
T. Craciunescu, A. Murari, M. Gelfusa, I. Tiseanu, V. Zoita
and JET EFDA contributors

EFDA–JET–PR(13)53

Overview of Image Processing
Tools to Extract Physical

Information from JET Videos



“This document is intended for publication in the open literature. It is made available on the 
understanding that it may not be further circulated and extracts or references may not be published 
prior to publication of the original when applicable, or without the consent of the Publications Officer, 
EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”

 
“Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA, 
Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”

The contents of this preprint and all other JET EFDA Preprints and Conference Papers are available 
to view online free at www.iop.org/Jet. This site has full search facilities and e-mail alert options. The 
diagrams contained within the PDFs on this site are hyperlinked from the year 1996 onwards.



Overview of Image Processing
Tools to Extract Physical

Information from JET Videos

T. Craciunescu1, A. Murari2, M. Gelfusa3, I. Tiseanu1, V. Zoita1,4

and JET EFDA contributors*

1EURATOM-MEdC Association, NILPRP, Bucharest, Romania
2Consorzio RFX, Associazione EURATOM-ENEA per la Fusione, Padova, Italy

3Associazione EURATOM-ENEA - University of Rome “Tor Vergata”, Roma, Italy
4EFDA-JET CSU, Culham Science Centre, OX14 3DB, Abingdon, OXON, UK

* See annex of F. Romanelli et al, “Overview of JET Results”,
(24th IAEA Fusion Energy Conference, San Diego, USA (2012)).

JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK

Preprint of Paper to be submitted for publication in Proceedings of the  
8th Workshop on Fusion Data Processing, Validation and Analysis, Ghent, Belgium

4th November - 6th November 2013



.



1

ABSTRACT
In Magnetic Confinement Nuclear Fusion devices such as JET, the last years have witnessed a 
significant increase of the use of digital imagery, not only for the surveying and control of the 
experiments, but also for the physical interpretation of results. More than 25 cameras are routinely 
used for imaging on JET in the IR and visible spectral regions. These cameras can produce up 
to tens of Gbytes per shot and their information content can be very different, depending on the 
experimental conditions. However, the relevant information about the underlying physical processes 
is generally of much reduced dimensionality compared to the recorded data. The extraction of 
this information, which allows full exploitation of these diagnostics, is a challenging task. The 
image analysis consists, in most cases, of inverse problems which are typically mathematically ill 
posed. The typology of objects to be analysed is very wide and usually the images are affected by 
noise, saturation, low grey-level in-depth resolution, reshaping of moving objects, etc. Moreover, 
the plasma events have time constants of ms or tens of ms, which imposes tough conditions for 
real-time applications. On JET, in the last few years, new tools and methods have been developed 
for physical information retrieval. The methodology of optical flow has allowed, under certain 
assumptions, deriving information about the dynamic of video objects, associated with different 
physical phenomena such as instabilities, pellets, and filaments. The approach has been extended 
in order to approximate the optical flow within the MPEG compressed domain, allowing the 
manipulation of the large JET video databases and, in specific cases, even real-time data processing. 
The fast visible camera may provide new information potentially useful for disruption prediction. A 
set of methods, based on the extraction of structural information from the visual scene, have been 
developed for the automatic detection of MARFE (Multifaceted Asymmetric Radiation From the 
Edge) occurrence, which precede disruptions in density limit discharges. An original spot detection 
method has been developed for large surveys of videos in JET and for the assessment of the long 
term trends in their evolution. The analysis of JET IR videos, recorded during JET operation with 
the ILW (ITER–Like Wall), allows the retrieval of correlation of the evolution of spots properties 
with macroscopic events, in particular series of intentional disruptions.

