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Abstract
The development of accurate real time disruption predictors is a pre-requisite to any mitigation 
action. ‘Accurate real time prediction’ has to be understood in terms of high success rate, low 
rates of false alarms as well as an early recognition of an incoming disruption. Only approximate 
theoretical models of disruptions exist and they do not reliably cope with the disruption issues. 
Therefore, this article deals with data-driven predictors with a view on ITER and DEMO. A review 
of existing prediction techniques, from both physics and engineering points of view, is provided. 
All these methods have to use large training datasets to develop successful predictors. However, 
ITER or DEMO cannot wait for hundreds of disruptions to have a reliable predictor. So far, the 
attempts to extrapolate predictors between different tokamaks have not shown satisfactory results. 
Moreover, it is not clear how valid this approach can be between present devices and ITER/
DEMO, due to the differences in their respective scales and possibly underlying physics. So, this 
article analyses the requirements to create adaptive predictors from scratch to learn from the data 
of an individual machine from the beginning of operation. A particular algorithm based on 
probabilistic classifiers has been developed and it has been applied to the database of the three 
first ITER-like wall experimental campaigns of JET (1036 non-disruptive and 201 disruptive 
discharges). The predictions show a success rate of 94%, a false alarm rate of 4.21% and an 
average warning time of 654 ms. The average probability interval about the reliability and 
accuracy of all the individual predictions is 0.811 ± 0.189. It should also be mentioned that a 
very limited number of signals is required by the predictor, an important point particularly at the 
beginning of the operation of new devices.

