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Abstract
Efficient, real-time and unsupervised data analysis is one of the key elements for achieving scientific 
success in complex engineering and physical systems, of which two examples are the JET and 
ITER tokamaks.
	 There is a wealth of signal processing techniques that are being applied to post-pulse and real-
time data analysis in such complex systems, and here we wish to present some examples of the 
synergies that can be exploited when combining ideas and methods from different fields, such as 
astronomy and astrophysics and thermonuclear fusion plasmas.
	 One problem which is common to these subjects is the determination of pulsation modes from 
irregularly sampled time-series. We have used recent techniques of signal processing in astronomy 
and astrophysics, based on the Sparse Representations of Signals, to solve current questions arising 
in thermonuclear fusion plasmas. Two examples are the detection of magneto-hydrodynamic 
instabilities, which is now performed routinely in JET in real-time on a sub-millisecond time-
scale, and the studies leading to the optimization of the magnetic diagnostic system in ITER. 
These questions have been solved formulating them as inverse problems, despite the fact that these 
applicative frameworks are extremely different from the classical use of Sparse Representations, 
on both the theoretical and computational points of view.
	 Requirements, prospects and ideas for the signal processing and real-time data analysis 
applications of this method to routine operation of ITER will also be discussed.

1.	 Introduction.
Efficient, real-time and unsupervised data analysis is one of the key elements for achieving scientific 
success in complex engineering and physical systems, of which two examples are the JET and 
ITER tokamaks. There is a wealth of signal processing techniques that are being applied to data 
analysis in such complex systems, and here we wish to present some examples of the synergies 
that can be exploited when combining ideas and methods from different fields, such as astronomy 
and astrophysics and thermonuclear fusion plasmas.
One problem which is common to these subjects is the determination of pulsation modes from 
irregularly sampled temporal and spatial series [1]. Historically, this problem has been addressed 
combining methods based on various forms of the Fourier Transforms for the time-series analysis, and 
using methods essentially based around the Lomb-Scargle periodograms [2-5] for the spatial-series 
analysis. For the latter, much work has been performed to improve on the limitations of the original 
periodogram methods, essentially in the field of Astronomy and Astrophysics (A&A). This general 
measurement problem is further complicated in thermonuclear fusion plasmas, and specifically in 
large-scale tokamak and stellarator devices, by the (often very) low number of measurement points 
in the spatial domain, which is due to in-vessel engineering and installation constraints, leading 
to a number of mathematical difficulties. Therefore, analysis method based on the spatial Nyquist 
criterion cannot in general be used because of the effect of aliasing, particularly if intermediate to 
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small wavelengths need to be resolved. For the specific case of magneto-hydro-dynamic (MHD) 
instabilities in tokamak devices, this deficiency has prompted the development and the successful 
application of various analysis methods, such as the Singular Value (SVD) [6, 7] and wavelet 
[8] decompositions, the Wigner [9], Choi-Williams [10, 11] and Hilbert [12] Transforms, and a 
generalization of the Lomb-Scargle periodograms [12].
	 A particular sub-class of MHD analysis problems is that of understanding the behaviour of 
instabilities that are essential for controlling the stability of magnetically confined thermonuclear 
plasmas. Specifically, the problem of unsupervised real-time detection of MHD modes has now 
become one of the most important aspects for machine protection and control of plasma discharges 
in thermonuclear fusion experiments. The method routinely used for this analysis involves 
sampling a (usually) rather small set of input signals, such as measurements of magnetic, density 
and temperature fluctuations, which in most cases are un-evenly sampled in the spatial domain. 
Appropriate processing of such a set of input data facilitates the detection of the different components 
in a multi-harmonics spectrum. Furthermore, when the data contains some spatial periodicities, 
these can be readily used to enhance or eliminate the detection of certain components. A real-time 
algorithm can then generate a global alarm that is sent to the plant. Under certain specified and 
pre-determined operational conditions, this may then trigger a feedback control mechanism. For 
some examples of these activities, the Readers are referred to Chapter3 and Chapter7 and references 
therein in [13] and Chapter2 and references therein in [14].
	 One drawback of most of the current MHD detection and control methods is that they can only 
detect modes when they have become unstable (with a growth rate gGROWTH/w>0, where w>0 is 
the mode’s angular frequency), i.e. when they may have already had some detrimental effect on the 
actual plasma operation and performance. On the other hand, an alternative and innovative method 
is in use on the JET tokamak [15]. This diagnostic technique combines the active excitation (via a 
set of in-vessel antennas) of magnetic field perturbations which have a very small amplitude at the 
plasma edge (maximum intensity |dBDRIVEN|<100mG, i.e. typically ~105 times smaller than the value 
of the toroidal magnetic field in JET, BTOR~1T to BTOR~4T) with synchronous real-time detection 
of the resonant plasma response to such antenna-driven perturbations. This method then allows 
detecting MHD modes when they are still stable (with a damping rate gDAMP/w>0), i.e. before they 
could have affected the discharge, which is evidently a much more satisfying situation for plasma 
control and machine protection.
	 However, none of the methods described above can be efficiently used for the decomposition 
of a stable spectrum of MHD modes with the aim to measure their damping rate, because of 
their mathematical limitations and computational requirements, particularly when real-time, sub-
millisecond calculations are needed, and when the measurement spectrum is frequency-degenerate, 
i.e. it contains multiple temporal components at frequencies which are separated by less than the 
damping. Conversely, a method based on the Sparse Representation of Signals, as implemented in 
the SparSpec code (freeware available at: http://www.ast.obs-mip.fr/article123.html) [16, 17] has 
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been demonstrated to efficiently and correctly perform the post-pulse [18] and real-time [19, 20] 
blind and unsupervised signal decomposition of data which are un-evenly sampled in the spatial 
domain using a (very) small number of measurement points.
	 Finally, following the successful application of the Sparse Representation of Signals to the analysis 
of actual measurements of different classes of MHD instabilities on the JET tokamak, we have used 
this method as an “inverse tool” to predict the MHD measurement performance of the ITER array 
of high-frequency (HF) magnetic probes [21-24]. This has allowed us to comparatively test the 
measurement performance of different system designs, thus allowing us to propose an optimized 
diagnostic design [25, 26].
	 This paper is organised as follows. Starting from existing literature [27], in Section-2 we review 
the mathematical foundations of the Sparse Representation of Signals and of the SparSpec code. 
Section-3 presents some application of this algorithm to the analysis of various MHD instabilities 
observed on the JET tokamak. Section-4 then deals with the application of a method based on 
the Sparse Representation of Signals to the optimization of the design of the ITER HF magnetic 
diagnostic system. Finally, Section-5 presents the conclusions of this work and some prospects 
for future applications to ITER and other complex engineering and scientific systems such as the 
Square Array Telescope (SKA) [28].

2. Sparse Representations of Signals and the SparSpec code.
The A&A problem consists in the analysis of time-series: these can be, for instance, light curves 
or radial velocity measurements, which are subject to observational constraints, such as day/night 
alternation and meteorological conditions. The A&A ground-based measurements are therefore 
always obtained through irregular sampling. An example of such a data set is provided in fig1, 
showing the observation for the radial velocity curve of the Herbig Ae star HD 104237, obtained 
over five observing nights of high resolution spectroscopy at the South African Astronomical 
Observatory during April 1999 [29, 30].
	 In A&A data analysis (as for MHD analysis in thermonuclear fusion plasmas), the main objective 
is that of looking for periodicities. For the case of variable stars, and multiple star systems, there are 
several oscillation modes, some of which are related to the stars’ orbits and have to be filtered out 
when oscillations in other quantities are sought. This leads to the estimation of spectral lines from 
the data. The irregular sampling can be seen as the application of an irregular Dirac comb w(t) to 
the original signal y(t) and can be well understood in the Fourier domain:

(1)
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In eq.(1), y(tp) are the individual measurements taken at all the time points tp (for p=1, …, P), from 
which the irregularly sampled signal ys(t) is constructed through the filtering via the  Dirac delta 
function d(t-tp), and Ys(f) is the Fourier Transform (FT) in time of ys(t). Ys(f) then corresponds 
to the convolution of the FT of the original signal Y(f)=FT(y(t)) with the spectral windows W(f), 
which is the FT of the irregular Dirac comb, W(f)=FT(w(t)).
	 In the theoretical infinite regular sampling case, the spectral window is the usual Dirac comb and 
the Fourier transform of the sampled data corresponds to a periodised version of the original signal’s 
FT. This property leads to the well-known Nyquist-Shannon theorem [31] which is not valid in the 
irregular sampling case. An example of data FT and spectral window is provided in fig2. Hence, 
the analysis problem becomes that of obtaining a deconvolution of the spectral line data Y(f) from 
the spectral window W(f). The mathematical modelling for this problem is relatively simple: as 
the original signal is constituted of a sum of pure frequencies, each data point y(tp) is expressed as 
a weighted sum of complex sinusoids, the so-called atoms:

(2(a))

where ep is the error on the measurement, cl and ul are the complex amplitudes and frequency, and 
L is the total number of spectral components. The formulation of eq.(2a) presents two problems: 
first, it is non-linear with respect to the frequencies ul, and second, L is unknown a-priori.
The problem described by eq.(2a), which amounts to fitting multiple complex sinusoids to the 
input data, is a very general signal processing problem which arises in many fields of physics. 
Such a spectral analysis problem from irregularly sampled data is very common in A&A, where 
time series acquisition usually suffer from incomplete temporal coverage, in particular periodic 
gaps caused by the Earth’s rotation and revolution, and a-periodic interruptions due to the weather. 
Many methods have been proposed in the fields of A&A to improve the analysis of such irregularly 
sampled time series, based on generalizations of the Lomb-Scargle periodogram [2, 3] and Data-
Compensated Discrete Fourier Transform [32]. When dealing with data with several frequencies, 
iterative procedures are generally used [5, 33]. Such methods, however, are inadequate when there 
are several temporal frequencies and too few measurements. Specific methods have also been 
developed for short data strings to analyse strictly periodic signals (fundamental frequency ν0 and 
harmonics frequencies which are an exact multiple of ν0), such as Phase Dispersion Minimization 
[34] and string length method [35].
	 A major simplification [36] of eq.(2a) can be obtained by using a discretization of the frequency 
axis fk=(k/K)*fMAX, with k=[-K, ..., K], where fMAX is much larger than the largest frequency 
component that can reasonably be present in the measurements, leading to:

(2(b))
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The problem is linear with respect to xk, but we now must deal with an even larger number of 
unknown amplitudes xk and frequencies fk, as one may take that K>>L to achieve a high resolution 
analysis. However, the estimation of the spectral lines {xk, fk} can then now be greatly simplified 
imposing the sparsity of xk and fk, i.e. imposing that the xk and fk have only a small number of 
non-zero components. Such a problem can be tackled through the Sparse Representations principle.
Formally, Sparse Representations [17, 37, 38] are representations that account for all information in 
the input data y(t) with a linear combination of a small number of elementary signals (for instance: 
sine waves, Diracs, …) called atoms that belong to a selected family (a dictionary) which contains 
many such elementary signals. The atoms set is a redundant family, i.e. it does not form a basis 
as the number of atoms (2K+1, see eq.(2b)) exceeds the dimension P of the signal space, so any 
signal can be represented by more than one combination of different atoms. Among all these various 
possible combinations, the one with the smallest number of atoms is the Sparse Representation 
of the signal. The sparsity of {xk} can be quantified with the L0 (pseudo) norm, i.e. the number 
of non-zero components in {xk}: ||x||0=#{k,|xk|≠0}. Hence, the Sparse Representations of {xk} is 
defined as 

0
ˆ arg(min )xx x= , subject to y = W • x. Here y=[y1, y2, …, yP]T is the vector of data 

taken at position tp; x=[x1, x2, …, xM]T is the vector of complex amplitudes, and W=[w11, …, wPM] 
is a matrix where the column vector wk corresponds to the k-th atom at the time point tp for p={1, 
…, P}. The Sparse Approximations of signals [39-41] is the version of the Sparse Representations 
adapted to noisy data, i.e. 

