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Abstract. Expressions for Coulomb collision rates in the magnetised plasma physics
and nuclear fusion literature are reviewed. General collisional momentum and energy
exchange rates are given for plasma particle species assumed to be in local thermodynamical
equilibrium. Specific expressions for a simple plasma are then compared with those presented
in numerous standard references. Differences by factors of order unity are found in several
sources and are linked to the replacement of the reduced mass by the test particle mass at
some stage of the derivation.

1. Introduction

Binary Coulomb collisions between charged particles, characterised by a cubic dependence
of the collision rates on the relative particle velocity, are one of the distinguishing features
of plasma physics and play a crucial role in a variety of transport, relaxation and dissipative
phenomena in magnetically confined plasmas [1–20].

The problem oftestparticles of speciess moving through a Maxwellian background of
field particles of speciess′ was solved half a century ago [1–5]. The results are summarised in
a variety of plasma physics sources, including review articles by Trubnikov [6] and Hinton [9],
and are generally expressed in terms of four velocity-dependent relaxation rates associated
with test particleslowing down,
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andenergy loss,
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Note that due to conservation of energy, these four relaxation rates are related as follows,

ν
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t
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In the above,Ks ≡ msv2
s/2 is the test particle kinetic energy,ns′, Vs′ andTs′ are the particle

density, flow velocity and temperature of the field particles,

ns′ =
∫

fs′dv, ns′Vs′ =
∫

v fs′dv,
3
2

ns′T′s =
∫

1
2

ms′|v−Vs|2 fs′dv. (6)

andυ is the test particle speed vs normalised by the field particle thermal speed, vTs′,

υ ≡ υss′ ≡
vs
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, v2

Ts′ ≡
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ms′
. (7)

The error function,Φ(υ), and the Chandrasekhar function,Ψ(υ), are defined by
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and take on the following values in the limits ofυ = 0, 1 and∞,
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υ→0

2υ

π1/2
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Here we have used the relationdΦ/dυ = 2π−1/2exp(−υ2). The charge related constant,

γss′ ≡
e2

se2
s′ lnΛss′

8πε2
0

= γs′s, (11)

contains the logarithm, lnΛss′ , of the ratio of maximum,rmax, and minimum,rmin, scattering
distances between test and field particles,

lnΛss′ ≡ ln

(
rmax

rmin

)
, (12)

which is known as the Coulomb logarithm. The minimum distance can be approximated as
the larger of the deBroglie length and the classical distance of closest approach [REF],
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,
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4πε2
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)
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whereu = vs−vs′ is the relative velocity,〈·〉 denotes an average over bothfs and fs′ andµss′

is the reduced mass,

µss′ ≡
msms′

ms+ms′
= µs′s. (14)

The maximum distance is typically approximated as the effective Debye length [REF],
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with the summation performed over all speciesa whose thermal velocity exceeds the average
relative velocity, vTa > 〈u〉. The NRL Plasma Formulary[15] suggests the following
expressions for electron-electron collisions,

lnΛee≈ 30− ln
(

n1/2
e T−3/2

e

)
, Te < 10eV (16)

≈ 31− ln
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e

)
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for electron-ion or ion-electron collisions,

lnΛei = lnΛie ≈ 30− ln
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and for ion-ion collisions between ion species i and i′ with charge statesZ andZ′ and atomic
massesA andA′,

lnΛii ′ = lnΛi′i ≈ 31− ln

[
ZZ′(A+A′)
ATi′ +A′Ti

(
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Ti
+

ni′Z
′2

Ti′

)1/2
]

(18)

The Coulomb logarithm has only a weak dependence onns, Ts and the combination ofs and
s′, with typical values in the range of 15–20.

When the test particles are likewise Maxwellian and the thermal speed of the heavier
species is comparable to or smaller than that of the lighter species, then for each combination
of s ands′, the four rates (1)–(4) reduce to a single characteristic collision frequency. This
reduction has lead to some differences, typically by a factor of order unity, in the definition
of this basic collisional rate in the topical literature. While such differences are generally
benign provided accuracy to within a factor two is sufficient, they become unacceptable when
higher levels of accuracy are required. Moreover, they can generate confusion and lead to
errors when expressions obtained from different sources are combined, as is often the case.
In this article, we examine the definitions of collision rates found in roughly twenty common
references, and benchmark these against symmetrical expressions [8–10].