1.	 Introduction
A disruption is a catastrophic loss of plasma control which not only results in the plasma extinction 
but also in large power and force loads on the surrounding structures. These loads can produce 
irreversible damage to the fusion device and, therefore, disruptions can be a big issue in future 
reactors. As primary goal, the total number of disruptions must be kept as low as possible.
	 To deal with disruptions, two different concepts are typically used: avoidance and mitigation. The 
former is closely related to the scenario development and the plasma operational space [1, 2]. The 
latter involves any possible technique to alleviate the harmful potential effect of disruptions and, 
even, to initiate a safe plasma shut-down [3, 4, 5, 6, 7]. In other words, avoidance is associated with 
the aim of free disruption operation whereas mitigation is aimed at the alleviation of the disruption 
detrimental effects. But it is worth highlighting that a pre-requisite to any mitigation method is to 
have a reliable real-time disruption predictor during the discharge production.
	 Ideally, plasma theoretical models can guide operation and provide indications about disruption 
avoidance and prediction. However, the existing models and simulation tools have performances far 
from those that are needed [8]. Some related problems are: incomplete models, strong assumptions 
and unphysical boundary conditions.
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Data driven-models have shown to be a practical alternative to physics-driven models. In the case 
of disruptions, data-driven models allow the estimation of useful relationships among several 
quantities with the aim of performing an accurate prediction. These relationships are typically 
obtained by applying pattern recognition techniques, i.e. by developing automatic classifiers 
(pattern recognition and automatic classifier are equivalent terms). Input samples with well-known 
behaviour (disruptive/non-disruptive) are used to train a system whose objective is to determine 
a decision function (frontier) to divide the parameter space in two behavioural regions: disruptive 
and non-disruptive (the terms ‘non-disruptive’ and ‘safe’ will be used with the same meaning in 
this article). The trained system is called the model. Given a sample to classify as either disruptive 
or non-disruptive, the classification is based on the region of the parameter space where the sample 
is. It should be noted that the objective of a disruption predictor is to classify the plasma behaviour 
as disruptive/non-disruptive at regular time intervals while a discharge is in execution. The plasma 
is expected to show a disruptive behaviour before the disruption itself. The classification of the 
plasma state as disruptive in advance of the disruption is the reason for using the term ‘prediction’.
It is important to note that physics-driven models are the preferred methods, first, to promote 
disruption avoidance strategies and, second, to accurately predict a disruption. Unfortunately as 
mentioned previously, only partial theoretical models exist and these models do not reliably cope 
with the disruption issues. However, the lack of feasible disruption theory cannot stop the research 
on nuclear fusion.
	 Data-driven models appear as a valid alternative to accurately predict the presence of an incoming 
disruption as a first step to trigger mitigation actions. At this point, it should be emphasised that 
disruption mitigation is mandatory for ITER in order to reduce forces, to alleviate heat loads during 
the thermal quench and to avoid runaway electrons [9].
	 Data-driven models use available information from past discharges in order to create predictors. 
In ITER, a potential predictor could be the extrapolation of data-driven predictors from smaller 
machines. However, an attempt to accomplish this between JET and ASDEX Upgrade (AUG) 
showed unsatisfactory results [10]. Training with JET data, the success rate with AUG discharges, 
considering a prediction time greater than 0.01 s, was 67%. In the other direction, after training 
with AUG data, the success rate with JET discharges, taking into account a prediction time greater 
than 0.04 s, was 69%. In this context, prediction time means the interval between the alarm and 
the thermal quench. Moreover, nowadays, it is not clear how valid the extrapolation between 
present devices and ITER can be, owing to the differences in their respective scales and possibly 
underlying physics.
	 To avoid the problems just mentioned, this article deals with a data-driven approach for a reliable 
prediction of disruptions based on the use of the experimental data of a single fusion device. This 
is the typical situation in the prediction of disruptions. For example, the JET real-time Advanced 
Predictor Of DISruptions (APODIS) was trained/tested with 8169 discharges (7648 safe discharges 
and 521 unintentional disruptions) [11]. APODIS was working in open loop during the three first 
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ITER-like wall (ILW) campaigns of JET (years 2011-2012). The results in the recognition of 
disruptions after 956 discharges can be summarized in a success rate of 98.36% and a false alarm 
rate of 0.92%. Figure 1 shows the accumulated fraction of detected disruptions with APODIS. The 
horizontal axis represents the warning time or time to disruption from the prediction. The average 
warning time of APODIS during the 2011-2012 campaigns has been 426ms. The vertical line at 
30ms shows the minimum time in JET to perform mitigation actions [12] and, therefore, 426ms of 
average warning time is a very good result. It is important to note that the accumulative fraction at 
30ms has been 87.50%.
	 But ITER cannot wait for hundreds of disruptions to develop a successful disruption predictor. 
ITER will have much higher stored magnetic and thermal energies than present tokamaks. Therefore, 
only a limited number of disruptions are acceptable to avoid irreversible damage to the plasma 
facing components, to the first wall and also to the vacuum vessel.
	 This article looks for disruption predictors valid for ITER and DEMO. The aim is the development 
of high learning rate predictors from scratch. The term ‘from scratch’ means ‘with absolute lack of 
previous information about disruptions in a device’. Of course, the past experience of disruptions 
in previous fusion devices provides the basic information about the plasma signals to be considered 
as candidates for the predictor development.
	 The key point of any disruption predictor from scratch is to determine the number of disruptions 
that are needed to have a reliable predictor. This paper develops a Venn predictor classifier [13] from 
scratch that starts to make predictions from the first disruption. Venn predictors are probabilistic 
classifiers that determine the probability of each individual prediction. This implies that they do 
not make bare predictions, but they provide a probability interval about how accurate and reliable 
each prediction is. In terms of disruption predictors, this means that every disruptive/non-disruptive 
prediction is qualified with a probability interval that is used as the confidence level of the prediction.
	 The predictor has been applied to 1237 JET discharges corresponding to the three first ITER-
like wall experimental campaigns. It has been re-trained in an adaptive way (after each missed 
alarm) following the chronological order of the discharges. The predictor uses a reduced number 
of tokamak common signals and the results show a success rate of 94%, a false alarm rate of about 
4% and an average warning time of 654ms. The global average probability of each prediction is 
0.811 ± 0.189, which provides a high degree of confidence in the classifier.
	 This paper is structured in 9 sections. Section 2 introduces the machine learning terminology 
used in the article. Section 3 reviews recent data-driven predictors for JET and AUG. Section 4 
summarizes the results of pioneering predictors from scratch also tested with JET and AUG data 
respectively and section 5 discusses general requirements to be met for high learning rate predictors 
from scratch. Section 6 explains the mathematical aspects of the Venn prediction framework (as it 
is the base of the probabilistic predictor developed in this article) and the specific taxonomy used 
for the disruption predictor from scratch. Section 7 describes the specific implementation of the 
predictor and section 8 shows the Venn predictor results with JET campaigns. Finally, section 9 is 
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devoted to a short discussion of the outcomes of the paper and of the proposals for future work in 
the line of predictors from scratch.