0
ˆ arg(min )xx x= , subject to || y = W • x ||2

2 < a,  where a is a user-defined 
threshold related to the noise level. Theoretically, the Sparse Approximation problem can also be 
written as the minimizer of the criterion:

(3)

where  g is a penalization parameter related to the noise level. However, to minimize this criterion, one 
must perform a combinatorial optimization, i.e. sift through all possible combinations of elementary 
signals, which is intractable for large M. Hence, two kinds of methods have been proposed to get 
round this problem. The first one, often called a greedy pursuit algorithm, iteratively adds atoms to 
the initial approximation of the signal to improve such approximation [42], which are very similar 
to iterative procedures used for spectral analysis in A&A [5, 33]. The second one, often called a 
convex relaxation scheme, replaces the L0 (pseudo) norm in eq.(3) with another penalization term, 
generally based on the L1-norm, such that the criterion may be minimized more easily, particularly 
when considering optimization of the use of CPU time.
	 Strictly speaking in fact, the sparsest solution minimizes the least-square criterion penalized 
with the L0 (pseudo) norm, i.e. the number of non-zero components in the solution. However, 
minimizing such a criterion requires an exploration of all possible combinations of modes in the 
input dataset, similarly to the SVD technique proposed in [7], which is very demanding in terms 
of CPU-time consumption. Such an exploration is in fact avoided in SparSpec by considering the 

2
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L1-norm, i.e. the sum of the absolute values of the mode amplitudes, instead of the L0 (pseudo) 
norm penalization.
	 Here we follow this convex relaxation approach, classically using the L1-norm ||x||1=Sk|xk|, 
instead of the L0 (pseudo) norm shown in eq.(3), so that x = arg(minx||y

 - W • x ||2) + l|| y ||1. Hence 
we obtain the criterion:

(4)

It can then be easily shown that the criterion of eq.(4) is convex, therefore has no local minima, but, 
as the number of unknowns may be larger than the number of data points, this criterion is not strictly 
convex, i.e. the global minimum cannot be a-priori guaranteed to be unique. Moreover, this criterion 
is not differentiable for xk=0, which is a necessary (but not sufficient) condition for sparsity [43].
In practice, minimizing this L1-norm penalized Least-Square (LS) fitting criterion is much easier 
than minimizing the original one based on the L0 (pseudo) norm, and many computationally efficient 
algorithms have been developed, some of which can be made compatible with a real-time system 
using a 1kHz clock-time. However, minimizing eq.(4) does not necessarily lead to the same solution 
as minimizing eq.(3), i.e. sufficient conditions for the equivalence between the L0 (pseudo) norm 
and L1-norm need to be satisfied.
	 Much theoretical work has been performed to determine the conditions of equivalence between 
the L0 (pseudo) norm and the L1-norm penalization criteria (see for instance [41, 43, 44]). For 
example, it can be shown that if the signal can be represented with ||x||<(1+1/m)/2 components, with 
m=maxk≠l(|wk

Hwl|), where WH is the Hermitian transposition of W, then minimizing eq.(4) will lead 
to the selection of the same atoms as the solution minimizing eq.(3). Hence, the accuracy of our 
calculations (both real-time and post-pulse) is also guaranteed by the comparison between a model 
input spectrum (with/out background noise) and the output spectrum as calculated by SparSpec 
using the actual geometry of magnetic sensors.
	 Therefore, the choice of the family of atoms is critical in the Sparse Representations (and 
Approximations) of signals as, with an appropriate choice, these atoms might be well adapted to the 
signal to be analysed and might lead to a matrix W with good analytical and numerical properties. 
For these reasons, the matrix W is often chosen as a family of relatively uncorrelated atoms, such as 
wavelets, Diracs, pure sine waves, etc …, but cannot be chosen arbitrarily as it is not guaranteed to 
have the required good properties, as we will show later. For the spectral analysis problem that we 
analyse here the atoms are driven by the problem itself and therefore we use wk=exp(2ipfktp), for 
p={1, …, P}. Moreover, the sparsity of the components xk, hence the L1-norm, has to be computed 
on the modulus of the complex amplitudes xk, while the sparse approximation problem is generally 
studied, only for real-value amplitudes. Finally, note that |xk|≠|Re(xk)|+|Im(xk)|, so imposing the 
sparsity on the complex modulus is radically different in terms of the model than sparsity applied 
separately on the real and imaginary components [16].
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Considering now the particular application of the Sparse Representation method to magnetically 
confined thermonuclear fusion plasmas in a tokamak device, the MHD analysis is based on magnetic 
and turbulence measurements, and typically starts with an initial Fourier decomposition of the data 
in the time/frequency domain to obtain the individual frequency components y(w). As in a tokamak 
the plasma column has, to a first approximation, 2D boundary conditions along the toroidal direction 
and on the poloidal plane, perpendicular to the toroidal direction. The spatial structure of the MHD 
instabilities is determined by further decomposing each frequency component in its toroidal (n) and 
poloidal (m) harmonics: y(w)=e-iwtSn,mAmne

infeimq. Here f and q are the toroidal and poloidal angle 
coordinates, respectively, and we have used the fact that in tokamak geometry one single toroidal 
component with a given n usually has multiple poloidal components due to toroidicity and various 
other geometrical effects. The aim of mode number analysis is to determine the value of {n, m} of 
the magnetic instabilities present in the plasma and to estimate their amplitude from data acquired 
with P detectors un-evenly positioned at angles fp (θp), p={1, …, P} being the suffix labelling the 
individual sensors used for the measurement.
	 For generality and consistency with the original A&A notation, in the tokamak plasma fusion 
problem the Fourier conjugated variables can still be called {time, frequency}, which can then be 
the actual toroidal {f, n} or the poloidal {q, m} conjugated angle and mode-number variables. This 
means that the mathematical formulation can be equivalently used for calculating the n- (toroidal) 
and m- (poloidal) mode numbers by using the relevant sensor geometry. For the determination of 
the poloidal mode numbers in tokamak geometry, one has to remember that we should consider 
explicitly the so-called q*-correction [45-47] to the sensors’ position, so as to run the mode number 
decomposition analysis using the correct, i.e. equilibrium-dependent, sensor geometry.
	 Considering now for simplicity of notation the specific case of toroidal mode number analysis, 
each measurement y(tp) can be mathematically modelled with a slight variation of eq.(2a):

(5)

where nl and αl are the unknown mode numbers and amplitudes, respectively, L is the unknown 
number of modes and εp corresponds to the noise on the data for the given p-th sensor, and periodic 
boundary conditions in f have been used. Thus, the mode detection problem is strictly equivalent 
mathematically to the A&A spectral analysis problem.
	 Evaluating the amplitudes αl and the mode numbers nl of multiple modes in a multi-harmonic 
spectrum is a very difficult problem, even if the number of modes in the input spectrum is actually 
known a-priori. The usual way to tackle this problem is performing a best LS fitting of the input 
data. However, this criterion has many local minima for real valued spectral peaks [48, 49], hence 
in principle requiring a combinatorial exploration for integer-valued mode numbers nl, and an 
a-posteriori thresholding scheme to differentiate the “correct” from the “wrong” solutions. This 
is a very CPU-time intensive process and cannot possibly be adapted for real-time applications 
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on the sub-millisecond time scale required for the analysis of the JET (and ITER) measurements. 
An alternative solution consists of providing an estimate for the amplitudes of all possible mode 
numbers in the range {−K, …, K} (where |K| is much larger than the maximum mode number that 
can be conceivably present in the input spectrum), at the same time enforcing that most of these 
modes actually have a null amplitude, i.e. a utilizing a Sparse Approximation.
	 The mode detection (i.e. the spectral analysis) problem is particularly difficult in the case of 
tokamak plasma physics as the data is un-evenly sampled and sparse, because of unavoidable 
installation constraints on the measurement devices. It can be shown that the difficulty of the 
spectral analysis problem is closely related to properties of the spectral window, such as the height 
and positions of its secondary lobes. Indeed, the mathematical problem described by eq.(5) can be 
expressed equivalently in the Fourier spatial domain as:

(6)

where n is the spatial frequency, Y(n) and E(n) corresponds to Fourier transform with respect to 
the angular position f of the data and the noise, d is the Dirac delta function, the symbol “*” is the 
convolution operator and W(n) is the spectral window of the sampling scheme. Thus, if W(n) has a 
high secondary lobe (with an amplitude close to 1) at a frequency n0, a mode number n will produce 
in the Fourier transform Y(n) a maximum at n1=n and a secondary maximum at n2=n±n0, with an 
amplitude proportional to W(n2-n1)=W(|n0|). This means that it will be difficult to distinguish the 
actual mode n from the two “aliases” modes at n±n0, even in the absence of noise in the data. If 
we consider for simplicity that obtaining the “true” mode number n0 obeys a normal probability 
distribution with variance s2(n0), i.e. PTRUE(n=n0)µexp(-(n-n0)

2/s2(n0)), then we also find (using a 
best fit of the data that led to the analysis presented in [25, 26]) that the probability PFALSE(n=n0) 
for a false detection of n as n0 due to the secondary lobes in the spectral window when using the 
SparSpec algorithm is PFALSE(n=n0)µs2(n0)´Si(W(ni)+W(|ni|=n0))/W(n0), where the sum is intended 
on all possible combinations of ni and n0 such that ni=n0±n0.
	 In thermonuclear tokamak plasmas these lobes are due to regularities in the sampling (for instance 
when using a spacing larger than the Nyquist condition) and to the low number of sensors. This 
situation is further compounded by the failure of sensors over time, a problem that cannot easily be 
rectified due to restricted in-vessel access. As an example, the spectral window for two families of 
JET high-frequency magnetic sensors is shown in fig3, comparing the data for the original complete 
set of 11 sensors that could be used in 1997 for toroidal mode number analysis, and for the 7 
sensors in that set which can currently (2013) be used for real-time and post-pulse analysis of MHD 
instabilities. Note that the original dominant n0=±10 secondary lobe has now been supplemented 
by an even higher secondary lobe at n0=±4, which is much more difficult to deal with as the most 
interesting n-number range is actually within |n|=1 and |n|=10.
	 When applied to thermonuclear plasma physics, the problem described by eq.(6) has some 
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additional requirements with respect to the A&A problem described by eq.(2b), even if its solution 
can still be obtained using eq.(4). First, the data are complex-valued, implying that the Fourier 
transform of the data does not satisfy the Hermitian property ˆ ˆ( ) ( )y yn n´´ = as in the spectral analysis 
of real-valued data. Obviously, the complex-valued data have to be analysed together, conserving 
the I/Q phase relation between them, and not independently. Second, the mode numbers nl can only 
take positive or negative integer values, while in the general spectral analysis problem frequencies 
take real values. This is a favourable property as the model (2b) works on a discretized frequency 
grid. For A&A problems, a very fine discretization of the frequency grid is required so that real 
valued frequencies are not too distant from the nearest frequency on the grid. Note however that 
a posterior estimation of the out-grid estimation of the detected frequencies can be performed, i.e. 
using a barycentric estimation of the neighbour frequencies (as we are interested in all the |xk|≠0 
components and not in the approximation of the signal as y~Skwkxk) [16]. Third, in the real time 
applications we consider for JET (and for ITER), a set of data is acquired every 1ms, therefore the 
spectral analysis must be completed in an unsupervised manner in the short time between each 
measurement acquisition.
	 For the analysis presented here, the atoms are imposed by the model setup in eq.(5) to be pure 
complex exponential waves, W={exp(inkfp)}p,k, for p={1, …, P} and k={1, …, M}, with nk=k−
K+1 and M=2K+1. Due to the irregular sampling, the atoms are strongly correlated. Indeed, it can 
be shown that |wk