Below we present a brief derivation of Coulomb collision rates for Maxwellian test and
field particles following the account given by Hinton [9] and Hazeltine and Waelbroeck [10].
The discussion is divided into exchange rates of momentum and energy, presented in sections
2 and 3, respectively, followed by a comparison with expressions found elsewhere in the
literature in section 4. To prevent confusion, all expressions are given as collision rates,
ν (units of inverse time) rather than collision times,τ (units of time); the two are always
related asτ = 1/ν . Unless otherwise stated, SI units will be used throughout, except for
the temperatures which are given in electron volts. To convert any SI (mks) expression to
Gaussian (cgs) units, simply replaceε0 by 1/4π, µ0 by 4π/c2 andB by B/c.

2. Collisional momentum exchange

The collision ratebetweentestparticles,s, andfield particles,s′, is typically defined as the
time required to change the direction of the test particles by a right angle from their initial
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flow direction. Hence, the term collision rate tacitly assumesmomentum exchange, unless the
exchange of some other quantity, e.g. energy, is explicitly stated.

2.1. General momentum collision rates

In analogy with the slowing down rate of a single test particle species, given in (1), we define
νss′ as the rate of change of the fluid momentum, which can be expressed as the friction force,
Fss′, resulting from successive binary collisions between speciess ands′,

Fss′ ≡
∫

msvCss′( fs, fs′)dv =−msnsνss′ (Vs−Vs′) . (19)

This friction force appears in the momentum equation for the plasma speciess,

msns

(
∂

∂ t
+Vs ·∇

)
Vs =−∇ps−∇ ·Πs+esns(E+Vs×B)+∑

s′
Fss′, (20)

wherens, Vs andTs are the particle density, flow velocity and temperature of speciess,

ns =
∫

fsdv, nsVs =
∫

v fsdv,
3
2

nsTs =
∫

1
2

ms|v−Vs|2 fsdv, (21)

andΠs is the deviation of the stress tensor from the scalar pressureps = nsTs. Hence,νss′

measures the deceleration of the flow of speciess due to collisions with speciess′,

dVs

dt
=−∑

s′
νss′ (Vs−Vs′) ,

d
dt
≡ ∂

∂ t
+Vs ·∇, (22)

where we neglected all other terms in (20). Note thatFss′ involves a velocity space
integral of the Coulomb collision operator,Css′( fs, fs′), such thatνss′ depends on the velocity
distributions of both the test,fs(v), and field,fs′(v), particles.

To obtain an explicit expression forνss′, one can average (1) over the shifted Maxwellian
test particle distribution,fs = fsM(v−Vs); as will be demonstrated shortly, it is not sufficient
to simply insert vs = vTs into (1), as the non-linearities in the integral generate errors of order
unity. Alternatively, the desired result may be obtained by direct calculation of (19) from
some approximation of the Coulomb collision operatorCss′, often taken to be the large lnΛss′

limit known as theLandau-Boltzmannoperator,

Css′ =
γss′

ms

∂

∂v
·
∫

fs(v) fs′(v′)
(

I

u
− uu

u3

)
·χss′(v,v′)dv′ (23)

whereu = v−v′ is the relative velocity,u = |u| is the relative speed,I is the unit dyadic and

χss′(v,v′) =
1
ms

∂

∂v
ln fs−

1
ms′

∂

∂v′
ln fs′ (24)

Due to the grazing nature of Coulomb collisions in the large lnΛss′ limit, the above collision
operator can be recast into the well knownFokker-Planckform,

Css′ =− ∂

∂v
·
[
Ass′ fs−

1
2

∂

∂v
· (Dss′ fs)

]
=− ∂

∂v
· (Ass′ fs)+

1
2

∂ 2

∂v∂v
: Dss′ fs (25)

which describes the cumulative effect of multiple small angle deflections. The vectorAss′ and
the tensorDss′, often denoted as〈∆v〉ss′/∆t and〈∆v∆v〉ss′/∆t, representdynamical frictionand
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velocity space diffusion, respectively, and are clearly related to the slowing down, deflection
and dispersion rates given by (1), (2) and (3).

