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ABSTRACT

During July 2012, 150 almost identical H-mode plasmas were consecutively created in the Joint
European Torus (JET), providing a combined total of approximately 8 minutes of steady-state
plasma with 15,000 Edge Localised Modes (ELMs). In principle, each of those 15,000 ELMs are
statistically equivalent. Here the changes in edge density and plasma energy associated with those
ELMs are explored, using the spikes in Beryllium II (527 nm) radiation as an indicator for the onset
of an ELM. Two timescales are found during the ELM process. The first timescale is associated
with the density drop, and the second (longer) timescale is associated with a reduction in MHD
energy that is consistent with a resistive relaxation of the plasma’s edge. The statistical properties
of the energy and density losses due to the ELMs are explored. Surprisingly the commonly reported
link between ELM energy (E) and ELM frequency (f ), of E ∝ 1/f , is not found. Instead beyond
the first 0.02 seconds of waiting time between ELMs, the energy losses due to the ELMs are
found to be statistically the same. Surprisingly no correlation is found between the energies of
consecutive ELMs either. A weak link is found between the density drop and the ELM waiting
time. Consequences of these results for ELM control and modelling are discussed.
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1. INTRODUCTION

Edge Localised Modes (ELMs) are instabilities that occur at the edge of tokamak plasmas [1].
They are thought to be triggered by an ideal Magnetohydrodynamic (MHD) instability of the
plasma’s edge [2, 3], and are presently found in nearly all high confinement tokamak plasmas
[4, 5, 6]. Large ELMs such as those that are predicted to occur in ITER [7, 8, 9], will need
to be reduced in size or avoided entirely if plasma-facing components are to have a reasonable
lifetime. One way to reduce ELM size is by “pacing” the ELMs at higher frequencies than their
natural rate of occurrence [11, 10], because they are expected to occur with a lower energy due
to the empirically observed relationship between ELM energy (E) and ELM frequency (f ) of
E ∝ 1/f [12]. The ELM frequency is usually reported as an average over all ELMs in a given
pulse, and is identical to one divided by the average waiting time between the ELMs. In contrast to
the relationships between the average ELM energy and average ELM frequency, the relationship
between an individual ELM’s energy and its individual “frequency” (often defined as one divided
by its waiting time since the previous ELM), is rarely reported. It is this topic that is considered
here.

Since 2011 the JET tokamak has been operating with its previously Carbon plasma-facing com-
ponents replaced with the metal ITER-like wall [13]. This has led to differences in plasma con-
finement and ELM properties, as discussed for example in [13, 14] and references therein. This
paper focuses its attention on a set of 150 JET plasmas produced over a two week period in July
2012, 120 of which were nearly identical, providing ∼10,000 statistically equivalent ELMs. Such
high quality statistical information on ELM properties has never previously been available. The
pulses are 2 Tesla 2 Mega Amp plasmas with approximately 12MW of NBI heating and roughly 6
seconds of steady H-mode, 2.3 seconds of which between 11.5 and 13.8 seconds is exceptionally
steady and is what we consider here and in previous work [15, 16].

The outline of the paper is as follows. In Section 2 we describe how we determine and define
the ELM sizes. In Section 3 we describe the statistical properties of the ELMs, and in Section 4
we discuss the results and propose our conclusions.

2. DEFINING THE ENERGY AND DENSITY DROP DUE TO AN ELM

The main purpose of this paper is to explore the relationship between the losses of plasma energy
and density due to ELMs, and the waiting times between the ELMs. The signals that are used
are the line averaged edge plasma density, which is a direct line-averaged measure of the density
at the plasma’s edge, and the plasma’s ideal MHD energy as inferred from a collection of JET
diagnostics. The Beryllium II (527nm) radiation that is measured at the inner divertor is used to
determine when ELMs occur, using the method described in [17], that detects the statistically large
spikes in the radiation that are associated with ELMs. For the type I ELMs in the H-mode plasmas
considered here, the ELMs are easy to identify with this method. All the signals just described are

3



standard and widely used JET signals. Firstly we will discuss changes to the line averaged plasma
density, similar remarks will apply to changes in the plasma’s energy.

