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ABSTRACT
First simultaneous measurements of DD and DT neutrons from deuterium plasmas using a Single 
Crystal Diamond Detector are presented in this paper. The measurements were performed at JET 
with a dedicated electronic chain that combined high count rate capabilities and high energy 
resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means 
of Monte Carlo calculations of the detector response function and simulations of neutron emission 
from the plasma, including background contributions. The reported results are of relevance for the 
development of compact neutron detectors with spectroscopy capabilities for installation in camera 
systems of present and future high power fusion experiments. 

1. InTRoduCTIon
Single crystal Diamond Detectors (SDDs) are artificially produced by chemical vapor deposition [1]. 
In recent years they have been successfully used for fast neutron measurements in the MeV range 
mostly at spallation sources [2-5], where spectral measurements were demonstrated in time of flight 
experiments. SDDs are interesting candidates also for measurements of the 2.5MeV and 14MeV 
neutron energy spectrum from fusion plasmas of tokamak experiments, particularly in next step 
devices, such as ITER. Here, advantage can be taken of the high neutron fluxes (109 n cm–2 s–1), 
which enable measurements at high counting rates (MHz) and, thus, temporal resolution (a few 
ms). Besides, the compact dimensions and radiation resistance of SDDs make them particularly 
interesting as detectors for camera systems with spectroscopy capabilities, thanks to their high 
energy resolution (≈2% at 5MeV).
 As far as neutron spectroscopy applications of SDDs are concerned, a distinction must be made 
between neutrons of energy  below and above 6MeV, due to the different response function of the 
instrument in these energy ranges. Above 6MeV,  neutron spectroscopy is enabled by the 12C(n,α)9Be 
reaction (energy threshold: 6.17MeV) between the incoming neutrons and carbon nuclei of the 
diamond crystal. The a particle energy is deposited in the device and results in a peak, whose mean 
position and shape depend on the incoming neutron energies. For example, 14MeV neutrons from 
deuterium-tritium (DT) plasmas would be manifested as a peak at mean energy E0 = 8.5MeV with 
width proportional to the square root of the plasma temperature T. Measurements of 14MeV neutrons 
were performed in tokamak experiments with DT plasmas using natural diamond detectors and are 
reported in [9-11].
 For neutron energies below 6 MeV, instead, the 12C(n,α)9Be  reaction is forbidden by kinematics 
and the main reaction channel is neutron elastic scattering on 12C nuclei. The 12C recoil nuclei 
are stopped in the detector and, for a monochromatic neutron beam, their spectrum appears as a 
continuous distribution ending at the maximum recoil energy transferred to 12C, which is proportional 
to the incoming neutron energy.  Measurements of the SDD response in this energy range, as well 
as for En > 6MeV, were performed at accelerator facilities and are reported in the literature [6-8]. 
The simultaneous detection of 2.5 and 14MeV neutrons from a fusion plasma using a lithium coated 
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SDD is reported in [12]. In this experiment, the detection efficiency of the device was boosted by 
the 6Li(n,α)T reaction in the coating which, however, resulted in a loss of spectroscopy information 
on 2.5MeV neutrons. 
 In this work we present the first simultaneous spectroscopy measurements of 2.5 and 14MeV 
neutrons from a DD fusion plasma in a tokamak environment using a bare SDD. The measurements 
were performed at JET with a fast acquisition chain optimized for high rate applications and are 
interpreted in terms of components of the neutron emission spectrum together with the simulated 
SDD response function. Advantages of SDDs over other techniques based on compact detectors 
for neutron measurements in tokamak experiments are finally illustrated. 