1.	 Introduction
Visual information has always played an important role during the evolution of science. Starting 
from manual drawings documenting the experiments, imaging increased its role with the invention 
of photography and its prominent use in astronomy and particle physics. The last years have 
witnessed a huge development and widespread use of video and computer technology. Digital 
video cameras have become a tool of convenience, being used in a variety of devices to record 
information. Multimedia software and hardware are nowadays standard tools for handling images 
and videos, allowing information sharing, with a clear impact on society. Science follows naturally 
this evolution, image processing becoming a standard scientific tool for various scientific applications 
and large experiments. In particular, digital video cameras have become very popular in magnetic 
confinement nuclear fusion devices such as JET. More than 25 cameras are routine used for imaging 
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in JET, in the IR and visible wavelength regions, for various purposes, from surveying and control 
to scientific investigations. The applications range from the protection of the new JET ITER-like 
Wall (ILW) to detailed investigations of the plasma wall interactions and of various instabilities.
	 The active protection of the plasma facing components is essential in order to manage high power 
and particle loads of high temperature plasmas. This problem is a major issue since the installation 
in JET of the ITER-Like Wall (ILW) [1] which comprises solid beryllium limiters and a combination 
of bulk W and W-coated CFC divertor tiles but with no active cooling. Image processing can play 
an important role if the analysis is provided in real time and therefore a significant technological and 
scientific effort has been devoted to this subject.  A new endoscope with optimised divertor view has 
been developed in order to survey and monitor the emission of specific impurities [2]. A new wide 
angle view camera system, which considerably increases the coverage of the vessel, was recently 
installed [3]. New infrared diagnostics imaging the horizontal and vertical tiles of the divertor were 
also installed [4]. Different kinds of modelling have been applied for assessing the consistency of 
the information provided by the IR cameras with other diagnostics for temperature control [5]. 
These diagnostics proved to provide valuable information for disruption heat loads studies [6-7]. 
A different approach, which relies on the computational paradigm of cellular nonlinear networks 
and on the use of field-programmable gate arrays (FPGA),has been developed for the detection of 
hot-spots in the vacuum vessel [8]. 
	 The amount of data produced by the routine operation of video cameras is a critical issue. Some 
of these cameras are very fast and can produce even two Gbytes of data per shot, leading to the 
gradual accumulation of enormous databases. Automatic tools are strictly necessary for handling 
the large amount of video information. The original data (too voluminous to understand) should 
be mapped into a more compact and abstract form in order to allow the extraction of the relevant 
information about the underlying physical processes and their interpretation. In order to retrieve this 
information, the image processing methods have to deal with images frequently affected by noise, 
saturation, low grey-level in-depth resolution, reshaping of moving objects, etc. and containing a 
wide typological variety of video objects. Under these difficult experimental constraints, the image 
analysis consists usually of inverse problems which are typically mathematically ill posed. The 
retrieval of the useful information in real time represents also a major challenge, as the plasma 
events have time constants of ms or tens of ms.
	 A package of tools has been developed for the intelligent and automatic handling of the 
continuously growing database. Content-based image retrieval methods [9-10] have been developed 
based on data screening of morphological aspect of images. Assuming that diagnostics generate 
reproducible patterns for similar physical behaviour, these tools ensure an efficient high level data 
access to the huge JET image database. Beside the searching instruments, the classification tools 
are indispensable for database manipulation. Machine learning techniques have been implemented 
for constructing the taxonomy of the various objects appearing in the frames recorded by the visible 
cameras [11].
	 Image processing methods for physical information retrieval, analysis and interpretation have 
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been developed in the last few years. These methods are reviewed in this paper which is organized 
in three main sections. The first is dedicated to tools for deriving information about the velocity of 
video objects (generated by instabilities, pellets, etc) and for exploring dynamic processes. The next 
section is dedicated to a set of methods which exploit the structural information contained in the 
visual scene in order to identify plasma events. They are potentially useful for disruption prediction 
in case of a future upgrade of the hardware of the cameras allowing real time data streaming. The 
long term trends and evolution of the dust particles, which have fallen onto the divertor surfaces 
and the correlation with macroscopic events by image processing, are the subject of the last section. 
Several conclusions are drawn in the last section of the paper. 

2.	 Image processing for exploring dynamic processes
The estimation of motion information from image sequences is a recurrent problem in computer 
vision. In fusion, the poor accessibility of the devices makes very difficult the deployment of more 
than one camera with the same field of view. Therefore stereoscopic methods are rarely applicable. 
An alternative to retrieve information about the velocity of moving objects, which leaves a signature 
on the video frames, is the optical flow concept. The optical flow is defined as the “flow” of grey 
values at the image plane and it is an approximation of the motion field, i.e. of the real motion of the 
object in the 3-Dscene, projected onto the image plane. The quality of this approximation depends 
on how much the objects change the irradiance on the image plane while moving in the scene.
	 Most of the existing algorithm starts from the brightness constancy assumption which assumes 
that all changes in the image are caused by the translation of brightness patterns leading to the 
gradient constraint equation:

		  				    (1)

Where and are the spatial and temporal gradients and is the optical flow velocity. In this way it is 
assumed implicitly also that the illumination in the scene is uniform and surfaces appear equally 
bright from all viewing directions. Also the image formation process in the camera is supposed to 
be free of distorting effects.
	 From the mathematical point of view the problem of finding the flow field solution of equation 
(1) is an ill-posed one. The brightness constancy assumption provides just one constraint on the two 
unknowns at each pixel. Moreover, the so-called aperture problem brings additional uncertainty 
in the determination of the optical flow. Spatial and temporal grey value changes can be derived 
with local operators which compute the corresponding local derivatives using masks. The masks 
restrict the operator’s access to a local region of the observed object, equal to the size of mask. 
Consequently, finding unequivocal corresponding points in two consecutive images of a sequence 
become problematic. For example, an unambiguous determination of the displacement is possible 
only if a corner of the object is within the mask [12]. Therefore, supplementary constraints must be 
introduced in order to alleviate these difficulties. The most widely used techniques rely on a global 

fS . v + fS = 0
→ →→
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strategy, attempting to minimize a global energy functional [13] or on the optimization of some 
local energy-like expression [14]. Global and local methods have complementary advantages and 
shortcomings.
	 A common approach for the global methods is the introduction of an additional term in Eq. 1 that 
assumes a smooth variation of the flow across the image. Then, the optical flow can be retrieved as 
the minimizer of the following global energy functional:

		  (2)

where is a regularising parameter which determines the smoothness of the flow field, and are the 
and components of the flow, respectively. By mean of the smoothness term, this approach has the 
advantage of producing dense flow fields (one motion vector per pixel). Unfortunately the global 
methods have been observed to be sensitive to noise and outliers. Additional smoothing of input 
images has been used to reduce the effect of noise and to stabilize the differentiation process. 
Smoothing has been extended also to the temporal dimension. Various related penalty functions, 
together with different optimization algorithms and implementations, have been also defined in 
order to tackle this problem (see Ref. [15] for a review). 
	 Local methods assume a small neighbourhood of constant flow. For a neighbourhood of size, 
the optic flow can be determined at the location  from a weighted least square fit by minimizing the 
function:

				    (3)

A certain amount of smoothing, introduced by the Gaussian smoothing operator is very successful 
in rendering the method robust against noise. Unfortunately this feature is counterbalanced by the 
behaviour in the flat regions of the image, where the gradient vanishes and the method become 
unable to produce dense flow fields.
	 Bruhn et al. [16] exploited the similarity between the formulation (3) of the local methods and 
the first term under the integral in the formulation (2) of the global approach, in order to formulate a 
hybrid combined local-global (CLG) class of methods. The following notation is normally adopted 
to discuss these techniques:

		
	

The equations (2) and (3) can be rewritten in a way which makes obvious the similarity between 
the two paradigms:

			   (4)

Eglobal (u, v) = [(fxu + fyv + ft)2  + α (|∇u|2 + |∇v|2)] dxdy

Elocal (u, v) = Kρ × (fxu + fyv + ft)2 

w ≡ (u, v, 1)T |∇w|2 ≡ |∇u|2 + (|∇v|2

∇3 f ≡ (fx, fy, ft)T Jp (∇3 f ) ≡ Kρ ∗ (∇3 f,∇3 f T)   

Eglobal (w) = fΩ [(wTJ0 (∇3 f ) w + α |∇w|2] dxdy
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					     (5)

The CLG method is obtained by replacing in (4) the matrix with the structure tensor , for some 
integration scale . This approach brings together the ability of the global methods to produce dense 
flow fields and the robustness against noise of the local methods. This class of methods has been 
studied and optimized for the very specific case of JET images [17]. 
	 The optical flow methodology has been applied for the videos provided by the wide angle view 
fast visible camera (Photron APX) [18] which is installed on the wide angle endoscope [19]. The 
camera is viewing the full poloidal cross-section of the vacuum vessel and is covering a toroidal 
extent of 90o (Fig.1). It has a 1024x1024 CMOS pixel detector, allowing image acquisition with 
a frame rate up to 3kHz. The maximum frame rate of the camera is 250 kframes/s (for a reduced 
frame of 128×16 pixels).	
	 The images used as input for the optical flow calculation are frequently affected by noise, 
saturation, low grey-level in-depth resolution, discontinuous movement, reshaping of moving 
objects. Therefore the basic assumptions of the optical flow model may not be always satisfied. 
Dedicated techniques able to prevent an inaccurate velocity computation have been devised. 
Particularly important is to deal with large displacements of objects between consecutive frames. 
A multi-resolution coarse-to-fine procedure [20] has been implemented. Occlusions, which appear 
when two objects that are spatially separated in the 3D space might interfere with each other in the 
projected 2D image plane, are treated by comparing the forward and reverse flow fields and labeling 
pixels as occluded where the two disagree [21]. In a number of cases, high-order filter constancy 
has been used to reduce the influence of lighting changes [22]. A procedure for the assessment of 
the uncertainties of the method has been also developed and applied. The similarity between a 
certain image in the video stream and its reconstruction using the previous image and the optical 
flow is used as confidence criterion (see Ref. 17 for details). After implementing these procedures 
the optical flow method has been successfully used for the evaluation of the speed of various plasma 
instabilities, in particular ELM filaments and MARFEs.
	 The propagation of the filamentary coherent structures observed during the development of ELM 
instabilities is important to the overall dynamics in a variety of plasmas. Their interaction with the 
tokamak first wall (divertor and limiter tiles) is one of the critical issues for ITER due to the deposited 
heat loads [23]. The filament temperature and composition may differ from the background plasma, 
determining and enhanced visible radiation. The speed of filaments can be estimated when they 
can be tracked along the surface of the outer limiters. The known geometrical dimension of the 
limiters allows the conversion of image pixels in length units and consequently the determination 
of speed in absolute units. The motion segmentation can be obtained by thresholding the optical 
flow modulus image and applying morphological operators (dilation, erosion). A typical example 
is presented in Fig.2.
	 The MARFE instability is a tokamak edge phenomenon characterized by greatly increased 
radiation, density fluctuations, and decreased temperature in a relatively small volume [24]. MARFE 