Following an ELM, the line averaged plasma density falls, then recovers again (see figure 1).
The losses associated with the ELM have a duration of order 0.005 seconds, that combined with
fluctuations in the signal can make it difficult to define the density loss due to the ELM. For exam-
ple, figure 2 shows the fall in edge density with time since an ELM for ELMs in the typical pulse
83790. There is clearly a minimum at around 0.005 seconds, but the exact time and magnitude of
the minimum is not always the same. Here we define the density drop due to an ELM (δn) as the
maximum observed drop in the line-averaged density within a small time interval tm after an ELM
(see figure 4). Figure 4 shows that if δn is defined in this way then provided tm is greater than
about 0.005 seconds, which is much less than the 0.012 second waiting time to the most frequent
ELMs [15, 16], then δn is independent of tm. Consequently provided tm is greater than 0.005
seconds, then δn is independent of tm and is well defined. Unless specified otherwise, our plots
use tm = 0.01 seconds.

Similar remarks apply to the plasma’s MHD energy, where the drop in energy (δE) is defined
as the minimum energy in some time period tm immediately following an ELM. A difference is
that there are now two timescales that can clearly be observed (see figures 3 and 5). The first
minimum in energy occurs between 0.002 and 0.005 seconds, which tends to be before the minima
at 0.005s found in figure 4. However, unlike the density, there is a second minimum at around
0.01 seconds (see figure 3). The possible causes of the different timescales are discussed in greater
detail later. Beyond 0.01 seconds the average of δE is approximately independent of tm, allowing
δE to be defined as the minimum energy in the time interval between an ELM and tm=0.01 seconds
(see figure 5). The choice of tm = 0.01 seconds is less than the time of the first maxima in the
ELM waiting time distribution [15, 16], that is at approximately 0.012 seconds. This definition
defines the ELM energy as the total reduction in stored MHD energy due to the ELM, which is
approximately three times larger than the energy lost during the initial 0.005 seconds, during which
particle loss leads to a reduction in the edge density (see figures 4 and 5). Both minima can be
observed in the time traces in figure 1, with a small minimum in δE prior to the minimum in the
density, followed by a much larger minimum in δE on the larger timescale of ∼ 0.01 seconds.

Two timescales have previously been reported in conjunction with the edge electron tempera-
ture during the post-ELM pedestal recovery [18, 19], an important difference is that here the two
timescales are observed with every ELM. It is possible that the two timescales relate to a similar se-
quence of processes - rapid energy losses followed by slower transport processes. The timescale for
the initial fall in edge temperature reported in Refs. [18, 19] is only about 0.002 seconds, whereas
the drop in edge density (figures 2 and 4), is over a 0.005 second timescale. Two timescales have
also been reported in conjunction with infra red (IR) images of JET’s divertor [20]. In this latter
work the two timescales arose from the shape of the ELM power deposition curve with respect
to time, and are much shorter than those discussed so far. The timescales characterise the initial
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rapid rise in ELM power deposition, over a timescale time τrise ∼ 0.0002− 0.0005 seconds, and a
slower τdecay ∼ 0.001− 0.0025 characterising the subsequent fall in the power deposition.

The work referred to above and the results here are consistent with, and possibly extend, the
proposed sequence of steps by which energy is lost during an ELM [9]. Firstly there is a rapid rise
in heat flux over a timescale of order 0.2-0.5 milliseconds [20], with heat being lost predominately
by electrons until of order 1-2 milliseconds when the edge temperature reaches a minimum [18,
19]. This process of energy loss is referred to as “conduction” [9]. Next, for the plasmas described
here at least, there is a loss of ions that is completed within a timescale of order 5 milliseconds
(figure 4), in a process referred to as “convection” [9]. Finally we find an additional timescale
of order 10 milliseconds after an ELM (figure 5), where the plasma continues to relax with a
loss of stored energy, after which the stored energy starts to rise again. Appendix A explores
the timescales associated with a resistive relaxation of the pedestal at the plasma’s edge [21], and
finds a timescale of 8 milliseconds, very similar to the 10 millisecond timescale within which the
MHD energy relaxes to its minimum post-ELM value. Consequently it is possible that a resistive
mechanism is allowing the plasma’s MHD energy to relax to its minimum post-ELM value. It may
also be significant that 8 milliseconds is the approximate time between the maxima and minima
observed in the ELM waiting time pdf [15, 16], that will be observed later in the time periods
between the clusters of ELMs in figures 6, 7 and 8.