2. Experimental setup
An artificially grown SDD was installed in the JET Torus Hall on a collimated Line of Sight (LoS) 
shared with other neutron diagnostics, the MPRu proton-recoil neutron spectrometer and the NE213 
scintillator [13-16]. Figure 1 shows the position of the detector inside the MPRu radiation shielding 
as in the MCNP model  [17] used for the calculations presented in section 4. The installed diamond 
detector had a nominal active volume of the 4.7x4.7mm2 (surface area) x 0.5mm (thickness) with 
4.5mm diameter aluminium electrical contacts.
 Two separate read-out electronic chains (see Fig.2) were developed to measure, at the same time, 
DD (2.5MeV) and DT (14MeV) neutrons. This was needed since the energy deposition for DD 
neutrons, due to carbon recoil, is about 20 times less than the energy deposition of DT neutrons via 
the (n,α) reaction. Both chains shared a fast charge preamplifier as a first amplification stage. The 
latter was placed about 20cm away from the diamond detector, without intercepting the neutron 
beam. A 120 meter BNC cable was laid down from the preamplifier to the JET Diagnostic Hall, 
where signals from the diamond detector were recorded. The signal FWHM from an a particle 
of the calibration source, measured after the long BNC cable, was 20ns (see Fig.3a). For 2.5MeV 
neutron measurements a second amplification stage, consisting of a 20dB current amplifier, was 
installed right after the first preamplifier in the Torus Hall. Fig.3b. shows the signal from 2.5MeV 
neutrons after the second amplification stage. Clearly, there is a worse signal-to-noise ratio compared 
to the pulse from the calibration source of Fig.3a, but the FWHM of the signal is still about 20ns, 
which shows that the current amplifier did not introduce any significant shaping that could alter 
the fast temporal properties of the signal. Preserving fast signals is essential in view of high rate 
measurements in the JET DT campaign. 
 A four channel, 1GHz, 10 bit CAEN waveform digitizer model DT5751 (input range: 0-1V) was 
used to record the signals from both electronic chains in the Diagnostic Hall [21]. The acquisition 
was triggered by the JET “pre” signal, that is produced 40 s before each plasma discharge. The 
Pulse Height Spectrum (PHS) corresponding to each discharge was reconstructed off-line with a 
software based on a trapezoidal filter algorithm [22]. 
 A calibration triple-alpha source (241Am, 239Pu and 244Cm) was placed in front of the detector, 
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providing a counting rate < 10Hz. A typical calibration spectrum, collected in 60min without 
neutron emission from the plasma, is shown in Fig. 4. An energy resolution (FWHM/E) of 2.2% 
can be measured at 5.2MeV. This value is acceptable for fusion spectroscopy applications, as it is 
smaller than the kinematic broadening of the thermal emission peak from DT plasmas (between 
2% and 10% for plasma temperatures in the range 3-10keV). For 2.5MeV neutron measurements, 
which correspond to a maximum of 0.8MeV of deposited Energy, the energy resolution of the SDD 
is assumed to be 8%. This value was extrapolated from the resolution determined experimentally 
using a 137Cs gamma-ray source.