In order to calculateCss′M, it is useful to introduce the so-calledRosenbluthpotentials,

gs′(v) =
∫

u fs′(v′)dv′, hs′(v) =
∫

fs′(v′)
u

dv′, (26)

and expressAss′ andDss′ as velocity space gradients of these potentials,

Ass′ = 2
γss′

m2
s

(
1+

ms

ms′

)
∂hs′

∂v
, Dss′ = 2

γss′

m2
s

∂ 2gs′

∂v∂v
. (27)

The Rosenbluth potentials are easily evaluated for Maxwellian field particles with zero flow
velocity,Vs′ = 0, and finite temperature,Ts′,

gs′M(v) =
ns′vTs′

2υ

[
υ

dΦ
dυ

+(1+2υ
2)Φ(υ)

]
, hs′M(v) =

ns′

vTs′

Φ(υ)
υ

. (28)

The dynamical friction vector and velocity space diffusion tensor can now be evaluated as

Ass′M =
2γss′ns′

ms′

v
v3

[
Φ(υ)−υ

dΦ
dυ

]
, (29)

Dss′M =
γss′ns′Ts′

m2
sms′

1
v3

[
IF1(υ)+3

vv
v2 F2(υ)

]
, (30)

where

F1(υ) = υ
dΦ
dυ

+(2υ
2−1)Φ(υ), (31)

F2(υ) =
(

1− 2
3

υ
2
)

Φ(υ)−υ
dΦ
dυ

. (32)

Inserting (28) into (27), differentiating with respect tov, and substituting the results into (25)
yields the collision operator for Maxwellian test and field particles with zero relative flow
velocity,Vs = Vs′, but potentially different particle densities and temperatures, [4–6,9,10],

Css′M =− 2γss′ns′

msms′vTs′v2
Ts

(
1− Ts′

Ts

)[
Φ
υ
−

(
1+

ms′Ts

msTs′

)
dΦ
dυ

]
fsM. (33)

As expectedCss′M vanishes whenTs = Ts′ .
To evaluate the friction force,Fss′, the collision integral in (19) is performed with the

above expression forCss′M, but with the assumption of a small but finite relative flow velocity
between the field and test particles,|Vs−Vs′| � vTs. Typically, the calculation is performed
in the frame of reference of the field particles, such thatfs′ = fs′M(v) and fs = fsM(v−Vs).
Expanding the latter in the small ratioVs/vTs and computing the integrals yields the desired
collision rate [9,10],

νss′ =
8γss′ns′

3π1/2µss′ms(v2
Ts+v2

Ts′)
3/2

. (34)

It should be noted that Spitzer derived a general expression for the momentum exchange rate
but in his result only the thermal velocity of the field particles appeared in the collision rate
[REF]. Substitutingγss′ from (11) into (34) yields

νss′ =
21/2ns′Z

2
sZ2

s′e
4 lnΛss′

12π3/2ε2
0µss′ms[(Ts/ms)+(Ts′/ms′)]3/2

, (35)
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Table 1. The ratio of the velocity-dependent slowing down, (1), and energy loss, (4), rates
evaluated with vs = vTs, with the momentum, (34), and energy, (53), exchange rates for
Maxwellian test and field particles. Note that the errors are twice in the latter case since
the integrals involve higher powers of velocity.

ei ie ee, ii

ν t
ss′(υT)/νss′ 3π1/2/4≈ 1.33 1 3(2π)1/2Ψ(1)≈ 1.5

ν
t,ε
ss′ (υT)/νε

ss′ 3π1/2/2≈ 2.66 2 6(2π)1/2Ψ(1)≈ 3

where Zs = es/e and Zs′ = es′/e are the charge states of speciess and s′, respectively.
Alternatively, writing out the reduced mass in (14) gives the following explicit form

νss′ =
21/2ns′Z

2
sZ2

s′e
4 lnΛss′

12π3/2ε2
0m1/2

s T3/2
s

1+ms/ms′

[1+(Ts′/ms′)/(Ts/ms)]3/2
. (36)

Note from (35) thatnsmsνss′ = ns′ms′νs′s, consistent with momentum conservation in Coulomb
collisions, which requires thatFss′ +Fs′s = 0. However, the ratioνss′/νs′s = (ns/ns′)(ms′/ms)
shows that for comparable particle densities but disparate masses, the fluid of light particles
is subject to much stronger scattering than the fluid of heavy particles.