3. STATISTICAL PROPERTIES OF ELMS

Next we look at how these measures of the density and energy losses associated with the ELMs
are influenced by the waiting times between the ELMs (see figures 6 and 8). The most obvious
characteristic of both figures is the vertical clustering of ELM times. This is due to the waiting-time
probability density function (pdf), which is discussed in detail in Refs. [15, 16], and shows a series
of maxima and zeros at approximately 0.08 second intervals starting from the first maxima at 0.012
seconds and continuing until 0.04 seconds when the distribution becomes comparatively smooth.
The pdf was unexpected, and contrasts with large sets of ELM waiting time pdfs that have only
a single maxima [17]. The cause of the unexpected form of pdf is unknown, and presently under
investigation. The next striking characteristic of figures 6 and 8, that is particularly noticeable
for the ELM energies, is that beyond a waiting time of about 0.02 seconds the ELM energies are
similar and independent of the waiting time between the ELMs. In other words, the distribution of
ELM energies that occur after a waiting time of 0.02 seconds is almost identical to those of ELMs
with waiting times of 0.05 seconds or more. This is clearly different to the usual relationship of
ELM energy being inversely proportional to ELM frequency [12], that would lead to the ELM
energy being linearly proportional to the ELM waiting time. It is also despite a continual gradual
increase in edge density that is suggested by figures 2 and 8. The first large group of ELMs are
observed at 0.012 seconds, and these have an average energy that is roughly 60% of the ELMs in
later groups. These results are similar to observations of pellet-triggered ELM energies in AUG
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[22]. In the AUG pellet-triggering experiments, a minimum waiting time of 0.007-0.01 seconds
was required before ELMs could successfully be triggered, and beyond roughly 0.01 seconds the
triggered ELMs appear to have statistically similar energies [22]. It is unknown whether ELMs can
be regularly triggered with waiting times less than the 0.012 second waiting time of ELMs in the
group with the highest ELM frequency. Pellet pacing experiments in similar 2T 2MA JET plasmas
[23], found a strong increase in triggering probability for pellets at least 0.01-0.02 seconds after an
ELM. Due to technical limitations of the pellet launcher, it was not possible to test whether pellets
could consistently pace ELMs with waiting times of order 0.012 seconds, but the possibility of
triggering ELMs within those timescales was demonstrated. Therefore presuming ELMs can be
paced at this 0.012 second waiting-time frequency, then an average reduction in ELM energy by
about 40% seems a reasonable possibility. However there is a large scatter about the average ELM
energy for all the ELMs, independent of their waiting time, with standard deviations that are about
1/4 of their average energy. Consequently some of the ELMs in the 0.012 seconds waiting-time
group have ELM sizes comparable with the larger ELM sizes in the group with longer waiting
times of 0.02 seconds or more.

Similar remarks apply to figure 7 where tm = 0.005 seconds has been used. The time of tm =

0.005 seconds corresponds to the first plateau of δE with tm in figure 5, and is the timescale over
which the edge density is lost (see figure 4). The group of ELMs at 0.012 seconds are about half the
energy of later ones, which is comparatively less than for figure 6, and the overall ELM energies
for waiting times greater than about 0.02 seconds are of order 40,000 Joules, which is about one
third of the total energy lost from the plasma due to a typical ELM.

Figure 8 shows the drop in density (δn) due to the ELMs. Similar remarks apply as to those for
the energy losses (figure 6), although in this case a weak dependence of δn on δt remains.