3. nEuTRon mEASuREmEnTS on JET dEuTERIum plASmAS
2.5MeV neutron measurements have been performed in DD plasmas from July 2013 during the 
JET C31 campaign. A clear evidence that the signals measured by the SDD detector were due to 
fusion neutrons was obtained by comparing the counts measured by the SDD with the neutron 
yield observed by the standard JET neutron diagnostics. The result is shown in figure Fig.5, where 
each data point represents an individual discharge performed on the 13th of August 2013. The 
SDD measurements had a low energy threshold corresponding to a deposited energy Ed = 0.3MeV 
and are shown in the figure versus the total neutron yield measured by the JET fission chamber 
diagnostics. There is clear linear correlation between the two set of data (correlation coefficient R2 
= 0.9988) with a proportionality constant of 4.5E-13. This small value results from the combined 
contribution of neutron transport from the plasma to the detector position and of the detector 
efficiency, which can be calculated to be about 1.4% for 2.45MeV neutrons, based on the n+12C 
nuclear elastic scattering cross sections [23]. A comparison between the counts recorded by SDD 
and a NE213 liquid scintillator (active volume 1cm2  x 1cm) placed in front of the SDD along the 
same LOS (see figure 1) is presented in Fig.5b for the same set of discharges of Fig.5a. Again, we 
find a very good correlation between the two set of data (R2= 0.9986). The NE213/SDD efficiency 
ratio, derived from a linear fit to the data, is about 50/1.
 The neutron emission time trace measured by SDD is compared with that from the JET fission 
chambers for a specific JET discharge (Pulse No: 84476) in Fig.6. The latter is a discharge with 
average Neutral Beam Injection (NBI) power of about 15MW. Data for SDD are shown every 
0.5s to mitigate the statistical fluctuations arising from the low (a few hundred Hz) counting rates 
observed in deuterium plasmas at the detector location. The good agreement between the two set 
of data confirms the validity of the SDD measurements.  
 We now move to the analysis of the measured PHS from DD neutrons. This is shown for a single 
JET discharge (Pulse No: 84476) in Fig.7a and for 45 similar discharges in Fig.7b as a function 
of the charged particle energy released in the detector Ed. All these experiments were deuterium 
plasmas with NBI power from 12MW to 20MW. Qualitatively, the PHS has the characteristic box 
shape expected from the energy distribution of the 12C recoil ions. The shoulder of the PHS is at 
0.69 MeV, which correctly corresponds to the  maximum energy deposited by back-scattering of 
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2.5MeV neutrons on Carbon [24]. The broadening of the edge is due to the combined contribution 
of the finite detector energy resolution and of Doppler broadening from plasma kinematics (see 
section 4).
 It can be noted here that a deuterium plasma offers the opportunity to also perform measurements 
of 14MeV neutrons. These come from the burn up of tritons on deuterium. Tritons are in turn 
produced by the d+d → p+t reaction, which has about the same cross section as d+d → n + 3He. 
At JET, the 14MeV, Triton Burn up Neutron emission (TBN) in deuterium plasmas is estimated 
to be about 1% of that at 2.5MeV [25-27]. In order to observe  TBN emission we have summed 
all discharges performed at JET during more than 1 month of operations with the result shown in 
Fig.8. The 14MeV TBN emission is manifested by the appearance of the (n,α) peak which, as stated 
in the introduction, is the dominant neutron interaction channel for En > 6.2MeV. The significant 
width of the peak (about 2MeV FWHM) reflects the triton slowing down distribution and is in good 
agreement with calculations for JET (see figure 7 of Ref. 26).