Elocal (w) = wT Jp (   3 f ) w 
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are the manifestation of a thermal instability, with impurity radiation being the main energy loss 
mechanism from their volume. They determine a significant increase in impurity radiation, leaving 
a clear signature in the videos recorded by the fast visible camera in JET with the carbon wall (Fig. 
3). MARFEs moves up and down the vacuum vessel on the high field side. The known structures 
of the tokamak vacuum vessel allow the inference of the velocity in the real space from the 2D 
image analysis. An illustrative example is presented in Fig.3
	 The optical flow method proved to be a useful tool also for obtaining various kind of information 
related to pellets. Cryogenic pellet injection is one of the prime candidates to fuel large scale fusion 
devices, including ITER and DEMO, in different operational regimes, including the standard 
H-mode foreseen as ITER`s baseline scenario. Pellet fuelling has been demonstrated to open 
access to operational regimes not reachable by gas puffing [25]. The pellets represent also a tool 
for controlling the edge localized modes (ELMs), especially for the mitigation of type-I ELMs in 
large fusion experiments [26-27]. 
	 The methodology developed in JET has been used in recent investigations on ASDEX-UG, for 
the predictive understanding of the underlying processes of the pellet-plasma interaction [28]. Using 
a fast framing camera system (600kHz frame rate) [29] it was possible to ensure appropriate spatial 
and temporal resolution for the investigation of pellet ablation dynamics, a complex 3D process 
taking place on the μs timescale. The optical flow has provided information for the analysis of pellet 
cloud dynamics and drifts and particularly for the study of the process of eruption of secondary 
cloudlets located around the main cloud pellet. 
	 A controlled high pellet fuelling efficiency is needed as otherwise the beneficial effects are 
spoiled by the increase of neutral pressure from fuel losses. The optical flow proved to be useful 
in assessing the preparation of the pellets, for evaluating the ice extrusion velocity which is one 
of the parameters that influence the efficiency of the pellet injection on ELM triggering. The High 
Frequency Pellet Injector, part of the JET programme in support of ITER [30], is equipped with a set 
of diagnostics aiming at helping in the injector operation and at measuring the injection parameters. 
Among them, a CCD camera monitors the quality and the dimensions of the extruded ice and it can 
be used also for the determination of the extrusion speed. Typical images provided by this camera 
are presented in Fig. 4, together with the evaluation of the optical flow [31]. However, for a routine 
examination of the extrusion process, the optical flow calculation time must be compatible with 
the online constraints imposed by the image acquisition frame rate (50Hz). A significant reduction 
of the computation time be could be obtained if a region of interest the optical flow calculation is 
performed only inside a certain region of interest (ROI). But, as the ribbons of ice are floating in 
the image (see Fig.5), a procedure for splitting the video scene into multiple motion/static regions 
must be implemented, allowing the dynamical estimation of the ROI.
	 A solution resides in using the information provided by the way in which the videos are stored, 
in a compressed format, for further analysis. For example, the MPEG format [32] comprises a 
crude estimation of the motion field which is evaluated for compression purposes. MPEG exploits 
the statistical redundancies in both temporal and spatial directions. The spatial redundancy is 
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reduced by means of the discrete cosine transform. As the transform concentrates the energy into 
the low-frequency coefficients, the bit rate reduction is obtained by the coarse quantization of the 
high-frequency coefficients. But the high degree of compression specific to MPEG is achieved in 
the temporal dimension, assuming a simple translation motion between consecutive frames. The 
magnitude of a particular image pixel can be predicted from pixels of a nearby frame using a block 
matching method. The parts of the image that do not change significantly are simply copied from 
other areas or other frames. In case of the other parts, the algorithm searches for the best matching 
block. A set of motion vectors are implicitly defined by the different position of the matching blocks 
in the actual and reference frame, respectively. As a compromise must be found between the accuracy 
in predicting complex motion in the image and the expense of transmitting the motion vectors, only 
one motion vector is estimated for an image block of 16×16 pixels, limiting the resolution of the 
motion segmentation. However this resolution is sufficient for the dynamic segmentation of the 
ROI for ice extrusion velocity evaluation. Additional procedures are needed in order to obtain a 
reliable procedure, appropriate for the routine analysis of large sets of data. Sometimes the motion 
vectors information is heavily corrupted by the sudden occurrence of lack of correlation between 
estimated motion vectors and real motion in the video scene. The motion vectors can be transformed 
into a smoother motion field using a set of regularization set of rules [33] and a confidence measure 
[34] to ensure that the motion field is meaningful. The removal of isolated vectors that have a low 
probability of reflecting a certain real movement in the image is obtained assuming that a moving 
object can be assimilated with a group of pixels in which the motion vectors are consistent with 
each other. Pixel grouping can be obtained using a block growing procedure which uses as starting 
point a seed pixel corresponding to the local maximum grey-level and its 4-connected neighbours. 
The region grows by adding each ungrouped bordering pixel if a consistency criterion, based on 
the grey-level difference, is satisfied [35]. A typical motion segmentation result, using the motion 
estimation within the MPEG video compressed domain, is presented in Fig.5. The computation time 
needed for the dynamically determination of the ROI is ~1.5ms and the total optical flow calculation 
is less than 20ms, allowing, in principle, the online evaluation of the optical flow [36]. Another 
advantage of the approach consists of the possibility of engrafting the optical flow algorithm in the 
MPEG compressing routine.

3.	 Image processing for plasma physical events detection
The fast visible camera may provide useful information also for the detection of anomalous behaviour 
in the discharges with potential harmful consequences. MARFEs and UFOs (Unidentified Flying 
Objects) leave distinct signatures in the video data opening the possibility of automatic detection 
of these events. MARFEs normally precede density limit disruptions. Therefore the detection of 
MARFEs may be used for automatic disruption prediction. The automatic detection of UFOs, which 
are flakes released by JET first wall as a consequence of unusual power loads, typically due to 
instabilities like ELMs, may be an important tool for machine protection and disruption avoidance.
As already mentioned and illustrated in Fig. 3, MARFEs leave a distinctive signature in the video 
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data, appearing like ribbon-like shapes moving up and down the vacuum vessel on the high field 
side. This specific shape can be exploited for automatic identification. However the identification 
should avoid confusion with other video objects with similar shapes, like e.g. flashes, probably 
caused by ELMs (Edge Localized Modes) or high radiation from the poloidal limiters.
	 A set of methods, based on the extraction of structural information from the visual scene, have 
been developed. They can be used for content-based retrieval of relevant frames from the large 
JET database but using MARFE detection for signalling disruptions; their deployment in real time, 
represent also an appealing application. In JET, with a carbon wall, the time elapsing between the 
occurrence of a MARFE and the following disruption (in density limit discharges) is of the order 
of several hundreds of milliseconds, allowing enough time for calculations and for the following 
action of the mitigation tools. At his point it has to be mentioned that currently, on JET, the fast 
imaging systems are not yet used for their real-time control. The real-time identification of MARFEs, 
using some of the methods described in this section, will require an upgrade of the hardware of the 
cameras since the ones presently used cannot perform real time streaming of the videos. 
	 The first approach for automatic MARFE identification has been proposed in Ref. 37.The first 
step consists in isolating the objects occurring in the image by background subtraction. A method 
allowing a fast adaptation to changes of the scene has been implemented. The segmentation is a 
combination of image differencing with respect to a median background and a Laplacean operator 
[38]. An alternative consists of using the MPEG motion field combined with simple morphological 
operators (dilation, erosion, median filtering) [36]. Illustrative examples are presented in Fig. 6. The 
identification of moving objects is followed by a pattern recognition step which must discriminate 
between MARFEs and other video objects produced by different physical phenomena. The 
geometrical properties of the objects can be determined by means of statistical Hu moments [39], 
which are a combination of central moments of an object in an image. The advantage consists on 
obtaining information invariant to translation, rotation and scaling. During object tracking several 
metrics are evaluated in order to estimate the motion characteristics. A Support Vector Machines 
(SVM) classifier has been trained for automatic identification.
	 Recently, a highly parallelized software implementation of this method has been reported [40]. 
The algorithm is built in serial and parallel versions and written in C/C++ using OpenCV, cvBlob 
and LibSVM libraries. The main parallelization has been achieved separating image segmentation 
and pattern recognition. Several data parallelism and pipeline strategies have been also implemented 
inside these two groups. An image processing rate of more than 10,000 frames/s has been achieved 
on a dedicated Intel Symmetric MultiProcessing (SMP) computer architecture with a Linux™ 
operating system. In the same time a correct classification rate of 97.6% has been achieved.
	 A different way to extract structural information from the visual scene is based on the phase 
congruency (PhC) theory. PhC is a biological inspired tool for image processing which assumes 
that the human visual system understands the image mainly based on its low-level features 
(especially edges and zero-crossing). Biological and psychological processes aggregate in specific 
tools allowing the extraction of the highly informative structural features from the very redundant 
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imagistic information. Morrone et al. [41] assumes that visually discernible features coincide with 
those points where the Fourier waves, at different frequencies, have congruent phases. These points 
are characterized by a maximal local energy:

					     (6)

where and are the responses of symmetric/anti-symmetric matched filters, of identical amplitude 
spectrum but differing in phase spectrum by 90 degrees. PhC is equal to the energy scaled by the 
sum of the Fourier amplitudes:

	 				       (7)

where represents the amplitude of the n-th Fourier component. The constants and are introduced in 
order to deal with the case when all the Fourier amplitudes are very small and to eliminate spurious 
responses to noise, respectively. PhC is significant only if it occurs over a wide range of frequencies, 
for a specific location. Therefore the weighting factor is introduced in order to penalize PhC at 
locations where the spread of the filter responses is narrow (see Ref. 42 for details). 
Appropriate choices for the symmetric/anti-symmetric pairs of filters in case of 2D images are the 
Gabor filters [43]. They are also bio-inspired tool for image processing. Daugman [44] showed 
that the receptive field of most orientation receptive neurons in the (cat’s) brain is similar to Gabor 
functions. These filters are constructed using a Gaussian kernel function modulated by a sinusoidal 
plane wave. In this way the filter responds to a specific frequency in localized region of the image. 
A lateral extension of the filters is introduced by means of a spreading function (usually Gaussian) 
applied across the filter, perpendicular to its orientation. PhC can be calculated over several 
orientations, in order to detect features with different anisotropic characteristics and the results are 
combined by summing and normalisation. It has the advantage of being a dimensionless quantity, 
providing information that is invariant to image illumination, contrast, and magnification.
	 For MARFE detection, PhC is evaluated for each frame in the video sequence and also for a 
number of reference frames displaying typical MARFE shapes. The structural similarity between 
the current and the reference frames is evaluated by calculating the similarity map [45]:

				    (8)

where and are calculated for the current frame and for the reference frame, respectively and is a 
positive constant introduced in order to ensure the stability of the calculation. For multiple reference 
images the corresponding similarity indexes are multiplied in order to obtain a global structural 
similarity map. The map, which contains similarity values calculated at each location , can be pooled 
into a single similarity score by summing the values for locations:

				    (9)

E(x) =     F(x)2  + H(x)2

E (x) = T
Σn An (x) + ε PhC(x) =  w(x)2 . 

2. PhCcur
 
. PhCref + T 

(PhCcur)2 + (PhCref)2 + T
SIM(x) = 

1
DSIMscore  = χ∈Ω

SIM(x)dx
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where is the map domain and is its area. MARFEs can be identified by mean of the detection of the 
peaks in the evolution of whose height is above a certain threshold. The same threshold value has 
been used for the whole JET MARFE video database. The PhC classifier ensures a good prediction 
rate: 96.2% events have been are correctly interpreted while from the misclassified events 0.03% 
are false positives and 3.5% false negatives [46]. An illustrative example is presented in Fig. 7, 
where the evolution of the is presented for JET Pulse No: 50053. 
	 Another alternative way to automatically capture the essence of the MARFE visual patterns 
relies on sparse image representation (SIR), which consists of modelling images as a linear 
combination of a few elements from a dictionary is the total number of pixels in the image and is 
the total number of atoms in the dictionary). An efficient transform-based representation requires 
sparsity, that is, a large amount of information has to be compressed and expressed by a reduced 
set of transform coefficients. Recent results support the idea that learned dictionaries significantly 
outperforms off-the-shelf ones [47-48]. Therefore the dictionary and the image representation are 
learned simultaneously by solving the optimization problem:

			   (10)

where are overlapping patches extracted from the image and M is the total number of patches. The 
use of patches makes the problem tractable for large images; is a regularization parameter which 
balances between the two terms of the objective function. The first term attempts to minimize the 
image reconstruction error while the second one works for obtaining a representation as sparse as 
possible. The high dimensionality optimization problem can be efficiently manipulated using the 
K-SVD iterative method [49]. K-SVD is a generalization of the K-means clustering process that 
alternates between sparse coding of the images based on the current dictionary and a process of 
updating the dictionary elements to fit better the data. The sparse coding is implemented using an 
orthogonal matching pursuit (OMP) algorithm [50] which first find the dictionary element that has 
the biggest inner product with the image patches, and then subtract the contribution due to that 
element, and repeat the process until the image is satisfactorily decomposed.
	 For MARFE classification, a supervised learning strategy has been implemented. The dictionary 
has been learned adaptively from the training data (a set of images containing MARFEs) using 
the procedure described above. At this step the sparsity condition has not been applied allowing 
an arbitrary number of atoms to represent each image, until a specific representation error, related 
to the estimated image noise, is reached. The dictionary retrieved using this procedure contains 
enough information for the reconstruction of images belonging to the same class with the images 
in the training set. The representations are relatively robust against distortions and missing data. 
However, for images containing patterns with different characteristics, the reconstruction error 
increase significantly and this behaviour can be used to discriminate between classes of images. 
The dictionary is used to derive a representation for each image of the video sequence, limiting 