So why does the observed relation between ELM energy and ELM waiting times disagree with
published studies [12] that find the ELM energy (E) to be inversely proportional to ELM frequency
(f ), with E ∝ 1/f ? The first and most important observations to make are that previous studies
are usually plotting a pulse’s average ELM energy against its average ELM frequency, and plotting
these quantities for a variety of different pulse types. In contrast, here we are plotting the individual
ELM energies against their waiting times (that can be regarded as defining 1/f for any given ELM),
and doing this for these almost identical 2T, 2MA, pulses.

If we plot 〈δE〉 against 〈δt〉 for each of these pulses (see figure 9), we find a simple linear
relationship that is consistent with 〈δE〉 ∝ 1/f , due to small differences in 〈δE〉 and 〈δt〉 in
the different pulses. Figure 6 and the ELM waiting time pdf for these ELMs (as reported in
[15, 16]), show that values of δE span an interval of about 105 Joules, and values of δt span an
interval of about 0.1 seconds. The central limit theorem ensures that if all pulses are statistically
equivalent, then the average of n ELMs should range over an interval that is proportional to 1/

√
n

in width. For the roughly 50 ELMs in each pulse this would lead us to expect a range of values
of 〈δE〉 within about (0.14)105 Joules, and values of 〈δt〉 to vary within a range of about 0.014
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seconds. This is similar to what is observed in figure 9, but the spread of values is slightly greater,
which indicates that the pulses are not quite statistically equivalent. In other words, the differences
between the pulses are slightly greater than would be expected by chance alone, so the pulses are
only approximately identical.

The observed linear relationship between 〈δE〉 and 〈δt〉 in figure 9 is not surprising. For the
pulses here the spread of values of 〈δt〉 is small, with 〈δt〉 varying by no more than about ± 0.01
seconds. Consequently it would be unsurprising if a Taylor expansion of 〈δE〉(〈δt〉) were accurate
with only the linear terms in 〈δt〉 being kept, consistent with the linear relationship observed in
figure 9. In principle the observed linear relationship could reflect numerous possible different
functions of 〈δt〉, not just a linear one. It is possible that if the pulses were of different types with
very different values of 〈δE〉 and 〈δt〉, then plots of 〈δE〉 against 〈δt〉 would continue to show the
linear relationship expected if 〈E〉 ∝ 1/f . However, what is clearly highlighted here is that even if
the relationship of 〈E〉 ∝ 1/f does hold between different types of plasma pulses, for the plasmas
studied here at least, within a particular pulse the individual ELM energies can be independent of
their waiting times (and the frequencies that they define).

A related question is whether the energies of subsequent ELMs are related to each other, or are
independent. For example, we might expect a large ELM to be followed by a smaller ELM and vice
versa. Figures 10 and 11 plot the energy of the nth ELM versus the energy of the (n+1)th ELM.
If a large ELM is followed by a smaller ELM and vice versa, then we would expect the plotted
values to cluster around a line that is perpendicular to the diagonal. The symmetric clustering
about an average ELM energy suggests that the ELM energies (surprisingly) are independent. The
same result was found for tm = 0.01 seconds and tm = 0.005 seconds, and when examining tn+m

versus tn for m = 1 to m = 5.

4. DISCUSSION AND CONCLUSIONS

We have used the line averaged edge density and the MHD energy to study the properties of the
∼10,000 ELMs produced from 120 (of 150) almost identical JET pulses. It is found that: i) There
are two clear timescales associated with the ELMs, the first involving a loss of density and energy,
the second solely involving a loss of energy. Consequently the shorter timescale is likely to be
important for the ELM energy flux onto material surfaces, whereas the longer timescale is likely
to be important for the plasma’s overall energy confinement. The longer 0.01 seconds timescale is
a previously unreported timescale, after which the stored energy is found to start increasing again,
and is similar to the 8 milliseconds resistive timescale of JET’s plasma pedestal (see Appendix A).
Consequently it is consistent with a resistive mechanism that allows the plasma’s MHD energy to
relax to a minimum value before recovering again. ii) Following an ELM, no ELMs are observed
until approximately 0.012 seconds later, when they are statistically about 60% of the size of ELMs
observed in the next cluster at approximately 0.02 seconds. Similar remarks apply regardless of
whether the shorter or longer timescales of tm = 0.005 seconds or tm = 0.01 seconds are used. iii)
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From 0.02 seconds onwards, the ELM energies are all statistically similar, with an approximately
Gaussian distribution that is independent of the waiting times between the ELMs, and a standard
deviation that is about 1/4 of the average ELM energy (see figures 12 and 13).