4. QuAnTITATIvE AnAlySIS of ThE dEpoSITEd EnERgy SpECTRum 
The measured PHS can be analyzed to separate different neutron emission components from the 
plasma.  To this end, one must first determine the background due to the calibration source. This 
was measured, without plasma emission, for about 130 minutes with the results shown in Fig.9. 
 A MCNP model [17] was developed to simulate the detector response function to mono-energetic 
neutrons up to 4MeV with an energy step of 100keV. The model geometry consisted of the bare 
diamond volume and aluminum contacts. Mono-energetic neutrons at different energies were 
generated and impinged on the front part of the detector. The same geometry was used to simulate 
the response to background γ-rays (see below). The resulting response function was convoluted 
with simulations of increasing complexity of the neutron emission spectrum from the plasma for 
comparison with measurements, as shown in Fig.10. As a first step, we assumed the neutron spectrum 
to uniquely consist of mono-energetic neutrons at E = 2.45MeV (green dashed curve). This however 
provided an unsatisfactory description of the measured PHS, both in the flat region corresponding 
to low recoil energies and for the high energy shoulder. 
 As a second step, we used a more detailed model for neutron emission from NBI heated plasmas. 
In this model, neutron emission is described in terms of three components: the thermal, that arises 
from reaction within the thermal (Maxwellian) plasma population; the beam-plasma, which originates 
from beam ions reacting with thermal ions; and the beam-beam, that is due to fusion reactions 
among deuterons of the beam. All of these components were calculated with the Monte Carlo code 
GENESIS, which can determine the neutron and gamma-ray emission spectrum from the plasma 
using as input the reactant distribution functions [28-31]. A half-box model was adopted to represent 
the beam population [32]. The output from GENESIS was in turn validated by comparison with 
measurements from the TOFOR neutron spectrometer for a few discharges [18-20]. 
 As the summed spectrum of figure 10 included plasmas with different NBI injection energies 
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(ranging from 80keV to 120keV), separate simulations were correspondingly performed and then 
combined with weights proportional to the actual NBI power mix used in the experiments. The 
finite energy resolution of the SDD was taken into account by convolution with a Gaussian of 
FWHM = 8%. This value was extrapolated from the resolution determined experimentally using a 
137Cs gamma-ray source. The result of the fit is shown by the red curve in Fig.10. The high energy 
shoulder is now well described, but there is a significant excess of data in the low energy part of 
the spectrum that is not accounted for by the simulation. 
 This discrepancy can be solved by considering the background contributions from gamma-rays 
and scattered neutrons to the measured spectrum. To this end, the MCNP model for MPRu (Fig.1) 
was used to calculate gamma-ray production in the beam dump and the scattering of the incoming 
neutrons along the MPRu line of sight. The contributions of these two background sources are 
shown in figure 11 in linear and log scale. Neutron scattering results in an excess of low energy 
neutrons that show up as a component of significant intensity up to Ed= 0.5MeV, with a rapid fall 
off at higher energies. Gamma-ray induced events in the SDD have a clear exponential shape. 
 The complete description of the measured data (solid line of Fig.11) thus included four 
contributions: (1) a primary component due to d+d  neutrons emitted from the plasma and that 
reach the detector, as in Fig.10; (2) scattered neutrons and (3) γ-rays produced by the interaction 
of the primary neutrons with the MPRu LoS; (4) background events from the a calibration source, 
normalized to measurement time. Two normalization parameters only were determined by the 
fit, namely the absolute intensity of the primary neutron component and the amount of scattered 
neutrons. The scattered neutron/background gamma ray ratio was constrained to the value found by 
MCNP and confirmed by the NE213 measurements, which can distinguish signals from neutrons 
and gamma-rays from their different pulse shapes. This allows for minimizing the number of free 
parameters in the fit. The background intensity from the a source was known independently from a 
separate measurement and re-scaled to the actual measurement time during the plasma discharges. 
With all four components included, we find a good agreement between measurements and data. In 
particular, neutron scattering amounts to 35% of the total, with background gamma-rays contributing 
to about 20%. The contribution of the background components is mostly at low energies (say, Ed 
< 0.5MeV) negligible in the shoulder of the PHS, whose shape is completely determined by direct 
(primary) d+d neutrons. 

dISCuSSIon And ouTlook
Artificial diamonds can play a role as compact neutron detectors with spectroscopy capabilities 
for fusion applications, together with other devices such as NE213 scintillators [33-34]. Compact 
detectors are of importance for use in camera systems of a burning plasma experiment, where there 
is limited space for implementation of more complex devices such as dedicated spectrometers for 
2.5 and 14MeV neutrons [13,18] . A few points may be raised here to point out advantages and 
disadvantages of diamond detectors, also in comparison with NE213 scintillator and with reference 
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to DD and DT experiments:

i) Both SDD and NE213 feature compact dimensions and high rate capability. The difference 
in efficiency, which is set by the material volumes commercially available, makes them 
complementary depending on expected neutron fluxes. The efficiency of SDD can be 
increased by using a matrix of detectors. 

ii) The SDD does not suffer significant gain drifts at high counting rates [8] and strong magnetic 
fields. These could instead be of major concerns for a scintillator.

iii) NE213 allows for n-γ pulse shape discrimination [35-36], which is not possible with a SDD, 
that, nevertheless, is fairly insensitive to γ-rays, as demonstrated by these measurements. 
Besides,  γ-ray events mostly concentrate in the low energy part of the spectrum and can 
thus be discriminated by setting a proper low energy threshold in the PHS.

iv) In DD plasmas, SDD allows for a good discrimination of direct (primary) and scattered 
neutrons. For example, setting an energy threshold at Ed

 = 0.5MeV (see Fig.11), would 
reduce the scattered neutron contribution to only 10% of the direct one. Such improvement 
in the scattered to direct neutron ratio would enhance the imaging capability of a neutron 
camera system, and ease the interpretation and analysis of neutron calibrations in a tokamak.

v) In DT plasmas, SDD could allow obtaining spectroscopy information from the peak shape of 
the (n,α) reaction, providing detailed information on the fuel ion energy distributions. This 
information could be used for fast ion studies, as demonstrated so far in present tokamaks 
with dedicated high resolution spectrometers such as MPRu and TOFOR [37-40]. Adding 
spectroscopy information to a neutron camera system by means of compact detectors 
would allow for spatially resolved measurements of the fast ion energy distribution in a 
high performance device.   