Hwl|=W(nk-nl), so that it corresponds to regular samples of the spectral window. 
As W(n) may take values greater than 1/3 (as shown in fig3), the previous sufficient condition 
guarantees exact detection only if the signal consists of a single mode number. Nevertheless, it 
has been shown from many simulations and analysis of measurements using comparisons between 
different numerical methods that such a solution generally gives very satisfactory results in terms 
of detection, even in the case of multiple modes [18, 25, 26, 48]. Moreover, for irregular sampling, 
uniqueness of the global minimizer is almost surely guaranteed if it has less than P/2 non-zero 
components, where P is the data size [16, 25, 26].
	 In terms of amplitude estimations, it has been shown [16, 17] that minimizing eq.(4) leads to an 
under-estimation of the amplitudes of the detected mode numbers due to the L1-norm penalization 
term. Thus, an a-posteriori LS re-estimation of these amplitudes is usually performed for post-pulse 
analysis in a second step within the calculations, after the modes have been actually detected. Their 
amplitudes are computed by minimizing the least square criterion ||y−WDETxDET||2 where only 
the non-zero amplitudes of the optimization step are preserved in xDET. Note that this a-posteriori 
amplitude estimation step is not an absolute necessity for the real-time analysis, as its main objective 
is to detect the actual modes, their mode numbers and frequency width, and not to precisely estimate 
their absolute amplitudes, a scaled value being sufficient for this purpose.
	 Many numerical algorithms are available to minimize criteria such as those of eq.(4) for Sparse 
Approximations. While for real-valued unknown {xk} this problem can be written as a classical 
Quadratic Program, for complex-valued unknown {xk} it corresponds to a Second-Order Cone 
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Program [38]. An algorithm based on an iterative Block Coordinate Descent procedure has been 
previously proposed [16, 17], and implemented in the SparSpec code. This procedure consists of 
performing successive one-dimensional minimization steps with respect to each complex-valued 
unknown xk, where each one-dimensional minimization has an explicit solution. This algorithm is 
very efficient and a correct solution can be typically found in less than 1ms using the rather modest 
computational resources available to process real-time JET data [19, 20, 27].
	 A real-time implementation of the proposed modes detection method requires not only an 
efficient optimization algorithm to minimize eq.(4) but also, and even more importantly for a 
frequency-degenerate spectrum, an efficient unsupervised tuning of the penalization parameter λ. The 
penalization parameter l is related to the noise level [16] and requires an appropriate tuning, since 
it increases the penalty for those solutions which invoke a larger number of modes. The first order 
necessary and sufficient optimality conditions for convex non-differentiable functions (often known 
as the Karush-Kuhn-Tucker optimality conditions [50-52]), provide a physical interpretation for λ: 
(a) for λ>λMAX=maxk(|wk

H(y-WxMIN)|)=maxk(|Y(nk)|), the minimizer xMIN of eq.(4) is identically 
zero, i.e. the unique solution has no detected modes; (b) for a given l, the minimizer xMIN of eq.(4) 
satisfies maxk(|wk

Hr|)=maxk(|R(nk)|)<l, where r=y-WxMIN is called the residual (data minus the 
model corresponding to the estimated modes). Hence l can be interpreted as the maximum peak 
amplitude allowed in the FT modulus of the residual, and choosing l to be a fraction λNORM∈[0, 
1] of the maximum of the FT of the data l=lNORM×max(|WHy|), ensures the FT of the residual r to 
be lower up to this fraction relative to the maximum of the data FT. Hence knowledge of the noise 
level in the measurements helps to determine the optimum value for lNORM to be used for real-time 
and post-pulse analysis of MHD fluctuation data.

3.	 Applications of a Sparse Representation method and of the 
SparSpec algorithm to the analysis of magnetic fluctuations in 
JET tokamak plasmas.

The main application of Sparse Representation methods and of the SparSpec code on JET has been 
the real-time and post-pulse analysis of Alfvén Eigenmodes [53-56]. Alfvén Eigenmodes (AEs) 
are a particularly important example of real-time mode detection and tracking in thermonuclear 
fusion experiments for two essential reasons. First, these waves are a natural Eigenmode of any 
magnetically confined plasma: their frequency FAE is simply proportional to the ratio between the 
magnetic field and the square root of the plasma mass:

(7)

and thus represents the balance between the tension force of the ambient magnetic field lines and 
the plasma inertia. In eq.(7) BTOR is the toroidal magnetic field, ni and Ai are the density and atomic 
mass of all ion species, mp is the proton mass, qRES(rRES)=(2m+1)/2n is the value of the safety factor 
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at the mode resonant position RRES=R0+rRES, where R0 is the magnetic axis position and r the minor 
radius. The quantity multiplier defines which class of AEs is being investigated: multiplier=1 is 
used for Toroidal AEs (TAEs) and multiplier=2 for ellipticity-induced AEs. The analysis of the 
dispersion relation of AEs can thus provide unique information on the plasma isotopic composition, 
the safety factor profile and the toroidal rotation frequency via the Doppler shift in the AE mode 
frequency for different toroidal mode numbers [57-59]. Second, the fusion-born alpha particles 
(as) have a supra-thermal speed at birth that is typically well above the Alfvén speed in the usual 
thermonuclear tokamak plasma conditions. Resonant interaction with AEs is the first wave-particle 
interaction encountered by the as during their thermalization process: hence, this mechanism for 
phase-space and spatial diffusion needs to be appropriately monitored and controlled to guarantee 
good confinement of the as themselves s [60, 61].
	 While in JET the measurements of unstable AEs, i.e. with a negative imaginary component g<0 
of the mode frequency w=wAE+ig, are obtained using standard high-frequency magnetic diagnostic 
systems, the measurements of stable AEs, i.e. with a positive g>0, are obtained using the so-called 
Alfvén Eigenmodes Active Diagnostic (AEAD) system [15], as its original (and still currently 
predominant) aim is indeed that to drive and detect AEs. This diagnostic system works on the 
principle of active excitation of low-amplitude magnetic perturbations using in-vessel antennas, 
with maximum driven intensity at the plasma edge |dBDRIVEN|<100mG, i.e. typically ~105 times 
smaller than the value of the toroidal magnetic field in JET, BTOR~1T to BTOR~4T. Active excitation 
is then combined with synchronous real-time detection of the resonant plasma response to such 
antenna-driven perturbations, which provides the capability of measuring only the plasma response 
at the frequency corresponding to the antenna excitation. The AEAD real-time controller, the Alfvén 
Eigenmodes Local Manager (AELM), constitutes one essential and furthermore worldwide unique 
component of the JET Real Time Data Network. The measurement of the mode characteristics, 
such as the frequency, amplitude, toroidal mode number and damping rate, are obtained in real-time 
through calculations performed on a sub-millisecond time scale by the AELM software. This data 
is then passed to the Real Time Signal Server [62], which in principle allows implementing a real-
time control and feedback system for the modes detected with the AELM by measuring the distance 
from the marginal stability limit g/w=0, and calling for a reaction of the plant when the plasma is 
approaching the limit during the discharge. Further details on the technical implementation of the 
AELM hardware infrastructure and software can be found in [27].
	 The Sparse Representation method and the SparSpec code have been extensively used to obtain 
results on the dependency of the mode frequency and damping rate for stable AEs on various 
background plasma parameters, and these results have been presented previously [63-68]. Hence, 
in this Section we focus our attention to a brief review of the analysis capabilities of the SparSpec 
code and on newer data that may open novel applications of such method on JET (and ITER), 
specifically in view of the on-going upgrade of the AEAD system [69-71].
	 The overall accuracy of the SparSpec code for the analysis of post-pulse and real-time data is 
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evaluated using simulations performed on a synthetic dataset SIN(un):

(8)

Here un∈[0, 2p] is the position of each sensor, and the input signal SIN(un) is constructed as an 
arbitrary superposition of different components at the integer mode numbers lk, k∈[-LMAX, LMAX], 
where LMAX is the highest mode number in the spectrum. Each lk spectrum component has a fixed 
or randomized amplitude Ak and relative phase dk. The quantities sSIG∈[0, 1] and sMEAS(un)∈[0, 
1] represent the standard deviation in the background noise on each spectral component and on the 
measurement itself at each sensor, respectively, and are known a priori (i.e. they have a fixed and 
unique value for each simulation) as they can in principle be measured directly on the system when 
installed. The quantities {r1k, r2k, r3n, r4n} are random numbers chosen from a uniform distribution 
in the interval [0.0 → 1.0]; note that the random seed used for {r1k, r2k} can be different from the 
one used for {r3n, r4n}. With this approach, the noise has independent and un-correlated complex 
components satisfying the circularity property. In general, sSIG and sMEAS can be different and, more 
importantly, sMEAS can have different values for different sensors. Intuitively, sSIG can be associated 
to background noise from the plasma, for instance due to un-coherent turbulence; conversely, sMEAS 
is associated with “engineering” errors, such as tolerances on the position and alignment of the 
sensors, calibration errors, and various effects such as cross-talk, drifts, offset, signal pick-up and 
bit-noise in the cabling and electronics. These accuracy tests are performed using Matlab R14 on 
a 2GHz laptop with 1024MB of RAM.
	 The “confidence level” in the SparSpec calculations is then defined by comparing the output 
results for {Ak, lk} to their input value:

(9)

In eq.(9) the total variance on the input data is taken as sTOT (P being the total number of sensors):

(10)

This definition of a confidence level is a very stringent criterion to measure whether the scientific 
requirements for the accuracy of the SparSpec code are satisfied. A normal distribution of the 
output data centred on an expectation value provided by the input data, with the variance taken as 
the total variance on such data, i.e. precisely as the ones given in eqs.(9, 10), meets the accuracy 
requirements provided we achieve a confidence level in excess of e-1/4=0.7788. This value for the 
confidence level is obtained when the absolute difference between output and input data is less than 
half the total variance on the input data.
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We have translated this theoretical definition of a confidence level for the analysis of simulated data 
into the required accuracy for the analysis of actual data by matching the nominal tolerances for the 
ITER measurement requirements for high-frequency instabilities [22-24], specifically with respect 
to the accuracy of the toroidal mode number determination. This is very important as, for instance, 
a nominal 10% or a ±1 tolerance on the toroidal mode number determination leads to very different 
requirements for the system depending on which “specific” mode number this tolerance is applied 
to. In terms of physics interpretation and for real-time plasma protection and control applications, 
wrongly interpreting the n=1 mode as an n=0 or an n=2 mode (i.e. n=n±1) clearly does not have 
the same implications as wrongly interpreting the n=10 mode as an n=11 or an n=9 mode, i.e. still 
having a ±1 error on n. Hence, the confidence level defined in eq.(9) corresponds to the ability of 
obtaining the requested quantity with an accuracy given by the ITER measurement requirements 
for high-frequency instabilities.
	 Hence, we have decided to consider that the acceptable error is ±0 on the toroidal mode number 
and ±15% on the measured mode amplitude |dBMEAS| for low-|n|≤5 modes of importance for plasma 
protection and control and for real-time measurements. Examples of these modes are the precursor 
for sawteeth, Edge Localized Modes and disruptions, and radially extended MHD instabilities 
such as global Alfvén Eigenmodes, Neoclassical Tearing Modes, Resistive Wall Modes and Alfvén 
Cascades. Conversely, a mode number measurement error ranging from ±1 to ±3 is deemed to be 
acceptable for MHD instabilities which are only of “physics” interest, for instance core localized 
Alfvén Eigenmodes with |n|=6→20, for which the amplitude |dBMEAS| only needs to be measured 
within ±30%. The required post-pulse measurement accuracies on the mode amplitude and toroidal 
mode number and can then be summarized as follows:
	 Figure4 shows the confidence level in achieving the ITER measurement requirements for the 
evaluation of the toroidal mode number and mode amplitude when applying the SparSpec algorithm 
to a synthetic dataset defined as in eq.(8) using the seven surviving high-frequency magnetic 
sensors available in 2013 in JET. More technical details on this method can be found in [25, 26]. 
The result shown in fig4 represent an overall summary of in excess of 50’000 simulation runs, 
using a frequency-degenerate input mode spectrum that consists of up to 10 (toroidal) modes with 
the same mode frequency, with randomized relative amplitudes in the range Ak=0.05→1.00 and 
relative phase in the range dk=0→1.95*p, and input toroidal mode numbers in the range |n|≤30. The 
two main SparSpec run-time analysis parameters lNORM and fMAX, where fMAX is the size of the 
dictionary used in the analysis, were scanned in the range 0.05≤lNORM≤0.95 and 60≤|fMAX|≤200, 
respectively. We note that the confidence level in the SparSpec calculations is very high, exceeding 
the nominal threshold value =0.7788=e-1/4, up to at least |n|=15, and only drops significantly below 
this threshold for higher mode numbers |n|>25. These very high-|n| modes are of no concern for 
real-time control applications in JET, and are also of relatively minor interest for JET physics but 
for in-coherent turbulence studies.
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	 3.1. Real-time and post-pulse measurement of the TAE mode 
frequency, amplitude and damping rate using the SparSpec 
algorithm.