2.	 Machine learning terminology
This section summarizes the general concepts and terminology that will be used in the article.
	 In automatic classification problems, a sample is represented by an ordered pair (xi, yi), where 
xi ∈

m
 is the feature vector (i.e. the set of m features that characterize the sample i) and yi is its 

corresponding label (yi∈{C1, C2, ..., CL}, where Cj, j = 1,..., L are the existing classes). For disruption 
prediction the classifiers are binary (L = 2), which corresponds to labels ‘disruptive’ and ‘non-
disruptive’. Henceforth, all reference to classifiers will mean binary classifiers unless otherwise 
noted.
	 Any automatic classification system requires a training process. In the case of supervised 
classifiers, the training sample labels are known. The prediction process is made up of two steps: 
induction and deduction (fig. 2). The first one is an inductive phase by means of which the real 
learning process is carried out. The training samples, (xi, yi), i = 1, ..., N, are used to obtain a general 
rule (also called model or decision function). From that moment, the deduction step is used to make 
predictions. Given any new sample represented by the pair (x, y) with known feature vector x but 
unknown label y, the objective is to estimate the label. The feature vector is used as input to the 
general rule and the model output is the predicted label. Common methods used for the inductive 
step in supervised classification problems are artificial neural networks [14], support vector machines 
(SVM) [15], k-nearest neighbours [16], self-organising maps [17] and generative topographic maps 
[18] among others.
	 After finishing the training process, a test dataset with known labels is used to estimate the 
classifier quality. The feature vectors of the test dataset are used as inputs to the model and the 
predictions are compared with the real labels. The results obtained in terms of success rate are 
assumed to be of the same quality for all future feature vectors that will be input to the model. 
Although this is not necessarily true, this is a standard hypothesis that is based on the fact that the 
samples are supposed to be independent and identically distributed (i.i.d. assumption).
	 Finally, it should be noted that the selection of the feature vector components is a key aspect for 
the success of a prediction task. The feature vectors have to provide crucial information about the 
configuration space of the problem and the set of components can be seen as a ‘parameterization’ 
of such a space. Unfortunately, there are no mathematical theorems to ensure optimal choices and, 
therefore, the feature selection process is a trial and error procedure that is typically guided by the 
knowledge of the expert about the problem at hand.
	 Focusing the attention on disruptions, it is important to emphasise that to deal with disruption 
prediction, the ‘parameterization’ of the configuration space depends not only on the physical 
quantities but also on their specific representations in both data formats (waveforms, time series 
data, images and, in general, any abstract form) and signal domains (time/space, frequency/wave 
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number or both). In this sense, even linear models can be difficult (or impossible) to interpret from 
a physics point of view. But it should be taken into account that the main objective of a data-driven 
disruption predictor is to recognise an incoming disruption, although the physics nature of the 
disruption is not clear. In other words, a data-driven model with these characteristics should be 
considered an engineering system.

