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ABSTRACT
A systematic and automated comparison between the physical quantities reconstructed from 
experimental data and the ones resulted from physical models could be a very useful approach for 
long pulse tokamak experiments producing a large amount of data. A discrepancy in such comparison 
brings key information for the scientific exploitation of the experiment since it means either that 
the pulse deviates from usual models i.e. there is interesting physics to analyze in that pulse or that 
there are issues with the reconstructed data, coming from the measurements or from the way they 
have been processed, which have to be corrected.
 In this paper we propose to develop an expert system that carries out in an integrated way i) a 
reconstruction of plasma quantities from the measurements, ii) a prediction of the reconstructed 
quantities, according to validated expectations / models, iii) and an intelligent comparison of the 
first two steps. The paper shows the first application of this quite general comparison method to 
the electron density profile reconstruction in the core plasma.

1. INTRODUCTION
Tokamak experiments produce large quantities of data, 50 Gbytes of data per second is expected for 
an ITER pulse. A systematic analysis of these data thus requires automated processes. The first step 
of the analysis is usually to compute a number of plasma physical quantities as a post-processing 
of the various measurements. This is usually carried out by an automated chain of codes, typically 
known as the Plasma Reconstruction Chain. 
 What is up to now quite rarely done in a systematic and automated way is to verify whether the 
reconstructed plasma characteristics are consistent with models that have been verified for many other 
pulses. A discrepancy in such a comparison brings key information for the scientific exploitation 
of the experiment since it means either:

a) That the pulse deviates from usual models i.e. there is interesting physics to analyze in that 
pulse 

b) That there are issues with the reconstructed data, coming from the measurements or from the 
way they have been processed, which have to be corrected

Conversely, agreement between the reconstructed quantities and the models provide an increased 
confidence in the plasma reconstruction validity and consistency.
To address these useful functionalities, we propose to develop an expert system carrying out in an 
integrated way:

1) The Plasma Reconstruction from the measurements, using Bayesian methods
2) The prediction of the reconstructed quantities, according to validated expectations/models
3) An intelligent comparison of the first two steps providing an automated analysis and reporting 

on events of physical interest during the pulse

In such a procedure, it is interesting to use Bayesian methods for the Plasma Reconstruction since 
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it provides a rigorous framework for quantifying the error bars on the reconstructed quantities and 
thus for the comparison to a model’s prediction. 
 Model predictions should be in the general case evaluated using Integrated Modelling tools since 
they provide a self-consistent and close to the measurements approach. Although the Bayesian 
methods are used quite frequently in fusion physics [6, 12, 7], the novelty of the overall method lies 
in the development of relevant comparison criteria between predicted and reconstructed quantities, 
allowing the automation of the physical analysis. Although the method has been primarily designed 
for experimental data analysis and validation, it can also reciprocally be used for model validation. 
 We present here the first application of this quite general comparison method to the electron 
density profile reconstruction in the core plasma. We chose two parameters to compare: a line-
average density and a profile peaking factor (ratio of the central to the average density). Using the 
Bayesian inference, probability histograms were constructed for these quantities. The analysis was 
performed for about 20 Tore Supra and 14 JET L-mode shots. Two different models for predicting the 
density profile peaking have been used in the comparison, providing conclusions on their accuracy 
for this experimental dataset. Comparison criteria have been defined which allow an automated 
determination of the agreement quality. They also provide a way, when the agreement between the 
model and the reconstructed quantities is not acceptable, to discriminate between problems in the 
experimental data and limits of validity of the models. 
 Section II presents the reconstruction of plasma profiles using Bayesian methods. Section 
III discusses the models used to predict the electron density profile. Section IV describes the 
implementation of the whole procedure under the European Task Force on Integrated Tokamak 
Modelling (ITM-TF) framework. Section V describes how the comparison criteria have been 
established. Section VI presents the application of the analysis methods to the Tore Supra and 
JET datasets for model validation. Conclusions and perspectives for future work are presented in 
section VII.