Figure5 shows an overview of the measurement of the damping rate, mode frequency and mode 
amplitude for TAEs with different toroidal mode numbers. The measurements were obtained in 
JET using the AEAD system for the He4 discharge #79216, and these results were obtained using 
the post-pulse implementations of the SparSpec algorithm, using lNORM=0.65 and |fMAX|=150. 
In addition to the TAE data, fig5 also shows some representative plasma background parameters 
(electron density and temperature, measured with a high-resolution Thomson Scattering diagnostic 
system; safety factor, obtained combining EFIT [72] reconstruction with MSE and polarimetry 
measurements), the value of the antenna driving frequency and the value of the central frequency 
of the n=1 TAE gap computed as in eq.(7) with RRES=3m, qRES=1.5, SiniAi=4ne0, and using the 
real-time and post-pulse measurement of the toroidal magnetic field and of the electron density 
line-integrated along a chord passing through the plasma centre.
	 A few points need to be noted for the TAE measurements shown in fig5. The typical uncertainty 
on the measurement of the mode frequency is within 50Hz, due to the accuracy of the digital 
synchronous detection used in the AEAD system. For the accuracy on the determination of the 
mode numbers one has to consider the possible statistical and systematic errors due to the algorithm 
used to extract such data. For the measurements shown in fig5, the toroidal mode number can be 
determined exactly (i.e. n=n±0) up to |n|~10, and it is then subject to at least a ±1 or ~10% error 
for higher-|n| modes. The amplitude of such |n|<10 modes is then known to within a factor ~2, and 
the damping rate is subject to an uncertainty of the order of 15% for the typical cases that we have 
considered in this analysis. Finally, fig5 shows that many different toroidal mode numbers are 
present in the frequency-degenerate spectrum of stable TAEs, and these modes have amplitude and 
damping rate that can easily vary by up to a factor 10 at any given time point. Hence, an accurate 
real-time mode number discrimination is clearly an essential ingredient for obtaining damping rate 
and (at least relative) amplitude data that could meaningfully be used for plasma control purpose.
The main differences between the real-time and post-pulse implementation of the SparSpec algorithm 
are described in details in [27] and can be summarized as follows, where we use the labels “RT” and 
“PP” to indicate the real-time and post-pulse implementations of this algorithm. These differences 
are essentially due to the CPU and RAM limitations of the real-time analysis, which is performed 
in JET by the AELM system using a commercial real-time off-the-shelf Emerson Network Power 
VMEbus 5500 card with a 1GHz PowerPC and 512MB RAM, executing software running under the 
Wind River VxWorks operating system (i.e. the same software used in the NASA’s Mars rovers, Spirit 
and Opportunity). The CPU time limit of <850msec is related to the AELM being a hard real-time 
embedded system: the results of missing a deadline are classed as a failure. For JET operation this 
results in missing data or a wasted experiment, but avoids the worst case, which would be damage to 
the AEAD or to the JET machine itself. This is contrary to a soft real-time embedded system, which 
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would simply produce a reduced quality of service, such as a Graphical User Interface suffering 
sluggish mouse response. Post-pulse processing does not suffer of these limitations in computing 
power, hence allows for a much greater flexibility and scope in the analysis, but at the expense of 
a usually much longer computational time.
	 Figure6 shows the comparison between the real-time and post-pulse measurements of the mode 
frequency, amplitude and damping rate for some representative toroidal mode numbers for the 
JET discharge #77417. The post-pulse analysis was performed using lNORM=0.65 and |fMAX|=150, 
whereas for the real-time analysis we set lNORM=0.85 and |fMAX|=20 to satisfy the CPU and RAM 
limits. The data were evaluated using the RT and PP implementation of the SparSpec algorithm, and 
for presentation we selected both low-n and high-n modes. We note that the RT and PP measurement 
of the mode frequency for the different mode numbers shown in fig5 almost exactly overlap, with a 
difference that is typically less than 100Hz: this is essentially due to the accuracy of the synchronous 
detection system. Similarly, the damping rate measurement follows almost exactly the same trends 
in real-time and post-pulse, and the discrepancy in their absolute value is usually well below 15% 
when the temporal evolution of the mode was well tracked in real-time. On the other hand, the 
measurement of the absolute value of the mode amplitude is only correct in real-time within a factor 
3 to 10, although the trends are sufficiently well reproduced: this is essentially due to the fact that the 
least-square renormalization of the output amplitudes required by SparSpec cannot be implemented 
in real-time due to the limitations in the available CPU and RAM resources. However, this is an 
issue that can easily be resolved with a more performing hardware than the one currently used by 
the AELM system in JET.
	 In summary, the representative TAE measurements shown in fig5 and fig6 demonstrate that the 
SparSpec algorithm fully satisfies the requirement for accurate mode detection and discrimination 
not only post-pulse, where in principle “unlimited” computational capabilities are available, but 
also, and more importantly, in real-time when using very limited computational resources. The 
next step in JET would be to upgrade the AELM hardware so that even more accurate calculations 
could be performed in real-time, and then implement a feedback loop where appropriate actuators 
are activated when the damping rate approaches the marginal stability limit g/w=0 while the mode 
amplitude exceeds a certain threshold.

3.2 Measurement of the mode location of unstable TAEs.
The SparSpec algorithm can also be used to determine the toroidal and poloidal (m) mode number 
of unstable TAEs, driven by a population of energetic ions. An example of these measurements is 
shown in fig7 for the JET discharge #49384, where we want to compare the mode radial location as 
determined from cross-correlation analysis and from the resonant condition qRES(rRES)=(2m+1)/2n. 
For these studies, we compare the post-pulse SparSpec toroidal and poloidal mode number results 
(fig7a) with those obtained using a standard Least Square Fit (LSF) algorithm (fig7b). Whereas with 
SparSpec we obtain multiple components at any given time and frequency point, the LSF algorithm 
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provides us with what is supposedly the dominant (toroidal, poloidal) mode number. The SparSpec 
analysis was performed using lNORM=0.65 and |fMAX|=150 for the toroidal mode number analysis, 
and lNORM=0.35 and |fMAX|=300 for the poloidal mode number analysis, respectively. Figure7c shows 
the mode radial location determined as the Eigenfunction peak using qRES(rRES)=(2m+1)/2n and 
cross-correlation analysis between one magnetic probe located and the plasma edge and ECE and 
reflectometry measurements viewing various radial positions. Note that to determine the qRES value, 
we only use the dominant component provided by the SparSpec analysis. To first approximation, we 
find that both the SparSpec and LSF algorithms provide an evaluation of rRES which is consistent 
with the cross-correlation data. However, at a closer inspection we actually see that the trend, 
indicated by the cross-correlation measurements, of rRES moving towards the magnetic axis as the 
current profile relaxes and the value of the q-profile drops across the plasma cross-section, is only 
well reproduced when using the SparSpec qRES data. Conversely, the LSF data produce (even if only 
relatively small) jumps in qRES that are not consistent with the cross-correlation data. The reason 
for this difference is straightforward: whereas the LSF algorithm effectively forces a best (in the 
LS sense) fit of the magnetic measurements with one single component, the SparSpec algorithm 
allows multiple components. The dominant one is only selected a-posteriori to obtain qRES, and this 
turns out to be a more accurate processing method.

3.3	M easurement of turbulence suppression by fusion-born alpha 
particles.

The Deuterium-Tritium Experiment (DTE1) performed in JET in 1997 [73] produced the world 
record fusion power PFUS≈16MW, with a record fusion energy gain QDT≈0.65 maintained over 
about half the plasma energy confinement time tE. One of the main purposes of this experiment 
was that to verify the plasma self-heating by the fusion-born as: this process requires the as first to 
thermalize on the electrons, on a time scale tae that is in general comparable with tE, and then the 
electrons are required to heat the ions through energy equi-partition, occurring over a time scale 
tei that is around five to ten times longer than tE. This mechanism for the plasma self-heating by 
the fusion-born as was fully verified during the DTE1 experiment [74, 75]. However, and totally 
unexpectedly from a theoretical point of view, at the time of the DTE1 experiment it was also noted 
that under certain experimental conditions a thermal ion heating was obtained that was much larger 
than what could be predicted, and furthermore occurring over time scales even shorter than tE. 
This unexpected observation of an anomalous ion heating in the presence of a minority population 
of fusion-born as has only been very recently explained in terms of turbulence suppression in the 
Ion Temperature Gradient (ITG) channel by the as themselves [76, 77]. This explanation has been 
obtained by combining methods that have only recently become available, such as the SparSpec 
algorithm for the spectral analysis of the magnetic and turbulence measurements and the GENE 
code [78] for the numerical simulation of turbulence in the ion and electron channels in the presence 
of multiple and non-thermal ion species.
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Figure8 shows a summary of the spectral measurements of the turbulence in the ion acoustic 
frequency range, presented as function of the toroidal mode number for three discharges with 
different densities of as, and for two phases in the discharge: before and after full thermalization of 
the as. These results were obtained using the post-pulse implementation of the SparSpec algorithm, 
with lNORM=0.15 and |fMAX|=500. The very small value of lNORM and high value of |fMAX| are 
both needed as the turbulence spectra are incoherent, in principle could extend up to very large 
toroidal mode numbers (i.e., down to a wavelength smaller than the ion Larmor radius), and have 
an amplitude which may sit just above the background noise level. Data for negative and positive 
mode numbers correspond to turbulence in the electron and ion channels, respectively Trapped 
Electron Modes (TEM) and ITG modes. For the discharge #41069, which does not have as, the 
data have been analysed at the same two time points, i.e. before and after full thermalization of the 
as, used for the discharges #42847 and #43011, which had as. Whereas in #41069 the turbulence 
spectra are very similar at these two time points, in #42847 and #43011 we note a large increase 
in the TEM turbulence as as thermalize. More importantly, there is a factor ~2 to ~5 suppression 
of turbulence in the ITG channel when the as have not yet thermalized, with the larger reduction 
occurring in the discharge #42847, which has a larger fraction of as. Simulations performed with 
the GENE code indicate that the intensity |dBMEAS| and growth rate gITG of ITG turbulence in the 
toroidal mode number range 65<n<120 both decrease as the as start thermalizing on the background 
plasma, as indicated by the turbulence measurements. This then allows the core ion temperature 
Ti0 to increase on a time scale which is comparable to the energy confinement time tE~0.8sec, as 
measured, but is much faster than the as slowing-down time on the ions (tai~4sec) and the electron-
ion energy equi-partition time (tei~5sec). Again consistently with the turbulence and ion temperature 
measurements, the increase in Ti0 drives an increase in |dBMEAS| and gITG as the fusion born as start 
to fully thermalize, which prevents a further increase in Ti0 itself.