3.	R eview of recent data-driven predictors
Disruptions have been of primary interest in medium and large fusion devices. A well-known scenario 
that causes a disruption is associated to the plasma MHD activity. A rotating island starts to grow, 
it is slowed down and finally locks and continues growing until the final disruption. The physical 
mechanism responsible for mode locking is the braking effect of error fields or MHD modes (such 
as resistive wall modes) that slow down and ultimately stop the plasma rotation [19]. The resulting 
high amplitude mode degrades the plasma confinement and can subsequently lead to a disruption.
The relation between MHD activity and disruptions is well-known since many years [20, 21]. Due 
to this fact, a common way of disruption prediction is the use of a mode lock signal [22, 23]. At 
each time instant, the mode lock amplitude is compared to a user-defined threshold. If the amplitude 
crosses such threshold, an alarm is triggered. This very simple real-time disruption predictor based 
on a single signal is not reliable enough to manage the detection of a percentage of disruptions 
close to 100% [11, 12, 24]. Due to this fact, the alternative to the mode lock trigger has been the 
development of machine learning methods, which can cope with both high dimensional problems 
and very large databases.
	 In general, machine learning methods have been used for the development of automatic 
systems able to recognize the presence of incoming disruptions. Machine learning methods have 
been developed under two different approaches [25]. The first one is based on forecasting real 
measurements of signals that are known to be an indicator of incoming disruptions. These ideas 
were applied to the ADITYA tokamak [26]. However, the main drawback of this implementation 
was the limited number of disruptions that could be predicted. The second approach consists in 
the development of supervised binary classification systems to distinguish between disruptive and 
non-disruptive behaviours. This kind of predictors are based on finding a relation among different 
signals but without taking into account the physical mechanisms that are responsible for the disruptive 
event. Recent developments of this kind of predictors can be found in [24, 11, 27, 28, 29, 30] and 
a brief summary of the most recent ones follows. 
	 In the first reference [24], a special combination of Support Vector Machines (SVM) classifiers 
and signal information in the frequency domain were used. In particular, 13 signals were considered. 
The feature vector components are the standard deviation of the power spectrum of the signals 
after removing the DC component. The reason of this choice resides in the fact that the frequency 
spectrum can be used as a precursor of disruptions. Empirically, as a disruption is approaching, 
some plasma signals present more spectral components due to the presence of higher frequencies. 
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This is translated in terms of a higher standard deviation in the power spectrum. A large dataset 
extracted from the JET database (shots in the range 42815 to 70722 that correspond to years 1997-
2007) was utilised in [24] and all types of disruptions were considered. The overall success rate is 
92.73% and the false alarm rate is 6.4%.
	 The second reference [11] is an improved version of [24] that makes use of the same special 
combination of SVM classifiers but only seven signals are utilized. The signals are represented in 
two different domains: time and frequency. This advanced implementation is known as APODIS, 
(as presented in the introduction), and it is working in the JET real-time data network with very 
good results. A very important novelty of APODIS, compared to other predictors, is its prediction 
stability. APODIS was trained with JET data corresponding to the C wall experimental campaigns 
C19-C22 (years 2007-2008) and this training was carried out with 4070 non-disruptive discharges 
and 246 unintentional disruptions. All disruptions in the above JET campaigns were taken into 
account regardless of types (mode lock, neo-classical tearing mode, vertical displacement event, 
Greenwald limit and so on, [23]) and the part of the discharge where the disruptions are produced 
(current ramp-up, plateau or ramp-down). The only exception to the selection of specific discharges 
was to exclude intentional disruptions. Fig. 3 shows the APODIS tests with JET C wall data of 
campaigns C23-C27 (years 2008-2009) and table 1 presents the results of APODIS during the three 
first ILW campaigns of JET (years 2011-2012). It should be emphasized that no retraining at all 
has been performed, but the rates remain stable. It is important to mention again that the warning 
time of APODIS during the JET ILW campaigns has been 426 ms.
	 Continuing with the above references about predictors, [27] describes an adaptive neural predictor 
for AUG. The training includes 100 disruptive discharges between years 2002 and 2004. The 
predictor is tested with discharges of later experimental campaigns (2004-2007). All disruptions 
that occurred in the chosen experimental campaigns were included except the ones occurring in 
the ramp-up phase, in the ramp-down phase (if the disruption does not happen in the first 100 ms), 
those caused by massive gas injection and disruptions following vertical displacement events. 
Whenever the predictor misses an alarm, the corresponding discharge is added to the training set 
and the predictor is retrained. The prediction success rate on disruptive pulses exceeds 80% and 
the false alarm rate is 2.6%.
	 Finally, reference [28] shows a self-organizing map for AUG which determines the ‘novelty’ 
of the input to a Multi-Layer Perceptron predictor module. A retraining process is executed in an 
incremental way, using data from both novelty detections and wrong predictions. The predictor 
was trained with discharges in the period 2005-2007 and it was applied to predict the behaviour in 
discharges between 2007 and 2009. The success rate on disruptive shots is 79.69% and the rate of 
false alarms is 3.36%.
	 All the above predictors use as much information as possible from past discharges to recognise 
in advance an incoming disruption. The main objective is to detect the disruptive event although 
the recognition mechanism does not rely on physics. However, it is important to mention two 
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recent works based on data-driven approaches with large amounts of past shots that are founded 
on empirical physics results.
In the first one, [31], a set of simple predictive criteria, each optimized to predict up to four types 
of AUG disruptions (vertical instability, edge cooling, impurity accumulation and beta limit) are 
analysed. Disruptions occurred in the period 2005-2009 were divided into the four types according 
to the last physical mechanisms leading to them and particular attention was paid to the dominant 
precursors. Only those disruptions which took place in the flat-top phase or within the first 100 
ms of the plasma ramp-down phase (whenever both the plasma current is above 0.7 MA and the 
plasma elongation is greater than 1.5) were considered. Discriminant analysis techniques were 
used to select the most significant variables and to derive the discriminant function. A rigorous 
performance analysis of the four types of disruptions can be found in [31].
	 The second work, [32], describes the prediction of disruptions based on diagnostic data of the 
high-b spherical torus NSTX. To this end, the disruptive threshold values of many signals are 
examined. The paper explains the combination of multiple thresholds to produce a total failure rate 
of 6.5% when applied to a database of about 2000 disruptions during the plasma current flat top.