2. RECONSTRUCTION OF ELECTRON DENSITY PROFILES
2.1. RADIAL PROFILE PARAMETERIZATION
To reconstruct plasma electron density profile we must first parameterize it. We can do it by using 
simple 3rd order splines on the grid of normalized toroidal flux coordinate (r). In total we will 
have N+2 parameters, where N is the number of grid points for r, which will consist of N values 
of the profile in grid points and first derivatives in the center (r = 0) and at the edge (r = 1) of the 
plasma. Having a toroidal geometry we fix the first derivative in the center to be 0. Thus we have 
N+1 parameters to describe the radial profile at a given time slice.

2.2. PRINCIPLES OF BAYESIAN ANALYSIS
Bayesian analysis allows obtaining the probability distribution of the parameters of the splines 
defining the radial profiles, using constraints from the experimental measurements and taking into 
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account their uncertainties. We remind here the main principles of the Bayesian analysis. 
 The formula for Bayes’ theorem for conditional probabilities can be written as follows:

(2.1)

Where A, B are some events and P(•) is the probability that the event occurs.
 We may also notice that marginal probability P(B) is equal to the integral (or a sum in a discrete 
case) of the joint probability P(A, B) over A, which in turn is equal to the product of P(B|A) and 
P(A):

(2.2)

Thus we see that the denominator of the formula (2.1) is equal to the integral of its nominator and 
plays role of normalization constant. We will skip it in our further discussion and will simply write

(2.3)

We may also think of A as of the profiles parameters, whereas B corresponds to the experimental 
data points (measurements):

(2.4)

Suppose that we have several data points which are independent from each other, then

(2.5)

We can do the same with the parameters (assuming their internal independence):

(2.6)

The first term on the right hand side of the equation (2.6) is called likelihood. Generally speaking 
it is our data acquisition model which expresses a probability of obtaining the measurements we 
have given a set of parameters. The second term on the right hand side is a prior probability. It 
incorporates our prior knowledge about the distribution of the parameters (if we do not have it then 
we can choose so called non-informative prior). The term on the left hand side of the equation (2.6) is 
called posterior probability and gives a posterior probability of parameters given the measurements. 

P(A�B) =
P(A�B) • P(A) 

P(B) 

P(B) =   P(A, B) • dA
=   P(B�A) • P(A) • dA

P(A⎜B) ∝ P(B⎜A) • P(A)

P(Params⎜Measurements) ∝ P(Measurements⎜Params) • P(Params)

P(Params⎜D1,D2,...,Dn) ∝ P(D1,D2,...,Dn⎜Params) • P(Params)

∝Π P(Di⎜Params) • P(Params)
i = 1

n

P({Paramsj}j=1 ⎜{Di}j=1) ∝         P(Di ⎜{Paramsj}j=1) •         P(Paramsj) Π
i = 1

n

Π
i = 1

k
k kn
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In fact the posterior probability is a trade-off between the likelihood and the prior: if we have a 
strong prior belief then we need much experimental evidence to change it and vice versa if we have 
no prior knowledge then we can rely on whatever the experiment gives us.
Although the equation (2.6) looks simple, its numerical implementation is not so evident. The thing 
is that all we have is just random number generators which can make a sampling from a given prior 
distribution. Based on these samples we can calculate likelihood and thus we will have a sample 
which represents posterior probability distribution. To avoid huge number of iterations we must 
have an appropriate way for sampling from the posterior distribution. The class of algorithms for 
doing this is called Markov Chain Monte Carlo methods [1]. These algorithms samples Markov 
chains which converge to the posterior distributions defined by the equation (2.6).

2.3 DIAGNOSTICS INVOLVED IN THE PROFILE RECONSTRUCTION
Two main diagnostics are used in the Profile Reconstruction, namely interferometry and Thomson 
Scattering. Since the quality of the measurements is different in Tore Supra and JET, different relative 
weights between diagnostics are applied in the Profile Reconstruction (related to the likelihood in 
the section below).
 Interferometry [9] provides measurements of electron density integrated along lines of sight, 
while Thomson Scattering provides local measurements [4]. 