4.	O ptimization of the design of the ITER HF magnetic diagnostic 
system.

The ITER HF magnetic diagnostic system is intended to provide measurements of magneto-
hydrodynamic (MHD) instabilities with magnitude as low as |dBMEAS|~10-4G (as measured at the 
position of the sensors) and up to frequencies >300kHz, with toroidal and poloidal mode numbers 
up to |n|=30 and |m|=60 [22-24]. Figure9a shows the baseline design for this system as in 2009, 
built around 2 main arrays for toroidal and 6 main arrays for poloidal mode number detection.
	 The 2 arrays for toroidal mode number detection are made with 2x18=36 equi-spaced sensors 
each (indicated by red dots in fig9a) and are positioned at two different heights with respect to the 
geometrical centre of the machine, using the corners of each equatorial port on the low field side of 
the vacuum vessel wall. Hence, these two arrays have by construction a 20deg/18-fold periodicity, 
giving an intrinsic (pseudo-) Nyquist number |n|=18 on each of the two periodic sub-assemblies, 
whereas the ITER measurement requirements specify accurate detection of modes up to |n|=30. 
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(We use here the wording pseudo-Nyquist as in fact W(|n|=18)=0.2 and not =1 for a true Nyquist 
value: this occurs because the two equi-spaced sub-assemblies with 18 sensors each are spatially 
separated and do not correspond to a single equi-spaced assembly with 36 sensors, which would 
indeed have W(|n|=18)=1 exactly). This system design has another weakness, namely the absence 
of sensors for n-number detection on the high field side of the ITER vacuum vessel. This does not 
allow distinction between ballooning and anti-ballooning instabilities, nor can these arrays be used 
to diagnose MHD modes during start-up plasmas limited on the high-field side wall.
	 The poloidal mode number detection system is built around 18 un-evenly spaced sensors located 
on six (out of the nine) machine sectors, covering the entire poloidal cross-section but for the divertor 
region. The addition of the in-vessel active ELM coil assemblies to the ITER design would reduce 
the six m-number arrays to 16 sensors each, as the position of two of the sensors clashes with that of 
the ELM assemblies. This poloidal mode number detection system uses a large number of sensors, 
but not optimized: the array redundancy is significant, but the measurement system essentially 
suffers from a limited number of sensors in each one array.
	 The toroidal and poloidal mode number detection systems can be improved in the ITER original 
design layout, with initial provisions already being made for this, by adding a high-resolution mini-
array on the horizontal (toroidal analysis) and vertical (poloidal analysis) edges of some of the 
equatorial ports on the low-field side, as shown in fig9b. For toroidal mode number analysis, the 
addition of such high-resolution arrays will in principle remove the n=18 toroidal Nyquist value by 
adding un-evenly spaced sensors to the two baseline periodic sub-assemblies. For poloidal mode 
number analysis, only one high-resolution array can be added, and this will increase the number of 
sensors that can be used for such measurements.
	 Finally, note also that the ensemble of the m-numbers measurement arrays in the six machine 
sectors give rise to 14x 6-sensors arrays for n-number detection (two of the sensors in the poloidal 
measurement arrays are in fact located at the corners of the equatorial ports, hence are common 
with the toroidal measurement arrays). These arrays can in principle be used to detect, and possibly 
remove, low-n modes up to |n|≤5 from the measured spectrum, for instance for real-time control 
and plasma protection applications.
	 We have performed the baseline analysis and optimization of the ITER HF magnetic diagnostic 
system using a new approach based on a Sparse Representation Method, as implemented in the 
SparSpec algorithm. The SparSpec algorithm has been applied to a model dataset of input modes 
for various implementations of the ITER HF magnetic sensor geometry for n(m)-number detection. 
The ITER measurement requirements and the expected measurements’ errors and tolerances, as 
highlighted in Table1, are explicitly considered in this algorithm to define the correct and the wrong 
detection of the modes.
	 As the ITER vacuum vessel is still undergoing design changes, a system optimization that takes 
fully into account in-vessel engineering constraints is not yet possible. Hence, in addition to the 
physics constraints for the measurement requirements, a cost function has been included in the 
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optimization algorithm to reflect the currently foreseen procurement and installation costs for the 
sensors. This cost function is constructed as follows:

1) each individual sensors costs 7→10 cost-units end-to-end, i.e. from the initial R&D, to the 
detailed design and manufacturing, and from installation to the final data acquisition;

2)	 each high-resolution sensor in any of the equatorial ports bears an additional installation cost 
of 1→2 cost-units due to the different needs for mechanical fixing, requiring further R&D 
work and additional mechanical interfaces with the vessel structure;

3)	 each poloidal sensor located in the regions 60<q(deg)<120 and 270<q(deg)<315 bears an 
additional installation cost of 1→2 cost-units, due to more difficult cabling access;

4)	 each high-field side poloidal sensor located in the region 120<q(deg)<220 bears an additional 
installation cost of 2→3 cost-units, again due an even more difficult cabling access;

5)	 each high-field side poloidal sensor located in the divertor region 220<q(deg)<270 bears an 
additional installation cost of 4→7 cost-units, again due to an even more difficult in-vessel 
cabling access and to need for improved RF screening of image and eddy currents;

6)	 finally, if we have more than 8 toroidal sensors (including high-resolution ones) in any one 
of the 9 machine sectors, the cost increases by 1→2 cost-units for each additional group of 
8 sensors due to need of installing one further cabling loom in that sector.

The ratio between the confidence level in the measurement performance, and the costs necessary 
to achieve this performance, as defined above, can then give an additional indication of the overall 
system performance, one where we have integrated physics and budgetary requirements: the highest 
ratio defines the cheapest (financially) way to obtain a satisfactory measurement performance.
	 It is now important to introduce the nomenclature used in the following sub-sections. We use the 
wording “geometry” to define a specific method to select the number and position of the magnetic 
sensors. For instance, one “geometry” is made up with 36 un-evenly spaced sensors, and a second 
geometry still has 36 un-evenly spaced sensors in total, but of these 12 are installed in one high-
resolution array in one of the equatorial ports. For each geometry, the actual position of each sensor 
is selected either ad-hoc (for evenly spaced sensors), or through a pseudo-random algorithm (for 
un-evenly spaced sensors) that takes into account all potential installation constraints, such as zones 
where the installation is forbidden (for instance the divertor region in the case of a poloidal array). 
Because if these installation constraints, the position of each sensor is not truly randomly selected. 
Hence, each geometry is actually represented by a number of different “sensors’ arrangements”: 
for the case of un-evenly spaced sensors, these would correspond to the different (pseudo-) random 
number realizations used to construct each arrangement of sensors.
	 The baseline analysis and system optimization is performed by scanning various parameters for 
the input mode spectrum: number of components with their relative (truly) randomized amplitude, 
phase and mode number, and standard deviation s in the background (white) Gaussian noise. The 
different elements of the cost function described above are then added for each particular sensors’ 
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arrangement, and the overall average is taken as the measure of the cost-normalized measurement 
performance. Finally, various run-time analysis parameters are in principle required for the SparSpec 
calculations, as described in details in [25-27]. However, only the value of lNORM and the size (fMAX) 
of the SparSpec dictionary are actually of paramount importance for the simulations reported here: 
using these previous results, we set lNORM=0.85 and fMAX to be five times larger than the maximum 
physical mode number present in the input spectrum.
	 For the analysis reported here, we considered two main types of geometries, using equi- and 
un-evenly spaced sensors. In all cases, the position of the sensors takes into account the known 
engineering and installation constraints, such as those due to ports, gaps between vessel elements, 
diagnostics, for example. Finally, we can add a high-resolution array to any of the baseline arrays 
defined above in one (or more) equatorial port(s), as sketched in fig9b. These additional high-
resolution arrays can again have equi- or un-evenly spaced sensors. Figure10a and fig10b show some 
representative example of the test geometries used for this analysis, respectively for the toroidal and 
poloidal mode number measurement arrays. For comparison purposes, we also show the spectral 
window W(n) for the various geometries shown in fig10(a,b), n being n or m, respectively. The 
spectral window for all these geometries is well behaved, i.e. it does not show any peaks >0.8 in 
the mode number range of interest, which would very much complicate the analysis.
	 Hence, having passed the preliminary test of a well-behaved W(n), we have then defined four 
additional and complementary criteria to assess the cost-normalized measurement performance of 
any given geometry [25, 26]. For each test, we performed 50’000 simulation runs for each of the 
selected 19 test geometries, most of them being usable for both toroidal and poloidal mode number 
analysis. Each geometry using un-evenly spaced sensors is represented by at least 10 different 
sensors’ arrangements. Ten of these geometries are labelled as ES# and US# to indicate assemblies 
with a varying number of evenly (ES) and un-evenly (US) spaced sensors, as follows: #1: no high-
resolution sensors; #2; adding 1x5 high-resolution sensors; #3: adding 1x7 high-resolution sensors; 
#4: adding 1x12 high-resolution sensors; #5: adding 3x5 high-resolution sensors. The BT label (five 
set-ups) indicates the baseline design for toroidal mode number measurements with 2x18 evenly 
spaced sensors, and the configurations obtained adding to this baseline assembly [1x5, 1x7, 1x12, 
3x5] high-resolution sensors. The BP label (four set-ups) indicates the baseline design for poloidal 
mode number measurements with 16 un-evenly spaced sensors, and the configurations obtained 
adding to this baseline assembly [1x5, 1x7, 1x12] high-resolution sensors. The {ES1→ES4} and 
{US1→US4} geometries can be used for both toroidal and poloidal mode number analysis, as 
only one equatorial port is required for the high-resolution sensors. Conversely, the ES5 and US5 
geometries can only be used for toroidal analysis, as multiple high-resolution arrays are used. For 
the toroidal analysis, different sensors’ arrangements were constructed by changing the equatorial 
port(s) where the high-resolution array(s) were installed. For poloidal analysis, only the equatorial 
port can be used, and no HF sensors have been positioned in the divertor region or in the lower-
midplane and upper-midplane ports.
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The details of the analysis and the results for the four selected tests are shown separately in the 
following sub-sections. All these analyses have been performed using the same 19 geometries 
indicated above. We used an input spectrum containing between 3 and 7 modes with known 
randomly chosen (normalized) amplitudes in the range 0.05≤Ak≤1, relative phases 0≤dk≤1.95*p 
and random choice of integer mode numbers up to |n|≤30 (|fMAX|=150) and |m|≤60 (|fMAX|=300) for 
the toroidal and poloidal mode number analysis, respectively, and scanning the standard deviation 
in the background noise in the range 0.0≤s≤0.3.