It is interesting to compare the above result with the approximate expression obtained by
evaluating the velocity-dependent slowing down rate, (1), at the test particles thermal speed,
i.e. at vs = vTs,

ν t
ss′(υT)
νss′

=
3
2

π
1/2(1+υ

2
T)

Ψ(υT)
υT

, υT ≡
vTs

vTs′
. (37)

This ratio is equal to unity for ion-electron collisions, to 3π1/2/4 ≈ 1.33 for electron-ion
collisions and to 3(2π)1/2Ψ(1)≈ 1.5 for like-particle collisions, see table 1.

2.2. Momentum collision rates for a simple plasma

Let us write down the various combinations of test,s, and field,s′, particle species explicitly
for a so-calledsimple plasma, that is, for a plasma with a single ionic particle species. Quasi-
neutrality, expressed byne = Zni , will be assumed in the following; in a multiple ion species
plasma, it can be shown thatZ in subsequent expressions should be replaced by theeffective
charge state, Zeff,

neZeff ≡∑
i

niZ
2
i . (38)

Selectings = e ands′ = i, we obtain theelectron-ion collision rate, νei, by inserting
Ze = 1, Zi = Z, mi �me and thusµei = me into (35) or (36),

νei =
21/2niZ2e4 lnΛei

12π3/2ε2
0m1/2

e T3/2
e

=
21/2neZe4 lnΛei

12π3/2ε2
0m1/2

e T3/2
e

. (39)

In the above expression we have assumedTi/Te� mi/me, and thus excluded the case when
the ions are much hotter than the electrons such that their thermal speeds become comparable.



Comparison of Coulomb collision rates 7

The complementaryion-electron collision rate, νie, is found by settings= i, s′ = e, and
thus insertingZe = 1, Zi = Z, mi �me andµei = me into (35),

νie =
21/2m1/2

e neZ2e4 lnΛie

12π3/2ε2
0miT

3/2
e

=
(

me

mi

)
Zνei. (40)

Note that the two rates differ by the product of the ratio of electron and ion masses, which
is much smaller than one, and by the ratio of electron and ion densities, which is equal to
Z. Moreover, by virtue of quasi-neutrality,meneνei = miniνie, momentum conservation is
fulfilled under these approximations.

Let us next consider like-particle collisions. Selectings= s′ = e, for whichµee= me/2
andZe = 1, we obtain theelectron-electron collision rate, νee,

νee=
nee4 lnΛee

12π3/2ε2
0m1/2

e T3/2
e

=
νei

21/2Z

lnΛee

lnΛei
≈ νei

21/2Z
, (41)

which differs fromνei only by the ratio of ion to electron densities, which is equal to 1/Z,
and the factor of 1/21/2, which comes from a combination of the reduced mass and the sum
of thermal velocities in (34). Similarly, theion-ion collision rate, νii , in a plasma composed
of a single ion species, is found by settings= s′ = i, and thus insertingµii = mi/2 andZi = Z
into (35),

νii =
niZ4e4 lnΛii

12π3/2ε2
0m1/2

i T3/2
i

=
neZ3e4 lnΛii

12π3/2ε2
0m1/2

i T3/2
i

≈
(

me

mi

)1/2(
Te

Ti

)3/2 Z2

21/2
νei. (42)

We find thatνii differs from νei by the product of the square root of the mass ratio, the
3/2 power of the temperature ratio, the square of the ion charge state and the factor of
1/21/2, which once again originates from a combination of reduced mass and the sum of
thermal velocities in (34). The relations between the four collision rates can be conveniently
summarised as follows,

νie : νii : νee : νei ≈
(

me

mi

)
Z :

(
me

mi

)1/2(
Te

Ti

)3/2 Z2

21/2
:

1

21/2Z
: 1, (43)

clearly expressing the efficient scattering of the light electrons by the heavy ions. The
approximate sign reflects small differences in the Coulomb logarithms, (16)–(18).