2.4 ASSUMPTIONS OF THE BAYESIAN ANALYSIS
To perform a Bayesian analysis we must make some assumptions about the prior distributions of 
parameters and the likelihood. In the chapter IIa we stated that there are N+1 parameters of spline 
interpolation. In addition to this, we introduced one more parameter for Tore Supra: a recalibration 
parameter for Thomson scattering measurements as the diagnostic has a large uncertainty in its 
absolute calibration for density measurement. Thus we have N+2 parameters in total and the goal 
is to find the posterior distributions of these parameters defined by the equation (2.6). 
 We assume that the prior probability distributions for the N+1 parameters of spline interpolation 
are uniform, since we do not have a strong a priori knowledge of the solution. The choice of the 
boundaries of the uniform prior distribution has been done in two different ways for Tore Supra 
and JET. For Tore Supra, we use a prior distribution centered on the model prediction because 
we do not have directly from the measurements a good first guess for the local value of density: 
interferometry does not give us local measurements and Thomson Scattering data contains a large 
uncertainty on its calibration coefficient. Further analysis showed the uniform prior distribution with 
boundaries [0.5*model prediction; 1.5*model prediction] do not restrict significantly the possible 
parameter space and at the same time gives a reasonable prior. Concerning JET, as we have a number 
of relatively precise Thomson scattering measurements, we can determine boundaries of the prior 
distribution based on these measurements.
 The prior distribution for the recalibration parameter for Tore Supra was chosen to be uniform 
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with wide boundaries (from zero to ten) as we have no prior information on it.
 The likelihood used in our analysis was normal as we assumed the normality of the errors 
distribution for all the diagnostics. The error bar for the interferometry data for Tore Supra was 
assumed to be constant and equal to 5*1017 1/m3, for JET – 20% of a measurement value. Note 
that this anomalously high value for the JET interferometer error bar has been chosen to reduce 
the weight of some lines of sight which apparently have large systematic errors and could not be 
reconciled otherwise with the measurement of the other ones and the HRTS measurements. The 
error bar for Thomson scattering was taken to be 20% for Tore Supra and 10%*(central_density/
measurement_density)2 for JET High Resolution Thomson Scattering. We chose not constant error 
bar for the HRTS JET data because the examination of the experimental measurements showed 
that the error bar at plasma edge tends to be higher than the one in the center. Then using Monte 
Carlo Markov Chain algorithms implemented in a Python module pymc (Pymc) which make 
sampling from the posterior distribution according to the equation (2.6) we get the samples for all 
the parameters. Based on the samples obtained, we can calculate statistics on any quantities of our 
interest (for example, density peaking and line-average density). The statistics also gives us 95% 
highest probability density intervals which are used in the comparison with the density profile 
predictions.

3. PREDICTION OF THE ELECTRON DENSITY PROFILE
The novelty of this work consists in the automated and systematic comparison of the Plasma 
reconstruction results with models. In this application the models consist in a simple scaling 
expression for one parameter (density profile peaking). Integrated Modelling is a powerful tool for 
prediction and model validation and has the advantage of enforcing the consistency of the simulated 
parameters, a common point with Bayesian analysis. Moreover it allows estimating quantities that 
are difficult to measure directly, while they may be input to some models, e.g. the safety factor. 
Therefore, even if the first application presented here is relatively simple, we use METIS (Artaud, 
2008), a fast integrated modeling transport code, in view of future integrated analysis of many 
physics quantities simultaneously. The speed and robustness of this simplified integrated modeling 
tool are key advantages in view of automated analysis of a large amount of data.
 In this application, METIS was used in the following conditions: i) current diffusion is predicted 
ii) electron and ion temperatures are predicted from the heat transport equations, using a simple 
diffusion coefficient model with fixed radial shape and renormalized to an L-mode scaling iii) the 
electron density is calculated as follows.
 In L mode the density profile ne(t,x) in METIS is defined with three parameters: the central 
density (ne,0), the edge density (ne, a) and the peaking factor (νn(t)+1):

(3.1)ne (t, x) = ne, 0 (t) – ne, a (t)) • (1–x2)vn (t) + ne, a (t)
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where vn (t) =            – 1 ne, 0 (t)
ne(t)

, t is the time, x is a normalized minor radius. For each magnetic surface, the 
minor radius is defined as a =                  , where Rmax (resp. Rmin)Rmax – Rmin

2 , is the maximum (resp. minimum) 
major radius of that surface. The minor radius is then normalized to its value at the LCFS am, so 
that x =        ,a

am
.