4.	R eview of predictors from scratch
All the methodologies about disruption prediction that have been reviewed in section 3 absolutely 
depend on a large database of past discharges to create models able to predict disruptions. However, 
as it was mentioned in the introduction, tokamaks such as ITER and DEMO can suffer irreversible 
damage as a consequence of disruptions and, therefore, disruption prediction from scratch will be 
an essential part of their operation.
	 Recently, two different works have dealt with the development of adaptive data-driven predictors 
from scratch to learn from the data of an individual machine. Both predictors are not based on plasma 
physics behaviours, but on discovering relations between signals to identify a close disruption.
	 The first work is related to APODIS. During the three first ILW campaigns, APODIS has proven 
to achieve high success rates, low rates of false alarms, early enough disruption prediction and 
no ‘ageing’ effect (fig. 3 and table 1). The word ‘ageing’ refers to the deterioration of a predictor 
derived from operating the device in different operational regions from those used for the training 
[24]. Due to these good results, APODIS has been used to predict from scratch and to estimate 
the minimum number of disruptions to have a reliable predictor [33]. 1237 JET discharges (1036 
non-disruptive and 201 disruptive) corresponding to the JET ILW campaigns have been used 
in chronological order. The first predictor is created after the first disruption and retrainings are 
carried out after each missed alarm. The main result is that APODIS reproduces its good prediction 
capabilities and low rate of false alarms after including in the training process about 40 disruptions 
[33]. With this set-up, the success rate is 93.5% and the rate of false alarms is 2.3%. However, in 
spite of this important reduction in the training requirements (to be compared with 246 disruptions 
to train APODIS in JET), the number of 40 disruptive discharges could be too large for the ITER 
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needs and higher learning rate classifiers from scratch are necessary.
	 A second predictor from scratch [34] makes reference to fault detection and isolation (FDI) 
techniques [35]. In [34], the disruption prediction is formalised as a fault detection problem, where 
the pulses which are correctly terminated (non-disruptive pulses) are assumed as the normal operation 
conditions and the disruptions are assumed as status of fault. The normal operation conditions model 
was built with safe pulses from AUG and the dynamic structure of the data was estimated through 
the fitting of a multivariate ARX (AutoRegressive with eXogenous inputs) model. The datasets are 
composed of time series of the radiated fraction of the total input power, the internal inductance 
and the poloidal beta. The disruption prediction system is based on the analysis of residuals in the 
multidimensional space of the selected variables. The discrepancy between the outputs provided 
by the ARX model and the actual measurements is an indication of process fault (disruption). The 
predictor was applied to AUG data between 2002 and 2009. Results are promising but lower false 
alarm rates are needed. It should be noted that the methodology is not applied to conditions ‘from 
scratch’ but the technique is susceptible of such a development. However, thinking of ITER, the 
authors state that, perhaps, the method cannot be applied during the very first pulses of ITER due 
to the need of a sufficient number of pulses safely landed.

5.	G eneral requirements of a high learning rate predictor from 
scratch

As mentioned previously, disruption predictors can be essential systems in ITER and DEMO. Any 
disruption predictor in these devices has to be ready to work from the beginning of the operations and 
has to be able to recognise an incoming disruption regardless of both the root cause and discharge 
phases. As it was mentioned, nowadays, plasma theoretical models are not completely satisfactory 
for the prediction and, therefore, data-driven models are the only viable option.
	 It is important to remark again that a disruption predictor is a pre-requisite for any mitigation 
system. This fundamental characteristic determines the list of general requirements to be met for any 
data-driven disruption predictor from scratch (DPFS) that learns from the own experimental data 
of a fusion device. At least, the following operational requirements should be taken into account: 
learning from scratch, real-time operation, high success rate, high learning rate, early recognition 
of disruptions, low rate of false alarms, controlled ‘ageing’ effect, predictor simplicity, fast training 
process and reliable predictions.