2.3. Collision rates and transport coefficients

Following Braginskii [11], we define theelectron collision rate, νe, simply as

νe≡ νei =
21/2niZ2e4 lnΛei

12π3/2ε2
0m1/2

e T3/2
e

, (44)

and theion collision rate, νi , as

νi ≡ νii =
niZ4e4 lnΛii

12π3/2ε2
0m1/2

i T3/2
i

. (45)

These rates are of particular importance in the calculation of classical transport coefficients
for a magnetised plasma; note that only transport parallel (‖) and perpendicular (⊥) to the
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magnetic field is affected, and that diamagnetic (∧) transport is independent of Coulomb
collisions. For instance, the heat diffusivities,χ‖s, χ⊥s andχ∧s , can be expressed as

χ‖s =
C‖sTs

νsms
, χ⊥s =

C⊥sTsνs

Ω2
sms

, χ∧s =
C∧sTs

Ωsms
, (46)

where Ωs = ZseB/ms is the gyro-frequency andνs is given by (44) or (45). The pre-
factor C‖e, first calculated by Spitzer and Härm [7], is a weak function of ion charge
with Ce = (3.197,4.916,6.972,10.63) for Z = (1,2,4,16); to within 2% accuracy it can be
approximated as

C‖e = 3.153+2.7005lnZ. (47)

The other pre-factors were calculated by Braginskii [11], who expressed the diffusivities in
terms ofτe = ν−1

e andτi = ν
−1
i ,

C‖i = 3.91, C⊥e = 4.7, C⊥i = 2.0, C∧s =
5
2
. (48)

Evidently, inaccuracies in the definition ofνs would result in errors in the classical transport
coefficients, such as (46), and thus the associated neoclassical transport coefficients [17].

3. Collisional energy exchange

The collisional exchange of thermal energy due to Coulomb collisions can be calculated in a
manner similar to the momentum exchange. The general expression for Maxwellian plasma
species was first given by Spitzer [1].

3.1. General energy collision rates

The energy conservation equation for a particle speciess can be written as

3
2

(
∂

∂ t
+Vs ·∇

)
ps+

5
2

ps∇ ·Vs+Πs : ∇Vs+∇ ·qs = ∑
s′

Wss′, (49)

whereqs is the heat flux vector andWss′ is the collisional thermal energy exchange rate
between particle speciess ands′,

Wss′ ≡
∫

1
2

ms(v−Vs)2Css′( fs, fs′)dv. (50)

From the collision operator in (33), valid in the large lnΛss′ limit, we find that the
collision rate for Maxwellian test and field particles is given by [1,9,10]

Wss′ =
8

π1/2

γss′nsns′(Ts′−Ts)
msms′(v2

Ts+v2
Ts′)

3/2
= 3

(
ms

ms+ms′

)
νss′ns(Ts′−Ts). (51)

We thus define thethermal equilibration rate, or simply thethermalisation rate, νε

ss′, as the
rate at whichTs andTs′ converge to a common value as a result of Coulomb collisions,

dTs

dt
≡∑

s′
ν

ε

ss′(Ts′−Ts), (52)
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where we have neglected all other terms in (49). Inserting (51) into (49) and retaining only
the temporal derivative on the left-hand side yields

ν
ε

ss′ =
16

3π1/2

γss′ns′

msms′(v2
Ts+v2

Ts′)
3/2

= 2

(
ms

ms+ms′

)
νss′. (53)

It is thus clear that for a mass ratio of order unity the momentum and energy exchange rates
are comparable, while for disparate masses the energy change of the fluid of light particles is
much smaller than its momentum exchange. Also note thatWss′ +Ws′s = 0, consistent with
energy conservation in Coulomb collisions.

For like-particle collisions,s= s′, the energy collision rateνε
ssdoes not represent the rate

of heat exchange between two Maxwellian fluids since, by (51),Wss= 0. Rather, it measures
the rate at which speciessapproach local thermodynamical equilibrium, i.e. the rate at which
their velocity distribution relaxes to a Maxwellian. In this sense, the termthermalisation rate
is better suited toνε

ss, andthermal equilibration rateto νε

ss′ with s 6= s′. It is worth noting that
the former is identical to the momentum exchange rate,νss.