 The edge density and peaking factors are calculated from scaling expressions. The average 
density is prescribed from experimental measurements, and the central density is determined so 
that the calculated profile matches this prescription. Because of this prescription from experiment, 
the predictive part of METIS electron density profile estimation lies essentially in the scaling 
expressions for the peaking factor and for the edge density.
 The edge density is calculated using one of the following scaling laws for L mode:

• in X point configuration in H mode [10]:

(3.5)

• in X point configuration in L mode [10]:

(3.6)

• with a toroidal limiter (F. Clairet, private communication):

(3.7)

• with a poloidal limiter [15]:

(3.8)

For all Tore Supra shots the edge density is calculated using the scaling law (3.7). For JET, the 
choice of scaling law for JET shots depends on the mode and configuration of the plasma at a 
particular time.
 Two simple models for the peaking factor in L mode have been designed and compared 
to experiments in this work. The two models are empirical and describe different parametric 
dependences which have been observed in experiments.
 Model 1 is related to the observation that, in the Saturated Ohmic Confinement regime (SOC), 
the density peaking factor is inversely proportional to the density, as seen in many tokamaks 
such as ASDEX [3, 13] Tore Supra [8] and more recently C-MOD [11]. The model assumes a 
dependence on the ratio of the saturation density to the line-integrated density and is a priori valid 
only in plasmas that have the same type of dominant turbulence as the SOC regime (namely Ion 
Temperature Gradient dominant modes).

ne, a = Cn • nl     with Cn = 5 • 10–21 – 6.7 • 10–24 • Te, a and Cn = 10–21–2

ne, a = 0.00236 • nl        •  Kref      •  Bref –1.08 –1.11 –0.78

ne, a = 1.0 • 10–21 • nl   •  qedge •  Rref –2

ne, a = 5.0 • 10–21 • n–2
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(3.2)

  with
(3.3)

Model 2 assumes a functional dependence of peaking factor on the plasma internal self-inductance 
and was derived based on experimental data from JET [14]. We analysed the Figure 7 of [14] where 
the peaking factor is plotted versus li and we fitted the data to a straight line. 

(3.4)

Note that the internal inductance range of the experimental data reported in the original figure of 
[14] is relatively small, i.e. 1 to 1.35. The linear fit that we derived from the figure will be applied 
to a larger range in this work.
 METIS solves the current diffusion and uses the resulting li to evaluate the density peaking 
factor.

4. IMPLEMENTATION UNDER THE EUROPEAN INTEGRATED MODELLING 
FRAMEWORK

Methods and techniques that are discussed in this article are implemented within the framework of the 
European Integrated Tokamak Modeling Task Force (ITM-TF) (ITM). The two main motivations for 
this choice are i) the ITM-TF Data Model is tokamak-generic, thus the method can then be applied 
to any experiment ii) the link with Integrated Modelling tools, namely equilibrium identification 
codes and METIS for this particular application. Moreover, the ITM-TF Framework provides also 
methods for accessing data from various experiments, Tore Supra and JET in this application. 
The analysis is done in the following steps:

1) we first run the METIS code to get predictions of electron density profiles.
2) we run an equilibrium identification code (Equinox [5] in this application) to have a description 

of plasma equilibrium
3) map experimental measurements on the equilibrium
4) run Bayesian analysis
5) Run comparison of predicted (step 1) and reconstructed (step 4) density profiles 

5. DEVELOPMENT OF AUTOMATED COMPARISON CRITERIA FOR TORE SUPRA 
AND JET

A dataset of 20 Tore Supra and 14 JET L-mode shots has been selected to establish automated 
comparison criteria, covering a wide range of plasma parameters (see tables 1 and 2). We chose 
one time slice for every pulse to conduct the analysis, in a phase in which the density profile is 

vn (t) = 0.5 nsat
n

nsat =  0.06 • 1020 •         • R •  
Ip

106
Amain

K • a5/2

vn (t) =      •  li –
4
3

3
4
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stationary (i.e. does not evolve over several characteristic transport times; for the density profile 
we use the energy confinement time as characteristic transport time which is of the order of 0.03s 
for Tore Supra and 0.3s for JET), except for the JET shots featuring an H mode transition and for 
which the time of analysis is just before the L to H mode transition.
 To compare the reconstructed and the predicted profiles, we defined three levels of agreement 
quality:

• “acceptable”: the predicted profile lies within or very close to the 95% Highest Probability 
Density (HPD) interval provided by the Bayesian analysis. An “acceptable” agreement 
provides a sort of mutual validation of the models used in the simulation and the Bayesian 
profile reconstruction, since it would be quite fortuitous that both would be “wrong” in the 
same way;

• “needs investigation”: the predicted profile is marginally outside the 95% HPD interval, so 
that the comparison has to be further checked by human intervention

• “not acceptable”: the simulation profile is strongly outside the 95% HPD interval. 