R1. Learning from scratch: data-driven models require a training set of samples (the greater 
the better) with well-known labels to distinguish among different classes. However, in ITER 
and DEMO, there will be a complete absence of previous experimental data and the training 
has to be accomplished in an adaptive way as the discharges are produced. This lack of 
previous information is not only limited to new fusion devices but it also happens in existing 
devices when significant changes are implemented (for example, in JET after the installation 
of the metallic wall).
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R2. Real-time operation: real-time means a deterministic response to meet the time needs of 
the fusion device. In general, the induction step of fig. 2 can be very expensive in terms of 
computational resources (computers and CPU time) and it is carried out on an off-line basis. 
However, the real-time operation requirement is related to the deduction step of fig. 2.

R3. High success rate: This is equivalent to demand a low rate of missed alarms. This is a 
consequence of the negative implications that a missed alarm can have in a device. ITER 
needs a success rate ≥ 95%.

R4. High learning rate: The previous requirement is not enough for a DPFS that has to be 
used from the beginning of the device operation. The development of predictors with low 
learning rates is of low practical interest. The requirement R3 has to be achieved in the least 
possible time and this means that the predictor has to demonstrate a high learning rate.

R5. Early recognition of disruptions: This requirement is essential in the perspective of 
mitigation actions. In any disruption mitigation technique, a delay between the predictor 
alarm and the start of the effective mitigation action (reaction time) is inevitable. One of the 
objectives of a mitigation system is to minimise this time and it is clear that the reaction time 
has to be lesser than the warning time (fig. 4).

R6. Low rate of false alarms: obviously, it is always possible to design an extremely sensible 
predictor that triggers an alarm when the minimum sign of disruptive behaviour appears. 
Such level of sensitivity can result incompatible with standard operation of the devices, 
because all discharges could end in a premature way rendering the operation very tedious and 
possibly preventing the achievement of high performance. Therefore, a trade-off is necessary 
between the disruption risk and the operation interruption in such a way that the false alarms 
are minimised.
It is important to note that in an on-line implementation of a real-time disruption predictor, the 
concept of false alarm does not make sense. When a predictor triggers an alarm, the tokamak 
control system has to activate mitigation actions and it is not possible to know whether or 
not the alarm was false. In this article, the JET database of all discharges corresponding to 
the past ILW campaigns C28-C30 are analysed and, therefore, information about false alarms 
can be obtained.

R7. Controlled ‘ageing’ effect:  the term ‘ageing’ was defined in section 4. However, the 
‘ageing’ effect in the context of a high learning rate predictor from scratch means that the 
predictor has to be an adaptive predictor from the beginning. A continuous re-training strategy 
is fundamental to maintain an updated system able to properly work at any time.

R8. Simplicity: this means to develop the simplest possible classifier to distinguish between 
disruptive and non-disruptive behaviours at any moment. To this end, the disruption 
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configuration space will have to be characterized with a reduced number of features compatible 
with the best possible generalization capability.

R9. Fast training process: due to the fact that an adaptive classifier is needed to continuously 
incorporate new relevant information, the training process should be fast enough (from a 
computational point of view) to allow inter-shot trainings when necessary.

R10. Reliable predictions: any training process with low number of samples is an issue. For 
this reason, each individual prediction should be qualified with estimation about its reliability.

In general, the level of suitability of a candidate as predictor from scratch depends on its compliance 
with the previous requirements. But together with the above operational requirements, certain training 
specificities have to be considered in the development of general high learning rate predictors from 
scratch. These specificities are related to the inductive step of fig. 2 and can be seen as constraints 
to take into account in the training process: chronological order of training data, need of general 
predictors regardless of disruption types, independency of plasma scenarios and, finally, predictor 
applicability from plasma breakdown to extinction. 
	 Chronological order of training data: in predictors from scratch, the available information for 
training purposes is very limited and it depends crucially on the chronological order of the discharges. 
This means that the experimental program of a new device has to envisage a discharge production 
plan that takes into account the necessary continuous learning.
Need of general predictors regardless of disruption types: the main objective of the training process 
is to obtain the most general possible predictor that is independent of disruption root causes but is 
valid for all of them.
	 Independency of plasma scenarios: the training set has to incorporate details about any type of 
discharges thereby avoiding a specialised predictor on specific plasma currents, magnetic fields, 
densities, temperatures and so on.
	 Predictor applicability from plasma breakdown to extinction: the successive predictors have to 
work during the total duration of a discharge and, therefore, the training with past discharges has 
to cover not only plateau regimes but also ramp-up, ramp-down and plasma transient regimes.