The first point (i), helps to clarify the processes taking place during an ELM that need to be
better understood, and includes the observation of an extra relaxation time during the ELM process.
Points (ii)-(iii) have clear consequences for ELM mitigation, at least for plasmas equivalent to those
discussed here. The maximum (natural) ELM frequency that is observed has an ELM waiting
time of approximately 0.012 seconds. ELMs with waiting times of ' 0.012 seconds have an
average energy loss associated with the ELM that is roughly 60% that of the ELMs with waiting
times of 0.02 seconds or longer. So presuming that ELM pacing techniques can consistently pace
ELMs with waiting times of 0.012 seconds or less, then a reduction in average ELM energy by at
least 40% seems likely to be possible, or 50% if the shorter timescale of tm = 0.005 seconds is
proportional to the peak heat fluxes onto surfaces. However, many of the ELMs are statistically
expected to be much larger in size than average. In addition, the 83Hz frequency of these ELMs is
faster than previous successful pacing experiments on JET, whereas for the ELMs observed here
with frequencies of 50Hz or less, their expected energies are approximately the same.

The results summarised in figure 6 clearly fail to satisfy the often quoted relationship of E ∝
1/f . This may be partly because the relationship that is measured in such papers is actually
〈E〉 ∝ 1/〈f〉, and consequently refers to average properties of possibly very different plasmas,
and not to the properties of individual ELMs within similar plasmas. Unfortunately it is this latter
quantity, the relationship between ELM size and ELM waiting time that is important for ELM
mitigation by pacing techniques. Without a reduction in ELM energy, mitigation techniques will
need to reduce either the peak heat flux or increase the wetted area onto which energy is deposited.
The results presented here also only represent one particular type of pulse in one tokamak, JET. It
is entirely possible that different pulse types or different machines might have very different ELM
statistics. The purpose of the analysis here is to provide a robust analysis of these 2T 2MA pulses
for which such large numbers of (almost) statistically equivalent ELMs are available, providing a
clear indication of ELM behaviour for this particular pulse type at least. The hope was that the
excellent statistics might indicate new or unexpected ELM physics. One of the unexpected results
is the observed independence of ELM size and waiting time for waiting times greater than about
0.02 seconds. Similar observations were found in pellet-pacing experiments in AUG [22], where
ELM sizes were similar for waiting times beyond roughly 0.01 seconds. The generality of these
results remains to be determined, and may require dedicated new experiments to ensure a robust
answer.

The results here have consequences for the correct construction of models for ELMs and ELM-
ing behaviour. For the pulses discussed here, beyond the 0.012 seconds waiting time the ELM
waiting times and energies are independent. Consequently for such ELMs, models to describe
their waiting times and ELM-energy probability distributions can be treated independently. Even
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more surprisingly perhaps, is that figures 10 and 11 suggest that the energies of subsequent ELMs
are independent, so that a large ELM is as likely to be followed by another large ELM as by a small
ELM. Surprising as this may be, it is likely to make the statistical modelling of ELM energies con-
siderably easier. Clearly, the statistical relationships observed here need to be reproduceable by
any simulation that is correctly modelling these plasmas. Similar remarks apply to the relaxation
of the plasma’s energy, and the sequence of processes and timescales by which the plasma loses
energy due to an ELM.