As before, we compare the above result with the approximate expression obtained by
evaluating the velocity-dependent energy loss rate, (4), at the test particle thermal speed,

ν
t,ε
ss′ (υT)
νε

ss′
= 2

(
Ts′

Ts

)
ν t

ss′(υT)
νss′

= 3π
1/2

(
Ts′

Ts

)
(1+υ

2
T)

Ψ(υT)
υT

(54)

The discrepancy between the two rates, represented by the above ratio, is roughly twice
as large for energy exchange as for momentum exchange. ForTs = Ts′ it is equal to 2
for ion-electron collisions, 3π1/2/2 ≈ 2.66 for electron-ion collisions and approximately
0.6(2π)1/2 ≈ 3 for like-particle collisions. This is consistent with the fact thatνε

ss′/νss′ given
by (53) differs by a factor of 2Ts′/Ts from the ratio of energy loss (4) and slowing down (1)
rates of a test particle traveling at vs = vTs,

ν
t,ε
ss′ (υT)

ν t
ss′(υT)

= 4

(
ms′

ms+ms′

)
1

υ2
T

= 4

(
Ts′

Ts

)(
ms

ms+ms′

)
(55)

As for the momentum relaxation rates, we find that estimates of thermal energy relaxation
rates from the velocity dependent expressions at the test particle thermal velocity speed leads
to errors of order unity.

3.2. Energy collision rates for a simple plasma

Once again, let us consider the various combinations ofs ands′ for a quasi-neutral simple
plasma. Theelectron-ion, νε

ei, andion-electron, νε
ie, equilibration ratesare thus found as

ν
ε
ei = 2

(
me

mi

)
νei =

21/2m1/2
e neZe4 lnΛei

6π3/2ε2
0miT

3/2
e

, (56)

ν
ε
ie = 2νie = 2

(
me

mi

)
Zνei = Zν

ε
ei. (57)

Similarly, theelectron-electron, νε
ee, andion-ion, νε

ii , thermalisation ratesare found as

ν
ε
ee= νee= νe, (58)
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ν
ε
ii = νii = νi , (59)

identical to the momentum relaxation rates as noted above.
The ratios between the four thermalisation or heat exchange rates can be related to those

between the four collision or momentum exchange rates as follows,

ν
ε
ie : ν

ε
ii : ν

ε
ee : ν

ε
ei ≈ 2νie : νii : νee : 2

(
me

mi

)
νei. (60)

Note that the only significant difference in the relative magnitude of the heat and momentum
exchange rates occurs for electrons colliding with ions, which differ by twice the mass ratio.
Combining (60) with (43) we find,

ν
ε
ie : ν

ε
ii : ν

ε
ee : ν

ε
ei ≈ Z :

(
mi

me

)1/2(
Te

Ti

)3/2 Z2

23/2
:

(
mi

me

)
1

23/2Z
: 1, (61)

which expresses the well known result that electrons thermalise, or approach local
thermodynamic equilibrium, much faster than ions, and that ions thermalise much faster than
the rate of thermal equipartition between the ions and electrons. The rates of these three
process differ roughly by the square root of the ion-to-electron mass ratio.

4. Comparison of collisional expressions in the literature

The rates of momentum and heat exchange due to Coulomb collisions for Maxwellian test and
field particles are given by numerous sources in the plasma physics and magnetically confined
fusion literature. In this section, we compare the expressions found in roughly twenty popular
texts with those summarised in sections 2 and 3. The results are shown in table 2, which
lists collisional rates reported by [8–11,13–20] normalised by the expressions given here, i.e.
equations (36), (39), (40), (41), (42), (44), (45) and (56). A dash in the table indicates that
the quantity does not appear in the reference, while an asterix means that the quantity is only
given for a pure, hydrogenic plasma (Z = 1). Note the frequent appearance of the factor of
21/2 which reflects the neglect of the reduced mass in many definitions. This omission is
then remedied by defining an additional ion collision rate,νi , which differs fromνii , precisely
by a factor of 21/2 [REFS]. The additional factors include the square root of the mass ratio,
a = (mi/me)1/2 and the 3/2 power of the temperature ratio,b = (Te/Ti)3/2.

It is reassuring that several references, namely [8–11,13–16], report identical expressions
(although not all sources derive all expressions). The expressions found in these sources can
thus be used interchangeably, aside from a trivial conversion between Gaussian and SI units
and taking care of the definition of the thermal velocities which differs between the various
sources.