4.1 Noise test analysis.
For the first test, we consider an input data set made only of white Gaussian noise of known variance, 
and we determine the 95% and 99% confidence level for not detecting any true mode. This allows 
us to assess if one particular geometry is more prone than the others to mistakenly “recognize” 
white noise as being a high-n(m) mode. Remembering from fig10a that only the V1 geometry with 
equi-spaced sensors has W(n)=0 exactly for all mode numbers except n=0 and the pseudo-Nyquist 
value |n|=18, we immediately realize that this problem is particularly important in ITER, as it is 
clearly not foreseeable to have a sufficient number of equi-spaced HF magnetic sensors for the 
spatial Nyquist frequency to exceed the maximum (n, m)-mode that needs to be accurately detected, 
as equi-spaced toroidal and poloidal arrays would have to have at least 60 and 120 sensors each, 
respectively. This is unfeasible in terms of in-vessel installation when considering an appropriate 
system redundancy over the machine’s lifetime. Therefore, it becomes paramount to understand if 
a specific geometry is more prone to false mode detection than the others.
	 A summary overview of this analysis is shown in fig11. We find that the best performing geometry 
has ~30 un-evenly spaced sensors, but needs around ~40 equi-spaced sensors. For an even higher 
number of sensors the cost function increases much more rapidly than the confidence level for 
noise rejection, i.e. the measurement performance of the system becomes much less cost-efficient. 
We also find that the reduction in the cost-normalized confidence level for noise rejection is much 
sharper for an equi-spaced geometry as the number of sensors increases above its optimum value. 
We conclude that geometries made with sub-assemblies with spatial periodicities are inherently more 
prone to incorrect detection of high-n(m) modes than those using un-evenly distributed sensors. 
For the baseline toroidal and poloidal designs, the best cost-normalized performance is obtained 
adding one array of 7 high-resolution sensors to the nominal ITER design, for a total of 43 and 23 
sensors, respectively. However in both cases the resulting confidence level values =0.907 (toroidal) 
and =0.924 (poloidal) are still below the best values =0.935 which is obtained with 25 un-evenly 
spaced + 1x5 high-resolution sensors.

4.2 False alarms analysis.
For the second test, we consider the statistics of correctly recognizing the given input real modes, 
to which white Gaussian noise of known variance is added, vs. the occurrence of false alarms, i.e. 
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modes being detected which are not in the input dataset (i.e. detected modes have a different mode 
number than the input ones) or for which the difference between the input and detected amplitude 
is larger than the tolerance indicated in Table1 for the corresponding mode number. The geometries 
giving the higher number of correctly detected modes and the lower values of false alarms are then 
the best choices for actual in-vessel installation.
	 Figure12 shows a summary of this analysis. We find again that not only the fraction of false alarms 
is lower for the geometries using un-evenly spaced sensors, but it also reaches a local minimum 
for a lower number of sensors. The addition of one high-resolution array of seven sensors clearly 
improves the measurement performance of the baseline ITER geometries against detection of false 
alarms for toroidal and poloidal mode number analysis, at the expense, however, of a larger number 
of sensors for a higher false alarm fraction.

4.3 Resilience to the loss of sensors.
For the third test, we consider the resilience in the measurement performance of all the test geometries 
against the loss of sensors through faults, considering the nominal cases of [10%, 20%, 30%] loss. 
A measure for this resilience is provided by evaluating the confidence level in achieving the same 
measurement performance of a sensors’ arrangement that has all its sensors when some sensors have 
been lost: the higher the confidence level over all possible permutations of lost sensors and input 
spectrum variations, the more resilient is that sensors’ arrangement against the loss of sensors. To 
assess the results of this test, we (logically, but somewhat arbitrarily) choose to define the values 
=0.85, =0.75 and =0.65 as the thresholds in the confidence level associated to a [10%, 20%, 30%] 
loss of sensors, respectively, that indicate that a certain geometry still satisfies the measurement 
performance requirements even when not all sensors are available. Note that the system costs do 
not enter the evaluation of this particular test, as these costs are defined once and for all when the 
system is built and do not change if any number of sensors is lost at a later stage during the machine 
lifetime.
	 Figure13 shows a summary of this analysis. The threshold values for acceptance of this test are 
explicitly shown by the horizontal (magenta) lines to guide the eye. Considering the example of a 
nominal 10% loss of sensors, we find that the nominal ITER geometry for toroidal mode number 
detection does not satisfy the requirements for the resilience in the measurement performance 
because of its intrinsic spatial periodicity, and only adding at least one array of 12 high-resolution 
sensors can correct this problem. For toroidal mode number analysis, an assembly with 25 un-
evenly spaced sensors in total, comprising 3x5 high-resolution arrays, satisfies the requirements 
for resilience in the measurement performance even for a 30% loss of sensors. It is not possible 
to satisfy the requirements for resilience in the measurement performance against loss of sensors 
with the nominal ITER geometry for poloidal mode number detection, even when adding up to 
12 high-resolution sensors. This is due to the low number of sensors =16 in the nominal design. 
For poloidal mode number analysis, an assembly with 30 to 35 un-evenly spaced sensors in total, 
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comprising one array of 12 high-resolution sensors, satisfies the requirements for resilience in the 
measurement performance even against a nominal 30% loss of sensors.

4.4	T olerance to installation and calibration errors and 
uncertainties.

For the fourth test, we consider two elements, namely that (a) the position of each individual sensor 
is not absolutely fixed, i.e. as the one given in the installation drawings, but that there is a given 
volume where that sensor will be located, i.e. as actually installed in-vessel, and (b) there will be 
uncertainties in the end-to-end calibration of the transfer function for each sensor, causing errors in 
the determination of the relative amplitude and phase of the signals coming from multiple sensors 
[47, 79]. To practically understand this last term, consider that the relative phase shift DF between 
the measurements obtained from two sensors is only due to a calibration error. We can then set 
DF=nDV, where n is the mode number and V the corresponding angular coordinate: for any mode 
number, the “erroneous” relative phase shift corresponds to a “calculated” sensor separation which 
is not the actual one.
	 These two elements effectively add an additional free parameter, i.e. a “tolerance” on the nominal 
position of each sensor as given by an in-vessel survey, which is in principle expected to be accurate 
to within a few millimetres at worst, i.e. not exceeding an angular tolerance ±0.05deg. However, 
when considering the usual calibration errors and uncertainties in the equilibrium reconstruction 
(relevant for poloidal mode number analysis) obtained in current devices, the “calculated” position 
of each sensor is in fact expected to be correct only to ±1deg at best, and ±3deg for the foreseeable 
worst case conditions. Given an input spectrum to be detected, we can then “numerically move” 
the initial location of each sensor within this positional tolerance to achieve the best measurement 
performance: this artificial displacement will then have no practical consequences for the actual 
in-vessel installation. Only when the optimization algorithm suggests a larger displacement of the 
sensors to optimize the measurement performance, we must then change their nominal in-vessel 
position, which in turns implies that the initial geometry was not optimized.
	 As the raw magnetic measurements (from which the mode characteristics are obtained) are given 
by the convolution of the input spectrum with the spectral window, the optimal sensor arrangement 
is uniquely determined by minimizing the maxima of the spectral window W(n) for the required 
set of integer mode numbers {n0}, since this reduces the contribution of all “false” modes nk to 
the “true” mode n1 due to W(nk-n1)=W(|n0|), for all nk-n1∈{n0}. Numerically, the test procedure 
is implemented as follows: we start from an initial sensors’ arrangement, and we iterate from this 
starting point by changing the position of each sensor one at a time by up to ±10deg or until we 
“hit” the closest nearby sensor. The final optimized arrangement is the one for which the higher 
amplitudes of the spectral window are reduced to the lowest possible level for the set of integer 
mode numbers of interest {n0} Defining posITER as the initial and posOPT as the final, optimized 
sensor position, we construct the average shift in the sensor position for a total of NN sensors as:
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(11)

We consider that each individual sensors’ arrangement satisfies the ITER measurement 
requirements if the overall average displacement is SensorShift≤2.5deg with a standard deviation 
std(SensorShift)≤1.5deg (or larger, provided their sum is ≤3.5deg). We then average the results for 
all arrangements representing one particular geometry. As for the previous test (see Section 4.3), 
the system costs do not enter this particular analysis, as these costs are defined once and for all 
when the system is built and do not change due to installation or calibration errors and uncertainties.
Figure14 shows a summary of this analysis. For toroidal mode number detection, the baseline ITER 
geometry satisfies the optimization requirements only when adding at least 1x7 high-resolution 
sensors. This gives a total of 43 sensors, whereas an assembly with 25 un-evenly spaced sensors 
in total, comprising 3x5 high-resolution arrays, already satisfies those requirements. The nominal 
ITER geometry for poloidal mode number analysis does not satisfy the optimization requirements. 
Conversely, an assembly with 30 un-evenly spaced sensors in total, comprising at least 7 high-
resolution sensors, satisfies them.