To conclude, we have presented the analysis of an unprecedentedly large number of statistically
equivalent 2T 2MA JET H-mode plasmas. This has led to the observation of an extra 0.01 second
timescale associated with the ELM process, that is consistent with a resistive mechanism that
allows the plasma to relax to its minimum post-ELM energy. For the plasmas discussed here,
surprising results are reported about the independence of ELM energy and frequency, and the
independence of energies of consecutive ELMs. Whether the results found here are more generally
true is unknown, it may be some time before equivalently large datasets for different pulse types
or from different machines become available.
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of how the ELM energies are related to the waiting times for this set of pulses. The experiments
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information on the contents of this paper please contact publications-officer@jet.efda.org. The
views and opinions expressed herein do not necessarily reflect those of the European Commission.
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A. THE GLOBAL CURRENT RELAXATION TIMESCALE

As given in Ref. [24] for example, the plasma’s resistivity is,

η = (6.5)10−8

(
1

T
3/2
k

)
Ω m (1)

where Tk is the plasma’s temperature measured in electron Volts. A multiplicative constant modi-
fies Eq. 1 when Neoclassical effects are included and if Zeff 6= 1, but Eq. 1 is a reasonable order
of magnitude estimate. The resistive MHD equations [24] give,

∂ ~B

∂t
=

(
η

µ0

)
∇2 ~B (2)

from which a dimensional analysis gives the resistive timescale τ as,

τ ∼
(

µ0

η

)
L2 (3)

9



where L is a typical length scale and µ0 = (4π)10−7 Farad m−1. Combining equations 1 and 3
gives,

τ ∼ (6.2)πT
3/2
k L2 (4)

Substituting the pedestal width [21] of L ∼ 0.03m and temperature at the pedestal’s top of Tk ∼
0.6keV, gives τ ∼ 8 milliseconds, very similar to the 10 millisecond timescale within which the
MHD energy relaxes to its minimum post-ELM value.
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1

Figure 1: From top to bottom: i) The Be II (527nm) 
signal measured at the inner divertor, that is used to 
identify ELMs from the sharp spikes in radiation. ii) 
The Magnetohydrodynamic (MHD) energy stored in the 
plasma. iii) The line-averaged plasma number density at 
the plasma’s edge. For each ELM there is a sharp spike 
in Be II emission, shortly followed by a drop in density to 
a minimum at around 0.005s after the ELM started, and 
a drop in MHD energy to a minimum some time around 
0.01s after the ELM started.

Figure 3: The fall in MHD energy with time since each ELM 
is plotted for a typical pulse in the set (Pulse No: 83790). 
There are two clearly visible minima, one between 0.002 
and 0.005 seconds, and another at around 0.01 seconds. 
Beyond about 0.012 seconds there are a small number of 
additional drops in energy due to ELMs that occur within 
the 0.03 second time interval that is plotted.

Figure 2: The fall in line-averaged edge density with time 
since each ELM is plotted for a typical pulse in the set 
(Pulse No: 83790). There is a clearly visible minima at 
around 0.005 seconds. Beyond about 0.012 seconds there 
are a small number of additional drops in density due to 
ELMs that occur within the 0.03 second time interval that 
is plotted.

Figure 4: The maximum drop in line averaged plasma 
density (dn) following an ELM (vertical axis), is plotted 
against the (maximum) time tm since the ELM (horizontal 
axis), over which the maximum drop is calculated. For 
each plasma dn is averaged over all the ELMs in a given 
pulse (plotted points), and its standard deviation calculated 
(vertical lines). This is repeated for each maximum time 
tm since the ELM, and for each plasma pulse. There is a 
comparatively small scatter of about 15-20% between the
average value’s of dn for the 120 different pulses, confirming 
that the pulses are quite similar. Consequently if tm is taken 
to be greater than about 0.005 seconds then there is a well 
defined dn that is independent of tm. The timescale of 0.005 
seconds is much less than the time between ELMs.
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Figure 5: For tm from 0 to 0.03 seconds and for all 120 
pulses, the minimum MHD energy within time tm after 
an ELM is averaged over all ELMs in a pulse (plotted 
points), and the standard deviation about this average is 
calculated also (vertical lines). The 120 sets of averages 
(plotted points) and standard deviations (red lines) have 
been plotted over one another so as to present them on 
a single graph. Two time scales are evident. The first at 
0.005 seconds is the same as found in figure 4. The second 
timescale is at 0.01 seconds, beyond which the average 
value of dE is approximately constant, independent of tm.

