling af ¥ vrs,

t,e
Vég(vT)_4 Ms+ My v%_4 Ts ) \ms+my (53)

As for the momentum relaxation rates, we find that estimates of thermal energy relaxation
rates from the velocity dependent expressions at the test particle thermal velocity speed leads
to errors of order unity.

3.2. Energy collision rates for a simple plasma

Once again, let us consider the various combinationsafds’ for a quasi-neutral simple

plasma. Thelectron-ion v§, andion-electron v, equilibration ratesare thus found as

- me e 21/2rré/2neZe4In/\ei (56)
ei = o T e 2gm 12
ol cEgmy le
VE = 2Vie = 2 (%) ZVei = ZVE, (57)

Similarly, theelectron-electronvg, andion-ion, v, thermalisation ratesire found as

Vege = Vee= Ve, (58)
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Vi = Vi = Vi, (59)

identical to the momentum relaxation rates as noted above.
The ratios between the four thermalisation or heat exchange rates can be related to those
between the four collision or momentum exchange rates as follows,

Me
VE T VE I VET VS A 2Vie I Vi Vee: 2 (ﬁ) Vei- (60)

Note that the only significant difference in the relative magnitude of the heat and momentum
exchange rates occurs for electrons colliding with ions, which differ by twice the mass ratio.
Combining (60) with (43) we find,

1/2 3/2 52
CE . au T Z5  (m 1

which expresses the well known result that electrons thermalise, or approach local

thermodynamic equilibrium, much faster than ions, and that ions thermalise much faster than
the rate of thermal equipartition between the ions and electrons. The rates of these three
process differ roughly by the square root of the ion-to-electron mass ratio.

4. Comparison of collisional expressions in the literature

The rates of momentum and heat exchange due to Coulomb collisions for Maxwellian test and
field particles are given by numerous sources in the plasma physics and magnetically confined
fusion literature. In this section, we compare the expressions found in roughly twenty popular
texts with those summarised in sections 2 and 3. The results are shown in table 2, which
lists collisional rates reported by [8-11, 13—-20] normalised by the expressions given here, i.e.
equations (36), (39), (40), (41), (42), (44), (45) and (56). A dash in the table indicates that
the quantity does not appear in the reference, while an asterix means that the quantity is only
given for a pure, hydrogenic plasma € 1). Note the frequent appearance of the factor of
21/2 which reflects the neglect of the reduced mass in many definitions. This omission is
then remedied by defining an additional ion collision ratewhich differs fromv;;, precisely

by a factor of 3/2 [REFS]. The additional factors include the square root of the mass ratio,
a= (m/me)Y/? and the 3/2 power of the temperature rakies (Te/T;)%/2.

Itis reassuring that several references, namely [8-11,13-16], report identical expressions
(although not all sources derive all expressions). The expressions found in these sources can
thus be used interchangeably, aside from a trivial conversion between Gaussian and Sl units
and taking care of the definition of the thermal velocities which differs between the various
sources.

However, the reader should be aware of certain shortcomings in the definitions found in
the NRL plasma formulary [15]: (i) the absence of an explicit charge scaling &and 7;,

(ii) the violation of the usual convention = 771, in the relation between the ion collision
time and frequencyy = 21/2vi‘l for the expressions given in [15]), (iii)) the absence of an
explicit expression fowvsg, and (iv) the suggestion thaty may be estimated by evaluating
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Table 2. The ratio of collision rates defined in selected sources with those derived in [9] and
compiled in sections 2 and (3). A dash means that the quantity does not appear in the reference,
while an asterix means the quantity is only derivedZet 1. The two constants appearing in

the table are defined as= (m /me)%/2 andb = (T¢/T;)%/2.

Reference ve/(35) Veil(39) Viel(40) ved(41) Vil(42) vel(44) Vil(45) VEI(S6)

[9] 1 1 1 1 1 - - 1
[10] 1 1 1 1 1 1 1
[11-14] - - - - - 1 1 1
[15] - - - - - 1 1* 1
[16] - 1 - - - 1 1 1
[17] - 1 ab 21/2 21/2 z1 1 1
[18] - 1 2 - /2 z1! 21/2 1
[19] - 1 - 21/2 21/2 ; ) 7-1
[20] - - - - - 1 21/2 1

the velocity dependent expressions, (1)—(4) with=wts, which, as is clear from table 1,
leads to errors of order unity.

The expressions found in [17-20], differ from the definitions given here in several
instances:vie [17, 18], vee [17,19], ve for Z £ 1 [17, 18], v;i [17-19] andyv; [18, 20]. The
difference by a factor 22 can be traced to the replacement of the reduced mass by the
test particle mass in (34). The discrepancyvinfound in reference [18] is of particular
concern, since the parallel and perpendicular viscosities and ion heat conductivities given
in that reference differ from those derived by Braginskii [11] by a factor'é%.2

The remaining sources [21-25], either do not explicitly state the collisional rates for
Maxwellian test and field particles, or invoke various approximations in the course of the
derivation. For this reason they are omitted from table 2 and are not recommended as
guantitative references for collisional expressions, although they are very useful for more
advanced material, e.g. collisional isotropisation rates, the effect of strong magnetic fields,
etc. Therefore, it is important to consider the exact treatment of collisional terms in these
references, which we consider briefly below.

In the monograph by Krall and Trivelpiece [21], the slowing down, deflection and
energy loss rates are evaluated, but are not integrated for Maxwellian field particles. Instead
the two-Maxwellian result is introduced via an effective collisional cross section which is
referred to [8]. Similarly, the article by Sanderson [22] and a recent textbook by Boyd and
Sanderson [23], contain a clear derivation of the slowing down, deflection and energy loss
rates, (1), (2) and (4), but do not integrate these expressions for Maxwellian field particles.
Instead, the authors approximatg andv, by evaluating the velocity dependent expressions
for vs = v, Which introduces errors of order unity in the expressions for both momentum
and energy exchange rates, tables 1 and 3. Finally, the two texts by Ichimaru [24, 25], which
focus on a statistical description of plasma behavior, derive the correct electron-ion collision
rate, but do so indirectly in the course of deriving the classical diffusion coefficient.
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Table 3. The ratio of thermalisation rates defined in selected sources with those derived in [9]
and compiled in section 3.

Reference VvE/(35) VE/(39) VE(40) VEJ(AL)  vEI(42)

[8-10] 1 1 1 1 1
[18] - 1 - 21/2 21/2
[22,23] - 1 z1 2827 28/2/bZ?

5. Conclusions

Having reviewed the expressions for binary Coulomb collision rates for Maxwellian test and
field particles, we conclude that while the topical literature is generally consistent, there exist
some discrepancies between the cited expressions, typically by factors of order unity. The
most comprehensive treatment of the topic appears to be the review article by Hinton [9]. This
source is recommended as the ultimate reference for all collisional rates, whether velocity-
dependent or integrated over Maxwellian test particles, and has been adopted as the standard
to which other sources can be benchmarked. The scaling factors which should be adopted
when using expressions from other sources are summarised in tables 2 and 3. Special
care should be taken when using tR&L Plasma Formulary15], which contains several
inconsistencies in the definitions of vs andvge, as outlined in section 4.
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