ConCluSIonS
First measurements of the neutron spectrum from deuterium plasmas using a single crystal diamond 
detector were presented in this paper. The data were taken at JET by equipping the detector with a 
fast electronic chain designed to combine high count rate capabilities (up to the MHz range) and 
good energy resolution (≈2% at 5MeV). The observed neutron count rate was successfully correlated 
to data from other standard neutron rate diagnostics at JET. The deposited energy spectra were 
measured for both DD and burn-up DT neutrons. Monte Carlo simulations were used to determine 
the device response function and to interpret the measured pulse height spectrum in terms of 
components of neutron emission from NBI plasmas, including background contributions. A good 
agreement was found between calculations and measurements. The results presented here will be 
the basis for further developments of diamond detectors for neutron diagnostics of JET DD and DT 
plasmas and in view of burning plasma experiments of the next generation.
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Figure 1: (a) Schematics of the SDD detector arrangement inside the radiation shielding of MPRu spectrometer. The 
direction of the neutrons produced by the plasma is indicated by the arrow. (b) Zoom of the detector position in front 
of the MPRu beam dump.

Figure 2: Schematics of the read-out electronics used for SDD measurements at JET.
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Figure 3: Signals from an α particle of the calibration source after the BNC cable in the Diagnostic Hall (a) and from 
a 2.5MeV neutron after the second amplification stage (see text for details) (b).

Figure 4: Energy spectrum of a calibration triple-alpha source measured with the SDD in the final setup at JET.

http://figures.jet.efda.org/CPS13.1561-3a.eps
http://figures.jet.efda.org/CPS13.1561-3b.eps
http://figures.jet.efda.org/CPS13.1561-4c.eps


11

Figure 5: (a) Neutron counts measured by SDD versus the JET total neutron yield as derived from fission chambers. 
Each point corresponds to an individual discharge. (b) Neutron counts measured by SDD and by a NE213 liquid 
scintillator along the same line of sight.
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Figure 6: Time trace of neutron emission measured by SDD and by the JET fission chambers for Pulse No: 84476. 
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Figure 7: (a) Pulse height spectrum from DD fusion neutrons measured by SDD in Pulse No: 84476 at JET, as a 
function of the charged particle energy released in the detector Ed (b) Pulse height spectrum from the sum of  45 
similar JET discharges.

Figure 8: Measured pulse height spectrum from triton 
burn up neutrons in deuterium plasmas at JET. Data 
from all discharges during 1 month of operations at JET 
were summed. The FWHM of the (n,α) peak is indicated 
in the figure.

Figure 9: Background energy spectrum due to the 
calibration source normalized to the measurement time.
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Figure 10: Measured SDD pulse height spectrum compared to simulations of the expected signal from different neutron 
emission models. The green dashed curve corresponds to mono-energetic neutrons at E=2.45 MeV. The solid red curve 
is instead the result of a neutron emission model for NBI injection, which includes thermal (pink dotted), beam-plasma 
(violet dotted) and beam-beam (blue dotted) reactions (see text for details). The background counting level from the α 
calibration source is normalized to the measurement time.

Figure 11: Measured PHS spectrum from a set of NBI plasmas as compared to simulations in linear (a) and logarithmic 
(b) scale. The  simulated spectrum is the sum of four components: (1) a primary component due to d+d  neutrons emitted 
from the plasma and that reach the detector; (2) scattered neutrons and (3) γ-rays produced by the interaction of the 
primary neutrons with the MPRu LoS ; (4) background events from the calibration source, normalized to measurement 
time.
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