The quantities used for the automated comparison are:
• relative squared profile discrepancy: a sum of squares of ratios between predicted profile 

and the closest boundary of 95% HPD interval (0 if the predicted profile is within the HPD 
interval boundaries)

• number of lines of sight (LOS) within the 95% HPD range: from MCMC sampling we have 
statistics for the density integrals along interferometry lines of sight and thus we can compare 
it to the experimental data

• relative peaking discrepancy : a ratio between minimal distance of predicted peaking factor 
and one of its 95% HPD boundaries

• relative integral discrepancy: a ratio between minimal distance of METIS line-average integral 
and one of its 95% HPD boundaries

The exact value of the criteria used to classify each case among the 3 agreement levels have been 
decided by considering the Tore Supra data set only (see Table 3). Then they have been applied as 
such to the JET dataset, with only one minor modification related to the second quantity since this 
one is diagnostic-dependent. They also provided a satisfying classification of the various pulses 
among the 3 agreement levels for the JET case, which emphasizes the tokamak-generic character 
of the analysis. 
 On Figures 1-3 examples of each level of agreement quality are shown. Figure 1 illustrates a 
case where the predicted density profile perfectly lies within 95% highest probability range and 
therefore the analysis concludes that the predictions and experimental data are in agreement. On 
Figure 2 is shown a comparison which raises “need investigation” flag. Figure 3 shows an example 
of a “not acceptable” agreement. 
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The automated analysis can go beyond the level of agreement and detect possible problems in the 
Plasma Reconstruction or question the validity of the models used in the prediction. In case the 
agreement is not considered “acceptable”, two questions arise: whether the reconstruction was 
correct and whether the profile peaking model used in the simulation was accurate. To answer the 
former question we should look primarily at two parameters: number of lines of sight within the 95% 
HPD range (if it is less than 5 for Tore Supra and 3 for JET then likely there is an inconsistency in 
the experimental data) and convergence of Markov chains (if they have not converged then again 
likely there is an inconsistency in the experimental data). If we see that the experimental results 
show no evidence of inconsistency then the discrepancy between experiment and the simulation is 
attributed to the models used in the simulation (i.e. the problem is considered as a model validation 
issue). This last step of the automated interpretation of the results allows using the method for model 
validation, as discussed below.

6. APPLICATION OF THE METHOD FOR MODEL VALIDATION
In this section, we illustrate how the automated comparison between reconstructed profiles and 
their simulation counterpart can be used for model validation. 
Two models have been successively applied in METIS, as described in section III: the former treats 
the peaking as a function of a ratio of saturation density over line-integrated density and the latter 
considers the peaking to be a function of internal inductance. 

6.1 MODEL VALIDATION FOR TORE SUPRA
Figure 4 shows the results of the automated comparison for Tore Supra, using model 1 (which 
assumes a dependence between peaking factor and the ration of saturation density over average 
density). All but one cases of “not acceptable agreement” or “needs investigation” point to an issue 
in the Plasma Reconstruction, not in the model. The model shows acceptable agreement for 93% 
of the dataset, which validates the model in this range of parameters. This could be found at first 
glance surprising, since this model has been applied to a wide range of plasma conditions (mostly 
non ohmic plasmas) that are a priori very different from its original “design domain”; the model 
was inspired from the density peaking parametric dependence in ohmic shots above the saturation 
density. This may suggest that the dominant instability in the analysed dataset is of the same kind 
as in the SOC regime, i.e. Ion Temperature Gradient modes [14]. 
 Conversely, model 2 shows an acceptable agreement in only one case, i.e. only 7% of the cases 
for which the Plasma Reconstruction was correct. This shows that model 2 is not adequate to capture 
the dependences of this dataset. 
 To complete / confirm these conclusions of the automated analysis, more traditional scatter plots 
can be made and submitted to human judgement. This is feasible for this application because the 
comparison focuses essentially on single, scalar parameters (the density profile peaking factor). 
We may also be interested in plotting peaking factor of METIS versus peaking factor obtained in 
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the experimental data analysis. Figures 6 and 7 show these plots for two models. We can see that 
the experimental peaking factor is in good agreement with the METIS one for model 1. Whereas 
the model 2 tends to overestimate the peaking factor.
 We may be also interested in the testing the model 2 assumption of the dependence of peaking 
factor on internal self-inductance. Figure 8 shows the METIS result in blue points and experimental 
result in orange points. As we see, there is no evidence of linear dependence between these two 
quantities.
 Based on the figures above we can confirm that for the Tore Supra dataset the model 1 describes 
the peaking factor better than the model 2 and that there is no dependence of the peaking factor on 
internal inductance. It does not look surprising as the second model was empirically derived for 
JET data and a smaller range of li and thus the extrapolation of the model for a wider range of li 
and another tokamak seems incorrect. 