4.5 Overall evaluation of the measurement performance.
Having performed the four tests mentioned above, we can now proceed to an overall evaluation of 
the measurement performance for the test geometries analysed in this work. To this end, we define a 
threshold value for each of the individual tests, telling us if such a test has been passed. In that case, 
we give a value =1 to the (cost-normalized) confidence level in achieving the target measurement 
requirements. If the test has not been passed, the confidence level is then reduced proportionally 
to the distance from the set threshold value. The results from the four tests are then averaged: this 
defines the cost-normalized confidence level in achieving the ITER measurement requirements. 
The threshold values defining the acceptance of a test as function of the toroidal and poloidal mode 
numbers for different class of HF instabilities are as follows, using the same units and conventions 
of the corresponding Sections 4.1 to 4.4, are presented in Table3. For the noise rejection tests, i.e. 
those presented in Section 4.1, we indicate the fraction of detected modes due to noise. For the false 
alarms tests, i.e. those presented in Section 4.2, we indicate the fraction of wrongly detected modes. 
For the tests on the resilience to the loss of sensors, i.e. those presented in Section 4.3, we indicate 
the confidence level in achieving the same measurement performance of the full measurement array 
when some sensors are lost. For the positional optimization tests, i.e. those presented in Section 
4.4, we indicate the maximum allowed sensor shift and its standard deviation.
	 Figure15 shows the results of this analysis for some of the test geometries analysed in the 
previous sub-sections. For clarity, the three cases of [10%, 20%, 30%] loss of sensors are considered 
separately, and we also separate the analysis for individual (groups of) mode numbers, as in Table3. 
There are two main reasons for this approach, which are graphically illustrated in fig15.
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The ITER measurement requirements for HF instabilities specify four main topics, namely machine 
protection, basic and advanced control, and physics studies, classified according to the mode 
numbers. Modes required for machine protection are those with toroidal mode number |n|≤3 and 
poloidal mode number |m|≤5, which correspond to basic instabilities such as precursors for sawteeth, 
Edge Localized Modes and disruptions, Neoclassical Tearing Modes (NTMs) and Resistive Wall 
Modes: detection of these modes will call for a hard feedback controlled reaction aimed at protecting 
the integrity of the machine. Modes required for basic control have similar mode numbers in the 
range |n|≤5 and |m|≤10 and correspond to less dangerous variants of the modes sought for machine 
protection, so that their detection will call for a softer feedback controlled reaction. Modes required 
for advanced control usually have 3≤|n|≤10 and poloidal mode number 5≤|m|≤20, corresponding 
to Alfvén Cascades and AEs. Finally, modes with higher toroidal and poloidal mode numbers up 
to |n|≤20 and |m|≤30 are classified of interest for dedicated physics studies. Even higher mode 
numbers are not subject to any detailed measurement specification, and to not enter the assessment 
of the measurement performance. The classification of these groups of instabilities as function of 
their mode numbers is somewhat arbitrary and partially overlapping, as for instance global, low m/
n=3/2 AEs are usually much more benign modes then m/n=3/2 NTMs, so that the former always 
falls into the basic control class, whereas the latter may under certain experimental conditions fall 
into the machine protection class. This is reflected by the (green) vertical lines in fig15, separating 
the mode numbers into classes: these vertical lines can be “moved” to reflect changing physical 
understanding and measurement specifications.
	 Similarly, we somewhat arbitrarily choose to define that an acceptable value for the confidence 
level in the measurement performance of a given sensors’ arrangement is =0.85 when all sensors 
are still available, and we also set this value to be the same for all classes of HF instabilities, i.e. 
a flat value independent of the mode number. We then reduce this threshold to again a flat value 
=0.70 and 0.65 for toroidal and poloidal mode number analysis, respectively, when considering a 
nominal 30% loss of sensors. This is reflected by the horizontal (magenta) lines in fig15, which can 
also be “moved” to reflect changing desiderata in the required confidence level. By combining our 
wishes for the confidence level for the different classes of HF instabilities, we can then determine 
whether a particular sensors arrangement satisfies the ITER measurement requirements.
Figure15a shows the summary results of this analysis for some representative geometries usable 
for toroidal mode number detection. We find that only by adding one array of 12 high resolution 
sensors can we use the baseline 2009 ITER design with 2x18 equi-spaced sensors, but only when all 
48 sensors are present: this is simply due to the intrinsic periodicity of the baseline array. However, 
already a 10% loss makes this modified baseline geometry unable to satisfy the requirements in the 
measurement performance, unless we install 3x5 high-resolution arrays in well-separated equatorial 
ports, for instance ports [#3, #10, #14]. This therefore makes a total of >50 sensors in each array used 
for toroidal mode number detection. When using un-evenly spaced sensors, we can reduce their total 
number down to 30 if we install 3x5 high-resolution arrays in the same well-separated equatorial 
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ports. If these ports are too close-by, for instance ports [#8, #9, #10], then we are unable to satisfy 
the measurement performance requirements with 30% loss of sensors, particularly for higher mode 
numbers. By installing high-resolution array too close by, we reduce the spatial coverage of the 
measurements: hence we became very sensitive to which sensors are actually lost through fault. If 
only one equatorial port is available for HF magnetic measurements, then our best geometry is not 
as performing and needs at least 35 sensors, including an 1x7 high resolution array, or 40 sensors, 
if we can only have an 1x5 high resolution array.
	 Figure15b shows the summary results of this analysis for some representative geometries usable 
for poloidal mode number detection. We find that not even by adding one array of 12 high resolution 
sensors can we use the baseline ITER design with 16 un-evenly spaced sensors: this is simply 
due to the intrinsic low number of sensors in the baseline array. Similar results are obtained when 
considering two alternative geometries with 32 un-evenly spaced sensors in total, comprising an 
high-resolution array of 12 and 7 sensors, respectively. Only a geometry with 35 un-evenly spaced 
sensors in total, comprising one array of 12 high resolution ones, can satisfy the measurement 
performance requirements for physics studies, i.e. up to |m|≤30, and this also considering the case 
of a 30% sensor loss. If we relax this requirement and take into account only modes relevant for 
advanced control, i.e. up to |m|≤20, we find two other geometries to be acceptable: the first one still 
has 35 sensors in total, including one array of 7 high resolution ones, whereas the second requires 
45 sensors in total as it only uses one array of 5 high resolution sensors.
	 In summary, our analysis has demonstrated that the more robust sensor geometry is the un-
evenly spaced one, i.e. one without periodicities in the sensors’ spacing. For the foreseeable input 
mode spectra for ITER, a truly un-evenly distributed geometry is the more resilient to the loss of 
sensors, furthermore being much less sensitive to false alarms caused by background noise in the 
input spectrum. Conversely, a geometry made up of equi-spaced sub-assemblies has the lowest 
resilience to the loss of sensors, and the highest sensitivity to false alarms, even if the initial number 
of sensors is larger than that needed to obtain the required spatial Nyquist number. High-resolution 
arrays (located in well separated ports for toroidal mode number analysis) are very useful to reduce 
the total number of sensors required for installation. Finally, our optimization tests indicate that a 
separation smaller than 2deg to 3deg between adjacent sensors is not necessarily beneficial, even 
for high-n(m) detection, as random phase shifts due to background noise mask the “true” phase 
shifts for the closest sensors, which in turns makes it more difficult to detect high-n(m) modes with 
a sufficiently high confidence level. Keeping in mind the ITER measurement requirement for the 
HF magnetic diagnostic system, these results mean that it is indeed possible to find an optimum 
compromise between the need for redundancy, calling for the use of arrays of the largest possible 
size, the in-vessel installation constraints, which calls for the least possible number of sensors, and 
the need for having a solution for the n- and m-number analysis which is unique (i.e. irrespective of 
the number of sensors), robust (i.e. keeping the same accuracy irrespective of the input spectrum) 
and resilient against the loss of faulty sensors up to a specified value.
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Summary, conclusions and an outlook to future work.
We have used recent techniques of signal processing in astronomy and astrophysics, based on 
the Sparse Representations of Signals, to solve current questions arising in thermonuclear fusion 
plasmas. Two examples are the detection of magneto-hydrodynamic instabilities, which is now 
performed routinely in JET in real-time on a sub-millisecond time-scale, and the studies leading 
to the optimization of the magnetic diagnostic system in ITER. These questions have been solved 
formulating them as inverse problems, despite the fact that these applicative frameworks are 
extremely different from the classical use of Sparse Representations, on both the theoretical and 
computational points of view.
	 The advantages of using a Sparse Representation method, and particularly algorithms based on 
the SparSpec code, are the high speed at which unsupervised calculations can be performed, coupled 
with the relative ease with which the results can be understood. As an example, using Matlab R14 
on a 2GHz laptop with 1024MB of RAM, the complete post-pulse analysis of the mode number 
and damping rate data collected during one full JET discharge with the AEAD system takes about 
200sec of CPU time when performed using the SparSpec algorithm, compared to in excess of 
2’000sec of CPU time when performed using an SVD algorithm similar to those presented in [6, 
7]. Despite the many hardware limitations of the current AELM system on JET, only with SparSpec 
a similar analysis can be performed in real time on a sub-millisecond time base, as other available 
algorithms based on SVD methods would clearly exceed the CPU and RAM limits. Whereas it is 
true that for ITER the real-time hardware resources will be much improved, it will also be clearly 
beneficial to use them judiciously, i.e. as efficiently and as little as possible.
	 Similarly, the optimization analysis for the ITER HF magnetic diagnostic system takes advantage 
of one of the main features of Sparse Representation methods, namely the relative ease with which 
physics-based tests can be turned without further supervision into precise mathematical properties 
and specifications for any diagnostic system. Combined with the numerical efficiency of SparSpec, 
and using the methods described in this work, we find that we can fully analyse the cost-normalized 
measurement performance of one arrangement of magnetic sensors typically within 12 hours of 
CPU time using Matlab R14 on a 2GHz laptop with 1024MB of RAM.
	 For forthcoming large engineering and scientific projects, such as ITER and the SKA, it is clear 
that efficient and unsupervised data analysis, in “real-time” wherever possible, will be of paramount 
importance. For these projects, “real-time” means that the data analysis will have to be performed 
over a time scale much faster than those over which the experimental measurements will change, 
so that a control reaction of some actuators may need to be called upon. Whereas for ITER and 
perhaps one gigabyte of data for one particular sub-system, real-time means calculations performed 
on a sub-millisecond time scale, for the SKA collecting hundreds of terabytes of data for one single 
image the relevant time scale is of the order of a week, i.e. the time it may take to re-deploy some of 
optics for some of the telescopes to obtain a more accurate image of the same view of the universe. 
Therefore, the experience with JET data has clearly indicated that, due to their speed, accuracy and 
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unsupervised operation, Sparse Representation methods are perfectly adapted to achieve the goal 
of obtaining real-time measurements with an accuracy satisfying the desired requirements in future 
complex engineering and scientific devices.
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Table 1: The measurement requirements on the toroidal mode number and mode amplitude which are used to define 
correct and wrong mode detection with the SparSpec algorithm.

Table 2: Comparison and differences between the real-time and post-pulse implementation of the SparSpec algorithm.

toroidal mode 

number  

acceptable error on toroidal mode 

number 

acceptable error on mode 

amplitude  

|n| 5 
error=0  CORRECT 

error 0  WRONG 

error 15%  CORRECT 

error 15%  WRONG 

|n|>5 
|error| min(|n|/10, 3)  CORRECT 

|error| min(|n|/10, 3)  WRONG 

error 30%  CORRECT 

error 30%  WRONG 

 SparSpec-RT SparSpec-PP 

calibration fixed value at 200kHz full frequency-dependence 

input data 

up to 8 complex–valued signals from  

magnetic measurements 

only one normalization signal for the  

antenna drive 

up to 16 complex–valued signals from   

magnetic and turbulence measurements 

selection between many normalization 

signals for the antenna drive 

output 

data 

many amplitude and phase pairs, one pair 

for each selected mode number 

many amplitude and phase pairs, one pair 

for each selected mode number 

algorithm 
least-square renormalization of output 

amplitude not implemented 

least-square renormalization of output 

amplitude implemented 

CPU limit 850μsec @1GHz un-limited (user choice of hardware) 

RAM limit 512MB un-limited (user choice of hardware) 

maximum 

|n| 

|n| |fMAX|=15: mode number determined 

in real-time with relative error | n/n| 0.1 

|n| |fMAX|=30: mode number determined 

post-pulse with relative error | n/n|~0.1 
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Figure 1: (reproduced from [27]). Observation for the 
radial velocity curve of the Herbig Ae star HD 104237. 
These data correspond to five observing nights of 
high resolution spectroscopy at SAAO (South African 
Astronomical Observatory) during April 1999. The 
irregular data sampling due to day/night alternation is 
very clear.

Figure 2: (reproduced from [27]). Top frame: Fourier 
Transform of the data (blue line) presented in fig1 and 
SparSpec detection results. Various peaks have been 
detected (indicated by the red vertical lines terminating 
in a red circle), the lower frequency ones being related to 
various orbital movements residuals. The black dotted line 
corresponds to the FT of the estimation residuals. Bottom 
frame: the (zoomed) spectral window for the measurements 
presented in fig1: there are very clear ±1 secondary lobes 
corresponding to the one-day periodicity in the lack of 
measurements. The sidebands peaks at ±1 day are therefore 
removed from the FT data in the detection results shown 
in the top frame.

Table 3: The threshold values used to define acceptance of the tests described in Section 4.1 to 4.4, for the different 
classes of HF instabilities in the corresponding mode number range.

 Machine
Protection

 Basic
Control

 Advanced
Control

 Physics
Studies

 

Mode Numbers n| 3, |m| 5 n| 5, |m| 10 3 |n| 10, 5 |m| 20 10 |n| 20, 20 |m| 30 

Noise Rejection 0% 0% 10% 30% 

False Alarms 0% 0% 10% 30% 

Sensor Loss: 10% 95% 95% 85% 70% 

Sensor Loss: 20% 90% 90% 75% 60% 

Sensor Loss: 30% 85% 85% 65% 50% 

Sensor Shift (1.5±0.5)deg (1.5±0.5)deg (2.0±1.0)deg (2.5±1.5)deg 
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Figure 3: (reproduced and adapted from [27]). The 
spectral windows W(ν) for the original (1997) and 
complete set of 11 high-frequency magnetic sensors of 
JET usable for toroidal mode number analysis, and for the 
seven surviving sensors between them that can currently 
(2013) be used. Note that the original secondary lobe at 
n=±10 with W(ν)=0.70 has now been supplemented by 
an even higher secondary lobe at n=±4 with W(ν)=0.87, 
which is much more difficult to deal with.