However, the reader should be aware of certain shortcomings in the definitions found in
the NRL plasma formulary [15]: (i) the absence of an explicit charge scaling inτe andτi ,
(ii) the violation of the usual conventionν = τ−1, in the relation between the ion collision
time and frequency (τi = 21/2ν

−1
i for the expressions given in [15]), (iii) the absence of an

explicit expression forνss′, and (iv) the suggestion thatνss′ may be estimated by evaluating
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Table 2. The ratio of collision rates defined in selected sources with those derived in [9] and
compiled in sections 2 and (3). A dash means that the quantity does not appear in the reference,
while an asterix means the quantity is only derived forZ = 1. The two constants appearing in
the table are defined asa = (mi/me)1/2 andb = (Te/Ti)3/2.

Reference νss′ /(35) νei/(39) νie/(40) νee/(41) νii /(42) νe/(44) νi /(45) νε
ei/(56)

[9] 1 1 1 1 1 - - 1
[10] 1 1 1 1 1 1 - 1

[11–14] - - - - - 1 1 1
[15] - - - - - 1∗ 1∗ 1
[16] - 1 - - - 1 1 1
[17] - 1 ab 21/2 21/2 Z−1 1 1
[18] - 1 2 - 21/2 Z−1 21/2 1
[19] - 1 - 21/2 21/2 - - Z−1

[20] - - - - - 1 21/2 1

the velocity dependent expressions, (1)–(4) with vs = vTs, which, as is clear from table 1,
leads to errors of order unity.

The expressions found in [17–20], differ from the definitions given here in several
instances:νie [17, 18], νee [17, 19], νe for Z 6= 1 [17, 18],νii [17–19] andνi [18, 20]. The
difference by a factor 21/2 can be traced to the replacement of the reduced mass by the
test particle mass in (34). The discrepancy inνi found in reference [18] is of particular
concern, since the parallel and perpendicular viscosities and ion heat conductivities given
in that reference differ from those derived by Braginskii [11] by a factor of 21/2.

The remaining sources [21–25], either do not explicitly state the collisional rates for
Maxwellian test and field particles, or invoke various approximations in the course of the
derivation. For this reason they are omitted from table 2 and are not recommended as
quantitative references for collisional expressions, although they are very useful for more
advanced material, e.g. collisional isotropisation rates, the effect of strong magnetic fields,
etc. Therefore, it is important to consider the exact treatment of collisional terms in these
references, which we consider briefly below.

In the monograph by Krall and Trivelpiece [21], the slowing down, deflection and
energy loss rates are evaluated, but are not integrated for Maxwellian field particles. Instead
the two-Maxwellian result is introduced via an effective collisional cross section which is
referred to [8]. Similarly, the article by Sanderson [22] and a recent textbook by Boyd and
Sanderson [23], contain a clear derivation of the slowing down, deflection and energy loss
rates, (1), (2) and (4), but do not integrate these expressions for Maxwellian field particles.
Instead, the authors approximateνss′ andνε

ss′ by evaluating the velocity dependent expressions
for vs = vTs, which introduces errors of order unity in the expressions for both momentum
and energy exchange rates, tables 1 and 3. Finally, the two texts by Ichimaru [24, 25], which
focus on a statistical description of plasma behavior, derive the correct electron-ion collision
rate, but do so indirectly in the course of deriving the classical diffusion coefficient.
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Table 3. The ratio of thermalisation rates defined in selected sources with those derived in [9]
and compiled in section 3.

Reference νε

ss′ /(35) νε
ei/(39) νε

ie/(40) νε
ee/(41) νε

ii /(42)

[8–10] 1 1 1 1 1
[18] - 1 - 21/2 21/2

[22,23] - 1 Z−1 23/2Z 23/2/bZ2

5. Conclusions

Having reviewed the expressions for binary Coulomb collision rates for Maxwellian test and
field particles, we conclude that while the topical literature is generally consistent, there exist
some discrepancies between the cited expressions, typically by factors of order unity. The
most comprehensive treatment of the topic appears to be the review article by Hinton [9]. This
source is recommended as the ultimate reference for all collisional rates, whether velocity-
dependent or integrated over Maxwellian test particles, and has been adopted as the standard
to which other sources can be benchmarked. The scaling factors which should be adopted
when using expressions from other sources are summarised in tables 2 and 3. Special
care should be taken when using theNRL Plasma Formulary[15], which contains several
inconsistencies in the definitions ofτs, νs andνss′, as outlined in section 4.
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