6.2 MODEL VALIDATION FOR JET
To perform the analysis, 14 JET shots were chosen. They were L-mode shots taken during their 
plateau phase or L-mode parts of hybrid shots analysed just before their L to H mode transition. 
We applied the criteria discussed in the section V with only one change: we set up the threshold 
for number of fitted interferometry lines of sight to 3 instead of 5 as the total number of lines of 
sight taken into account during the analysis for JET is less than the one for Tore Supra (7 for JET 
and 10 for Tore Supra).
 Figures 9 and 10 show the summary of the comparison results for model 1 and model 2.
 We may notice that there are only two shots that have data inconsistency issue and the 
discrepancies in the other cases come from the integrated simulation part. 
 Figures 11 and 12 show comparison of two peaking factors (METIS vs experiment).
 Based on the results of the comparison we conclude that both models show marginal agreement 
(33% for model 1 and 42% for model 2).
 Figure 13 shows the dependence of peaking factor on internal self-inductance (for METIS model 
2). Based on our limited dataset, no clear dependence of the density peaking on li is observed.
For the JET case, the conclusions on the validity of the models are less obvious and both models 
show only marginal agreement. Model 2 shows definitely a better agreement for JET than for Tore 
Supra, which to some extent was expected since it was empirically determined from a JET dataset 
(with Carbon wall). Nonetheless the statistics of acceptable agreement for the model remains 
relatively small (below 50%), showing that the linear fitting of the Figure 7 data from [14] that we 
did is not reliable for the wider range of internal inductances that we have been studying here. Our 
JET dataset is mixing discharges with the Carbon wall and the ITER like wall, but the statistics of 
validity of both models do not show a strong difference between these two subsets. Meanwhile, to 
derive stronger conclusion further investigation is needed for an extended shot database. 
 The summary of the analysis for JET and Tore Supra data is presented in the Table 4.
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CONCLUSION
The present work was devoted to developing a first application of the automated comparison method 
discussed in the Introduction. The first simple application of the developed methods was shown for 20 
Tore Supra and 14 JET L-mode shots for electron density profile. Such method provides simultaneous 
validation of experimental data and model validation, with a qualification and quantification of the 
agreement between a model and the reconstructed profiles from measurements. It provides also 
statistics of the agreement quality, thus contributing to establish the domain of validity of a given 
model. The application of the method was carried out for two density peaking factor models in 
the METIS simulation code. The analysis showed that the first model that assumes dependence of 
peaking factor on the ration between saturation density and average density works quite well for 
Tore Supra data (93% of acceptable agreement) while for JET data both models show marginal 
agreement (below 50% of acceptable agreement). No dependence of peaking factor on internal self-
inductance was observed for Tore Supra data and the second model (internal inductance dependence) 
is clearly not adequate for this dataset. The implementation of the methods is tokamak-generic as 
was performed using the ITM-TF Framework.
 In the future we would like to extend the automated comparison method, which is quite generic, 
to other applications. The next foreseen application is to reconstruct electron and ion temperatures 
profiles and perform validation of heat and toroidal momentum transport models. From a technical 
and operational point of view, a systematic application of the method to the full duration of a pulse 
will require parallelization of the analysis over many time slices and needs to be implemented in 
the future.
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Table 1: Summary of the shots characteristics for the Tore Supra dataset: central density is taken from the METIS 
code, saturation density is calculated by the METIS code as per formula 3.3, internal self-inductance deduced from 
magnetic measurements using the TPROF code; toroidal field, plasma current, LH, ICRH and Ohmic heating powers 
are taken from the Tore Supra database.