Figure 4:The confidence level in achieving the ITER 
measurement requirements for the evaluation of the 
toroidal mode number and mode amplitude when applying 
the SparSpec algorithm to a synthetic dataset defined as in 
eq.(8) using the seven surviving high-frequency magnetic 
sensors available in 2013 in JET. The simulation results 
are symmetric with respect to the toroidal mode number 
within the simulation accuracy, hence only the positive-n 
half spectrum is plotted. The confidence level is very 
high, exceeding the threshold value =0.7788=e–1/4, up 
to at least |n|=15, and only drops significantly for higher 
mode numbers |n|>25. In excess of 50’000 simulation 
runs were performed to produce this graph, using a 
frequency-degenerate input mode spectrum that consists 
of up to 10 modes, with randomized relative amplitudes 
Ak=0.05→1.00, relative phase δk=0→1.95*π and input 
toroidal mode numbers up to |n|≤30. The two main 
SparSpec run-time analysis parameters λNORM and fMAX 
were scanned in the range 0.05≤λNORM

 ≤0.95 and 60≤ 

|fMAX| ≤200, respectively

Figure 5: Measurement of the mode damping rate 
(frame-b), mode frequency (frame-c), and mode amplitude 
(frame-d) for TAEs with different toroidal mode numbers 
for the He4 discharge #79216. These results were obtained 
using the post-pulse implementations of the SparSpec 
algorithm, using λNORM=0.65 and |fMAX|=150. The main 
plasma parameters are shown in frame-e: q(r/a) is the 
value of the q-profile at different normalized radial 
positions r/a (where a is the plasma minor radius), Te0 and 
ne0 are the electron temperature and electron density on 
the magnetic axis (at r/a=0). Frame-a show the antenna 
driving frequency, and the value of the central frequency 
of the n=1 TAE gap as computed using the real-time and 
the post-pulse data.
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Figure 6: Comparison between the real-time and post-
pulse measurement of the mode damping rate (frame-b), 
mode frequency (frame-c), and mode amplitude (frame-d) 
for TAEs with different toroidal mode numbers for the D2 
discharge #77417. The post-pulse analysis was performed 
using λNORM=0.65 and |fMAX|=150, whereas for the real-
time analysis we set λNORM=0.85 and |fMAX|=20 to satisfy 
the CPU and RAM limits. The antenna driving frequency, 
the value of the central frequency of the n=1 TAE gap 
as computed using the real-time and the post-pulse data 
and the main plasma parameters are shown in frame-a 
and frame-e, respectively, using the same format of fig5.

Figure 7a: Measurement of the toroidal (top frame) and poloidal (bottom frame) mode numbers for unstable TAEs 
driven by an energetic ion population. The toroidal mode numbers are measured using magnetic probes located on the 
low-field-side wall, whereas for the poloidal mode number analysis we combine low- and high-field side probes and 
use the so-called θ* correction [45-47] to the probes’ position to map the probe geometrical location on the vessel wall 
onto the corresponding one on the resonant flux surface given by rRES. Here the analysis is performed using the post-
pulse implementation of the SparSpec algorithm, allowing for multiple components at any given time and frequency 
point, setting λNORM=0.65 and |fMAX|=150 for the toroidal mode number analysis, and λNORM=0.35 and |fMAX|=300 
for the poloidal mode number analysis, respectively.
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Figure 7b: The same data and plotting conventions of fig7a, but here the analysis is performed using a standard Least 
Square Fit (LSF) algorithm, which effectively forces the detection of the one single “dominant” component that best 
fits the data in a LS sense.

Figure 7c: Comparison of the mode radial position, defined as the peak in the radial Eigenfunction, obtained through 
cross-correlation analysis and using qRES(rRES)=(2m+1)/2n, with the toroidal and poloidal mode numbers provided 
by the SparSpec and LSF algorithms. The vertical “error bar” for the cross-correlation data indicates the estimated 
width of the radial mode Eigenfunction. We also show the EFIT reconstruction of the q-profile. The three estimates of 
rRES are broadly consistent with each other, but we note that as the current profile relaxes and the q-value drops across 
the entire plasma cross-section, the cross-correlation analysis shows that the mode radial location progressively and 
smoothly shifts inwards towards the magnetic axis, and this trend is only captured correctly when using the SparSpec 
data to obtain rRES.
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Figure 8: Summary of the turbulence spectral data for the alpha heating experiment during the JET DTE1 campaign. 
The data are shown as function of the toroidal mode number for three discharges with different densities of α particles. 
The data are shown separately for two phases in the discharge: before and after full thermalization of the αs. These 
results were obtained using the post-pulse implementation of the SparSpec algorithm, with λNORM=0.15 and |fMAX|=500.
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Figure 9a: The proposed layout for the ITER HF magnetic diagnostic system as in 2009, for toroidal (filled red circles) 
and poloidal (filled red square) mode number; the filled blue lozenges indicate the HF magnetic sensors in the divertor 
region, blacked-out in this analysis as the presence of the divertor and shaping coils induces parasitic and eddy currents 
in the surrounding metal structures that prevent reliable measurements of HF instabilities using magnetic pick-up 
sensors; the filled blue stars indicate the sensors that have been removed because their position clashes with that of 
the newly designed active coils for ELM control.
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Figure 9b: The proposed implementation for the high-resolution toroidal and poloidal arrays (small red dots) to be 
located on the horizontal and vertical edges of some of the equatorial ports. The poloidal mode number measurement 
arrays are located in sector number: [1, 3, 4, 6, 7, 9], whereas the poloidal mode number measurement arrays are 
only located on the low-field side at the Z-height of the horizontal edges of the equatorial ports; with the green stars, 
an indicative layout for the high-resolution arrays that can be installed in these equatorial ports.
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Figure 10a: Some representative examples of the test geometries used for the performance analysis for the ITER toroidal 
mode number measurement array. The baseline geometry (V1) represents the nominal ITER design as in 2009, with 
NN=2x18 equi-spaced sensors. The V2 geometry adds to this baseline design 3 arrays of 5 high-resolution sensors 
each in the equatorial ports [#3, #10, #14]. The V3 geometry replaces the NN=2x18 equi-spaced (baseline) sensors 
of the V2 geometry with NN=25 un-evenly spaced sensors. Finally, the V4 geometry uses NN=30 un-evenly spaced 
sensors without high-resolution arrays. Note that only the V1 geometry with equi-spaced sensors has W(ν)=0 exactly 
for all mode numbers except n=0 and the pseudo-Nyquist value |n|=18.
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Figure 10b: Some representative examples of the test geometries used for the performance analysis for the ITER poloidal 
mode number measurement array. The baseline geometry (V5) represents the nominal ITER design as in 2009, with 
NN=16 un-evenly spaced sensors. The V6 geometry adds to this baseline design one array of 7 high-resolution sensors 
in the equatorial port [#10]. The V7 and V8 geometries replace the NN=16 baseline sensors of the V5 geometry with 
NN=25 un-evenly spaced sensors, but located at different test positions. As the sensors are not equi-spaced, no geometry 
has W(ν)=0 exactly for any mode numbers.
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Figure 11: Cost-normalized confidence level for noise rejection for evenly (ES#) and un-evenly (US#) spaced sensors, 
comparing the data with the baseline toroidal (BT) and poloidal (BP) assemblies. The data are plotted as a function 
of the total number of sensors. We note a characteristic bell shape in the cost-normalized confidence level, which is 
obtained because above a certain number of sensors, the cost increases much more rapidly than the confidence level 
for noise rejection, which remains almost constant. The ES#, US#, BT and BP labels indicate different sensors’ setups, 
as described in Section-4.

Figure 12: Cost-normalized false alarm fraction for evenly and un-evenly spaced geometries, and also comparing the 
results with those for the baseline toroidal and poloidal assemblies. The labeling format for the different geometries 
is the same as in fig11. We note again the characteristic (in this inverted up-down) bell shape in the cost-normalized 
fraction of false alarms, which is obtained because above a certain number of sensors, the cost increases much more 
rapidly than the false alarm rejection, which remains almost constant. For this analysis we used λNORM=0.85 and set 
fMAX to be five times larger than the maximum physical mode number present in the input spectrum, i.e. |fMAX|=150 
and |fMAX|=300 for toroidal and poloidal mode number analysis, respectively.
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Figure 14: The average positional shift required to optimize the measurement performance given an initial sensors’ 
arrangement. The horizontal axis is slightly displaced for the different geometries to improve the clarity of the graphical 
presentation, and the vertical error-bar indicates the standard deviation on the average value of the required sensor shift. 
The labeling format for the different geometries is the same as in fig11. As in fig12, for this test we used λNORM=0.85 
and |fMAX|=150 and |fMAX|=300 for toroidal and poloidal mode number analysis, respectively. The threshold values 
=2.5deg and =3.5deg for acceptance of this test are explicitly shown by the horizontal (magenta) lines to guide the 
eye. We find that the nominal ITER geometry for toroidal mode number analysis satisfies the optimization requirements 
only when adding at least 1x7 high-resolution sensors, i.e. for a total of 43 sensors, whereas an assembly with 25 un-
evenly spaced sensors in total, comprising 3x5 high-resolution arrays, satisfies these requirements. The nominal ITER 
geometry for poloidal mode number analysis does not satisfy the optimization requirements, whereas an assembly with 
25 un-evenly spaced sensors in total, comprising 12 high-resolution sensors, satisfies them.

 
ES1
ES2

ES3
ES4

ES5
BT

BP
 

 US1
US2

US3
US4

US5
BT

BP

1

0

8

6

4

2

2

3

4

5

0
20 30 40 50 60

S
en

so
r s

hi
ft 

(d
eg

)

Total number of sensors

S
en

so
r s

hi
ft 

(d
eg

)

C
P

S
13

.1
29

4-
14

c
Average sensor shift needed to optimize
measurement performance

ES1
ES2
ES3
ES4
ES5
US1
US2
US3
US4
US5
BT
BP0.80

0.20

0.40

0.60

0.75

0.90

0.60

0.70

0.80

0.90

1.00

0.85

0.65

0.55

0.35

0.15
40 45 50 55 603530252015

N
D

e 
(m

-
3 )

20
%

 lo
ss

30
%

 lo
ss

10
%

 lo
ss

C
P

S
13

.1
29

4-
13

c

Confidence level in achieving measurement performance
of installed array after loss of sensor

Total number of sensor

Figure 13: The confidence level in achieving the same measurement performance of the installed assembly after a [10%, 
20%, 30%] loss of sensors. The labeling format for the different geometries is the same as in fig11. As in fig12, for this 
test we used λNORM=0.85 and |fMAX|=150 and |fMAX|=300 for toroidal and poloidal mode number analysis, respectively. 
The threshold values =0.85, =0.75 and =0.65 associated to a nominal [10%, 20%, 30%] loss of sensors, respectively, 
for acceptance of this test are explicitly shown by the horizontal (magenta) lines to guide the eye. For toroidal mode 
number analysis, the nominal ITER geometry satisfies the requirements for the resilience in the measurement performance 
when adding at least 1x12 high-resolution sensors, for a total of 48 sensors. Conversely, an assembly with 25 un-evenly 
spaced sensors in total, comprising 3x5 high-resolution arrays, satisfies these requirements. For poloidal mode number 
analysis, only an assembly with 30 to 35 un-evenly spaced sensors in total, comprising one array of 12 high-resolution 
sensors, satisfies the requirements for resilience in the measurement performance.
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Figure 15a: Summary results of the measurement performance analysis for some representative geometries usable for 
toroidal mode number detection. The green vertical lines separate the mode numbers into classes, corresponding to 
different measurement requirements for HF instabilities in ITER. Similarly, the horizontal magenta lines reflect changing 
desiderata in the required confidence level. Both sets of lines can be moved to reflect changing physical understanding 
and measurement specifications.

toroidal mode number (n)

co
st

 -
 n

or
m

al
iz

ed
 o

ve
ra

ll 
co

nf
id

en
ce

 le
ve

l
Optimization of ITER high−frequency magnetic diagnostic system: toroidal mode numbers
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15 un−evenly spaced + 3x5[8,9,10] high−res. sensors: 30% losses: NOT OK
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Figure 15b: Summary results of the measurement performance analysis for some representative geometries usable for 
poloidal mode number detection, using the same plotting format as in fig15a.

baseline ITER design + 1x12 high−resolution sensors: no losses: NOT OK
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28 un−evenly spaced + 1x7 high−resolution sensors: 30% losses: NOT OK
33 un−evenly spaced + 1x7 high−res. sensors: 30% losses: NOT OK
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