Figure 7: The drop in the plasma’s ideal MHD energy is 
plotted against waiting time since the previous ELM, as 
in figure 6. Here however, dE has been calculated using
tm = 0.005 seconds, the time of the first plateau in dE versus 
tm in figure 5, and the time beyond which the drop in edge 
density has ended.

Figure 6: The drop in the plasma’s ideal MHD energy is 
plotted against waiting time since the previous ELM. The 
vertical clustering is due to the unusual ELM waiting time 
pdf described in references [15, 16]. The stored MHD 
energy was of order (2.8)×106 Joules, suggesting that of 
order 0.04% of the plasma’s MHD energy is removed by 
each ELM. Beyond 0.02 seconds the ELM energies are 
approximately independent of the waiting time between 
the ELMs.

Figure 8: The drop in line averaged edge density is plotted 
against waiting time since previous ELM. Similarly to the 
plot of energy against waiting time, the vertical clustering 
is due to the unusual ELM waiting time pdf of the ELMs in 
these pulses, as described in references [15, 16]. The line-
averaged edge density was of order (4.5)1019, suggesting 
that roughly 20% of the edge density is lost per ELM. 
Beyond about 0.005 seconds the minimum observed drop 
in density is independent of tm. Beyond 0.02 seconds the
drop in edge density due to an ELM is only very weakly 
dependent on the waiting time between ELMs.
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Figure 9: For each of the 120 pulses, the average ELM 
energy is calculated and plotted against the average ELM 
waiting time for that pulse. The scatter is slightly greater 
than would be expected from the central limit theorem and 
the roughly 50 ELMs per pulse, indicating that the pulses 
are only approximately statistically equivalent. The linear 
relationship observed between 〈dE〉 and 〈dt〉 is as expected 
if 〈dE〉 / 1/f, but for the small range of 〈dt〉 here it is also 
what would be expected from a simple Taylor expansion of 
〈dE〉(dt), and could in principle reflect numerous possible 
functions of dt.

Figure 11: The energy of successive ELMs are plotted, 
with energies calculated using tm = 0.005. Surprisingly, 
the clustering of subsequent ELM energies around a single 
point indicates that the energies of subsequent ELMs are 
independent. If a large ELM were followed by a small 
ELM and vice versa, then we would expect a spread of 
ELM energies in a perpendicular direction to the diagonal.

Figure 10: The energy of successive ELMs are plotted, 
with energies calculated using tm =

 0.01. Surprisingly, the 
clustering of subsequent ELM energies around a single 
point indicates that the energies of subsequent ELMs are 
independent. If a large ELM were followed by a small 
ELM and vice versa, then we would expect a spread of 
ELM energies in a perpendicular direction to the diagonal.

Figure 12: The probability density of ELM energies 
calculated with tm =

 0.01 is plotted, along with a simple 
Gaussian fit (dotted black curve). Even without excluding 
the ELMs that arise with waiting times less than roughly 
0.02 seconds, the distribution of ELM energies is 
approximately Gaussian, with an average ELM energy 
of (1.06)105 Joules and a standard deviation of (0.26)105 

Joules, giving a co-efficient of variation of 0.25 for the 
spread of ELM energies.
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Figure 13: The probability density of ELM energies calculated with tm =
 0.005 is plotted, along with a simple Gaussian 

fit (dotted black curve). Even without excluding the ELMs that arise with waiting times less than roughly 0.02 seconds, 
the distribution of ELM energies is approximately Gaussian, with an average ELM energy of (3.55)104 Joules and a 
standard deviation of (1.35)104 Joules, giving a co-efficient of variation of 0.38 for the spread of ELM energies
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