Σj=1||gj – Dαj||2 
image

reconstruction

M λΣl=1||αl ||0 
sparsity

L
{α, D, f } = argminα, D, g +
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the number of terms in the representation (the sparsity condition is now applied). Then a similarity 
map between the image and its representation can be calculated using a relation similar to Eq. (8). 
Again, the similarity map, which contains values calculated in each image pixel, can be pooled 
into a single score by a summation over the image. MARFE events can be identified as peaks with 
FWHM (full width at half maximum) below a certain threshold. The same threshold value has 
been used for the whole JET MARFE video database. The use of redundant representations and 
sparsity as driving forces for MARFE identification has allowed to correctly classifying 94.8% of 
the MARFE events. Among the misclassified events, a rate of 4.4% corresponds to false positive 
events and 0.8% to false negatives. A representative result is illustrated in Fig.7. The complete 
details of the implementation are reported in Ref. 51.
	 Local object shapes can be efficiently identified by the distribution of edge directions, even 
without precise knowledge of the corresponding gradient or edge positions. This idea is exploited 
by the Histogram of Oriented Gradients (HOG) descriptors [52]. They use a dense representation of 
the image by means of a local statistic of edge orientations. The image is divided into small regions 
called cells and for each cell a histogram of the gradient orientations over the pixels is calculated. 
The combination of the histograms of the different cells provides the image representation. In 
constructing the histogram, the gradient orientations are weighted by their magnitude, in order to 
promote the contribution of pixels located on the edges. The contribution of each pixel is distributed 
into adjacent cells using a Gaussian weighting window in order to prevent boundary effects. 
Normalization over group of cells, followed by clipping, is frequently used for reducing the effects 
of non-linear illumination changes. For MARFE images this step can be skipped because plasma 
events (MARFE and non-MARFE) appear mainly as bright features on a dark background, with 
a low contrast variation along the image stream. The HOG descriptors are usually associated with 
a recognition system based on supervised learning. Support Vector Machines (SVM) classifiers 
[53], which are based on the concept of decision planes that define decision boundaries, represent 
an efficient and reliable choice. 
	 HOG descriptors provide a dense and robust coding of shapes ensuring strong discrimination 
power. However the processing time for evaluating the descriptors represents a critical issue. Possible 
solutions for this problem are the integration of a cascade-of-rejecters and the use of AdaBoost to 
train the chain of rejection rules [54], or the parallel implementation using the GPGPU (General 
Purpose computation on Graphics Processing Units) technology [55-56]. The last approach has 
been recently applied for MARFE automatic identification [51]. The implementation uses a region 
of interest which encompasses the area where most of the MARFEs in the JET database leave a 
signature, in order to diminish the computation time for gradients evaluation. On the other hand 
the latency of CPU global memory access can be minimized by copying a large amount of data in 
the GPU memory and allowing a large number of active threads. Therefore a set of consecutive 
frames are grouped in a “combined image” which is copied and processed into the GPU memory. 
The computation time needed for an image is ~0.65ms, which is approximately twenty times greater 
than the time interval between consecutive frames (the frame rate of the KL-8 fast visible camera 
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is ~0.33 ms). Obviously it is not possible analyze all the images in the stream. Therefore a criterion 
to select the images susceptible to contain MARFE events has been defined. It is based on the sum 
of grey-levels in the image, reflecting the idea that both MARFE and non-MARFE events produce 
images with enhanced brightness. The HOG calculations are started only if this criterion is satisfied. 
The contiguous sequence of frames for which the HOG computation is launched define an interval 
of interest (IOI) - see Fig. 7. The gap between consecutive IOIs can be smaller than the dimension 
of a “combined image”. This means that immediately after the analysis of an IOI, another one 
should be processed, delaying the response of the classifier. The average value of the time needed 
for prediction, calculated for the whole JET database, is ~15.4 ms while the maximum delay is ~42 
ms. As the time difference between the MARFE occurrence and the following disruption is usually 
of the order of several hundreds of milliseconds, the HOG method is able to provide the prediction 
fast enough to allow sufficient time for the intervention of mitigation tools, in order to reduce the 
detrimental effects of disruptions. The classifier reached a success rate of 100%, even if only 77.8% 
images displaying MARFE shapes have been identified. The reasons for this difference may be 
the use of the region of interest which captures only a part of the MARFE signatures and also the 
selection of frames for building the training set. 
	 A significant effort has been spent in developing methods suitable for automatic MARFE detection 
because they may provide new information potentially useful for disruption prediction. However the 
methods developed address also the identification of other harmful events. For example the detection 
of UFOs may provide useful information for preventing significant damages to the plasma facing 
components. UFOs appear in video images as bright small particles moving fast inside the vessel. 
The spatial resolution of the camera does not allow the disclosure of many details of their shape. 
Therefore distinguishing UFOs from hot spots (static regions of the vacuum vessel reaching high 
temperatures due to concentrated plasma-wall interactions) may be achieved capturing information 
about their dynamic. The pixels with variation in intensity are identified by using a high pass filter 
for extracting the high frequency components of the image. As the filter parameters may vary with 
the image characteristics, a pragmatic procedure consists of subtracting a blurred version of the 
image from the original one has been used. The resulting frame is scanned by an edge detector 
algorithm. The Laplacean filter proved to give the best trade-off between results and computational 
costs. Spurious discontinuities may result after edge detection. Therefore edge linking algorithms, 
based on simple morphological operators (dilation, erosion) have to be used to group edge pixels into 
meaningful edges. The last step consists of the discrimination of UFOs based on the dynamic criteria 
(mainly the changing rate of shape and position). The dynamic analysis of UFOs is particularly 
difficult because a high number of objects have to be followed on complex trajectories which can 
intersect and can be occluded by structures or simply present discontinuities due to changes in 
emission. First encouraging results have reported [37] but these extremely complex procedures are 
still subject of further development.
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4.	 Image processing for long term trends assessment
The useful video information related to several physical phenomena (instabilities, pellets, filaments) 
and to events detection can be retrieved, after complex processing procedures, from a limited 
number of frames or at most from the whole set of images corresponding to a JET pulse. However, 
in case of other phenomena, the meaningful information is unveiled only after a large number of 
experiments or after a whole experimental campaign.
	 For example, the interaction between the tiles and dust or droplets mobilized during the 
discharges lead to the formation of spots appearing in the images provided by the KL-9B infra-red 
(IR) camera system. This camera is installed on the top of JET vacuum vessel (Fig.8), viewing 
the JET divertor from the top of the machine. It operates between 3.5-5mm and up to sampling 
frequencies of ~20kHz [57]. The evolution of the spots properties (such as size and distribution) and 
their correlation with macroscopic events become available only after scrutinizing of a long series 
of experiments. Obviously, for the assessment of long term trends, which imply the processing of 
a large amount of videos, automatic image processing tools are essentials. These tools have to be 
tailored to take into account the specificities of the images recorded by the camera. The KL-9B 
camera delivers images with wide varying brightness. For a certain range of brightness, spots with 
variable intensities, irregular shapes and lying on a variable background become visible (see again 
Fig.8). Sudden changes of the brightness may arise due to the occurrence of plasma instabilities 
which produce light signals (such as e.g. ELMs).
	 Several notorious spot detection methods have been tested, but the experiments revealed difficulties 
in customizing these methods for the specific problem of spot detection and characterization in 
images recorded by the KL-9B camera. Due to the background non-uniformity the watershed 
method [58] provides over-segmentation. The variability of images and spot properties imposes 
the readjustment of several parameters in case of the active contours methods [59], with negative 
effects for automating the image processing chain. It has also to be mentioned that the use of 
morphological operators using specific structuring elements is prone to altering the shapes of the 
spots, causing difficulties in the interpretation of the results. Therefore a specific semi-empirical 
technique has been developed. It does not use any prior assumption regarding the spots parameters 
and distribution, allowing the preservation of the irregular shapes.
	 The first step of this method consists of the determination of local intensity maxima by using 
the MAX-MIN filter [60]. This method allows an efficient implementation which provides robust 
results reducing in the same time the computer latency and memory usage. Then a circular search is 
performed around each local maximum. The ratio between the intensity of the local maximum and 
the average intensity of the neighbouring pixels should exceed a pre-defined limit (the same for all 
images), preventing the classification of flat regions as spots. In agreement with the experimental 
observations, the size of the spots is limited by checking if, at a certain distance from the local 
maximum (the same distance has been used for all analysed images), the pixels intensities fall 
below a certain threshold. This threshold depends on the image average grey-level and therefore 
it has to be determined empirically. Its value has been adjusted manually for a set of images with 
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average grey-level covering the whole range observed experimentally, in order to obtaining a ‘good’ 
spot detection. The quality of the spot identification has been judged by visual inspection. A linear 
dependence of the threshold value with respect to the average grey-value has been obtained and used 
in the automatic analysis of all videos. An illustration of the quality of spots detection is presented 
in Fig.9. The details of the algorithm briefly described here can be found in Ref. 61 together with 
additional results.
	 Spots identification in a set of videos is followed by the determination of different spots 
parameters: the evolution of the area covering the divertor tiles, the size distribution, identification 
and labelling of frames containing giant spots, etc. For example, the evolution of the total spot area 
covered by spots for the divertor tiles is illustrated in Fig.10. 
During the experiments, characteristic patterns are evolving with significant changes occurring at 
relatively long intervals of time. For assessing this evolution the correlation coefficient is calculated 
for each pair of successive spot patterns:

	 (11)

where is the total number of pixels in the image and and are the indexes of the current pair of 
images - this coefficient has the value 1 for identical images. Its evolution displays several peaks, 
corresponding to regions where a high correlation between patterns exists (Fig.10). For the sequence 
of pulses where the pattern remains approximately unchanged, a general characteristic configuration 
can be obtained by merging all patterns in one image and applying an appropriate threshold.
	 Spot pattern clusterization is useful for determining the correlation with macroscopic events. The 
transition between successive kinds of spot patterns has been found to correlate with pulse intervals 
characterized by a series of intentional disruptions and related studies (such as massive gas injection). 
This is illustrated also in Fig.10, which relates the main variations in the correlation coefficient with 
the main features of the corresponding experimental programme. This analysis has been performed 
on a set of 190 videos from the data existent for JET Pulse No’s: range 80380-83165. The data 
selection and retrieval has been facilitated by the software platform PINUP (Plasma ImagiNg data 
Understanding Platform) [62-63], developed for imaging diagnostics data and integrated into the 
JET data computing environment.
	 Further systematic surveys are to be undertaken in the future JET campaigns in order to obtain 
new insights related to the evolution of spots properties and their relation with macroscopic events. 