Table 2: Summary of the shots characteristics for the JET dataset: toroidal field, plasma current, central density, Ohmic 
heating power are taken from the METIS code, saturation density is calculated by the METIS code as per formula 3.3, 
internal self-inductance deduced from magnetic measurements using the EFIT code; NBI heating power is taken from 
the JET database. The Pulse No’s: 75225-77933 are the ones with carbon wall and the Pulse No’s: 782120-84796 are 
the ones with ITER-like wall.
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Table 4: Summary of the analysis.

Table 3: Summary of the analysis criteria: the first column indicates the conclusion on the agreement between Plasma 
Reconstruction and the simulation; columns 2 and 3 indicate the criteria to establish the conclusion of the first column
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Figure 1: Example of “acceptable” agreement: electron density profile for the Pulse No: 45525. Left plot shows the 
mean (read) profiles and 95% HPD interval (blue area) obtained by Bayesian analysis and METIS result (dashed 
magenta line); right plots show distribution for the peaking factor and average integral, their 95% HPD interval (range 
between dashed lines) and the METIS values (red lines).
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Figure 2: Example of “needs investigation” agreement: electron density profile for the Pulse No: 47067. Left plot 
shows the mean (read) profiles and 95% HPD interval (blue area) obtained by Bayesian analysis and METIS result 
(dashed magenta line); right plots show distribution for the peaking factor and average integral, their 95% HPD 
interval (range between dashed lines) and the METIS values (red lines).
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Figure 3: Example of “not acceptable” agreement: electron density profile for the Pulse No: 45564. Left plot shows 
the mean (read) profiles and 95% HPD interval (blue area) obtained by Bayesian analysis and METIS result (dashed 
magenta line); right plots show distribution for the peaking factor and average integral, their 95% HPD interval (range 
between dashed lines) and the METIS values (red lines).
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Figure 4: Results of the automated comparison for Tore 
Supra, using model 1. OK mean “acceptable agreement”, 
WARN means “needs investigation”, NO means “not 
acceptable agreement”.

Figure 5: Results of the automated comparison for Tore 
Supra, using model 2. OK mean “acceptable agreement”, 
WARN means “needs investigation”, NO means “not 
acceptable agreement”.

Figure 6: Ratio of peaking factors: experiment over METIS 
model 1. Green points – “acceptable” agreement; yellow 
points – “needs investigation” agreement; red points – “not 
acceptable” agreement.

Figure 8: Peaking factor vs internal self-inductance. Blue – METIS result; orange – experimental result. Diamond 
point means that there is an acceptable fit between the METIS profile and the experimental one, triangles refers to the 
fit “needs investigation” and squares are used for the profiles with not acceptable fit.
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Figure 7: Ratio of peaking factors: experiment over METIS 
model 2. Green points – “acceptable” agreement; yellow 
points – “needs investigation” agreement; red points – 
“not acceptable” agreement.
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Figure 9: Conclusion on every Pulse No: based on 
application of criteria described in section 5a for METIS 
model 1 for JET L-mode Pulse No:s.

Figure 10: Conclusion on every Pulse No: based on 
application of criteria described in section 5a for METIS 
model 2 for JET L-mode Pulse No:s.

Figure 11: Ratio of peaking factors: experiment over 
METIS model 1. Green points – “acceptable” agreement; 
yellow points – “needs investigation” agreement; red 
points – “not acceptable” agreement.
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Figure 12: Ratio of peaking factors: experiment over 
METIS model 2. Green points – “acceptable” agreement; 
yellow points – “needs investigation” agreement; red 
points – “not acceptable” agreement.

Figure 13: Peaking factor versus internal self-inductance. Blue – METIS result; orange – experimental result. Diamond 
point means that there is an acceptable fit between the METIS profile and the experimental one, triangles refers to the 
fit “needs investigation” and squares are used for the profiles with not acceptable fit.
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