Conclusions
Image processing tools are already common instruments in plasma diagnostics on JET and it can 
be forecasted that they will become indispensable for the safe operation of the next generation of 
fusion devices and for maximizing the scientific exploitation. Besides the tools developed for the 
active protection of the plasma facing components, which are routinely used during JET experiments 
and besides the intelligent and automatic techniques for handling and data mining the growing 

N 2Σi fikfik–1 – Σi fik Σi fik–1

[N 2Σi (fik)2 – (Σi fik)2]1/2 [N 2Σi (fik–1)2 – (Σi fik–1)2]1/2
corr =
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database, the image processing, analysis and interpretation for extracting physical information has 
also reached maturity. Working in an imagistic environment usually characterized by significant 
noise, saturation and various artefacts and populated by a wide typology of objects, these methods 
achieved several noteworthy results. The optical flow techniques proved to be a reliable tool for 
evaluating the ice extrusion velocity in the process of pellet injection (with real-time capabilities) 
and also for deriving information related to pellet cloud dynamic and drifts. A package of methods 
has been developed for automatic events detection. Several classifiers developed for retrieving 
MARFEs signature in video data are compatible with on-line implementation and allow a good rate 
of correct classification and a low rate of false alarms. As MARFEs normally precede disruptions 
in density limit discharges, these methods represent a first image based approach for disruption 
prediction. An effective implementation depends on the future upgrade of the hardware of the 
cameras in order to allow real time data streaming. The interaction between the divertor tiles and 
the dust mobilized during the discharges has been addressed by developing tools for detection and 
analysis of the spots subsequently occurring in IR images. The assessment of the long term trends 
in their evolution makes possible the correlation with macroscopic events. As future nuclear devices 
will be equipped with a significantly increased number of high performance imaging systems, it is 
expected that image processing methods for extracting physical information will face new challenges 
in what concerns the detection, analysis and interpretation of physical phenomena leaving signatures 
in the video data, simultaneously with the necessity to be able to manage massive data production 
and real time requirements. 
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Figure 1: The field of view of the fast visible camera.

Figure 2:ELM filaments moving up along the poloidal limiters (left - consecutive video frames are shown in each row), 
the calculated modulus of the optical flow field (middle) and motion segmentation (right). The moving filaments and 
are marked by red dashed circles while the corresponding optical flow is marked by yellow dashed circles. Images are 
recorded for JET Pulse No: 69903.

Figure 3: Illustration of the optical flow calculation for MARFE: consecutive video frames (top), horizontal component 
(bottom left), vertical component (bottom middle) and modulus (bottom right).
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Figure 4: A sequence of frames from the video showing the extruded deuterium ice in case of JET Pulse No: 76379 
(top) and the corresponding optical flow evaluation (bottom). Due to strong saturation of the images provided by the 
video camera, the ice ribbon-structure is only partially visible. Therefore the speed velocity field is reconstructed only 
when the visible ribbon structure is clearly identified.

Figure 6: Example of detected MARFE by background subtraction [38](left) and by processing the MPEG motion 
field [36] (right).
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Figure 5: The ribbons of ice floating during the extrusion process (left). The motion segmentation provided by the 
MPEG motion vectors is represented by the red perimeters (right).
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Figure 7: The evolution of the identification index for PhC, SR and HOG classifiers in case of the JET Pulse No: 50053. 
During this discharge a number of 7 MARFE events occurred (M1, …, M7). PhC succeeds to identify all MARFE events 
except M1, for which the   (red curve) is below the threshold level (dot red curve). The blue curve shows the evolution 
of the similarity index in case of SIR. With one exception (the misclassified event E) the narrow peaks correspond to 
MARFE events. HOG identify correctly all the MARFE events without generating misclassified events – the grey curve 
depicts the output of the trained SVM  (grey curve) and the green bars mark the frames for which the HOG calculation 
is launched.

Figure 8: Illustration of the location of the IR camera (left) and typical images recorded revealing spots with variable 
intensities and lying on a variable background (middle). The region corresponding to the two tiles of the divertor is 
marked by the yellow contour. A zoom of the region corresponding to the left tile make visible the irregular shapes of 
the spots (right).
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FIgure 9: Illustration of the quality of the automatic procedure for automatic spot detection - the original frame no. 1043 
from the video corresponding to the JET Pulse No: 81423 (top) and the same frame with detected spots superimposed as 
black areas (bottom).

Figure 10: Illustration of the results retrieved from the spot detection and analysis: the evolution of the spot area covering 
the divertor tiles (left); the evolution of the correlation coefficient between successive spot patterns and relation between 
the abrupt reductions in the correlation coefficient value and the experiments, mainly related to intentional disruptions 
-  VDR: Vertical Displacement Events DMV: Diagnostic Mass Valve MGI: Massive Gas Injection; two typical general 
configuration of spots characterizing a sequence of pulses depicted as inserts (right).
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