6.	V enn prediction framework
This article describes the design and development of a particular disruption predictor from scratch. 
Its initial objective is to provide a trustworthy disruption predictor in situations with absolute lack of 
previous information. The aim is to learn in a continuous way and to start the predictions as soon as 
possible. In this case, the first predictor will include features of both disruptive and non-disruptive 
discharges. This means that the first predictor can be developed after having at least information 
about one disruptive discharge and one non-disruptive discharge.
	 All general requirements (R1-R10) have been taken into account to create the predictor. However, 
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requirement R10 (reliable predictions) has had a major impact in the search of mathematical 
approaches to qualify each prediction with a measure of reliability.
	 Probabilistic predictors are particularly suited to these purposes. However, taking into account that 
the first predictions will be based on a very reduced number of training examples, it is important to 
note that just a probability could be misleading. It is necessary to determine a probability interval for 
each prediction. The probability interval will give a clear idea about the efficiency of the prediction. 
The smaller the prediction interval the more efficient is the prediction. For example, a classification 
with a prediction interval [0, 1] is completely uninformative and a prediction interval [0.61, 0.62] 
is better than a prediction interval [0.6, 0.7].
	 This section is split in 2 subsections. The first one is devoted to briefly reviewing potential 
probabilistic classifiers. The second one provides a general description of the probabilistic classifier 
chosen for the particular DPFS implemented here. This implementation is valid for ITER and DEMO 
and has been tested with JET discharges after the installation of the metallic wall.

6.1. Review of potential probabilistic classifiers
Several probabilistic classifiers can be proposed. A classifier based on the Bayes decision theory has 
been considered. In this framework, given a classification task of 2 classes, w1 and w2, (disruptive 
and non-disruptive) and a sample to classify (x, y)with known feature vector x but unknown label 
y, the Bayes rule states

	
This Bayes formula gives the posterior probability that the unknown pattern belongs to the respective 
class wk, given that the corresponding feature vector takes the value x. The probability distribution 
function (pdf) p (x| wk) is the likelihood function of wk with respect to x. P (wk) is the a priori 
probability of class wk and p (x)is the pdf of x given by

	
In order to apply the Bayes rule, the likelihood and the prior probability of each class must be known. 
However, in the particular case of disruption predictors from scratch, the estimation of the likelihood 
is an issue. The main problem resides in the fact that there are no evidences of parametric forms 
for the likelihood. In these circumstances, to avoid unjustified assumptions about the form of the 
pdf, non-parametric approaches are used. Among the non-parametric probability density estimators, 
the Parzen window method [36] is the most popular. It is based on kernel methods but it needs a 
minimum number of samples to produce reliable estimations. Due to the fact that the first predictors 
will not have available enough number of samples, Bayesian classifiers have been discarded.
	 Other probabilistic classifiers such as SVM binning, SVM isotonic regression or the Platt’s 
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method are known that do not always provide well calibrated outputs (in other words, do not provide 
a frequentist justification) [37]. Therefore, they have not been considered.
	 Finally, Venn predictors are machine learning algorithms that provide a probability prediction 
interval for each prediction and they also provide well calibrated outputs under the i.i.d. assumption 
[13]. The well calibrated probabilistic outputs mean that the accuracy of the Venn predictors is 
expected to fall within the lower and upper probability intervals and, therefore, the accuracy rates 
of the predictions do not drop below the minimum probabilities given by the Venn predictors (up 
to statistical fluctuations). This kind of predictors has been the choice for the DPFS.

6.2. Formulation of a Venn predictor
Venn predictors belong to the family of conformal predictors [38, 39]. Conformal predictors, unlike 
other state-of-the art machine learning methods, provide information about their own accuracy and 
reliability. Conformal predictors do not follow the inductive/deductive steps of fig. 2. Instead of 
using a batch of old samples (training set) to produce a prediction rule (model) that is applied to new 
samples, conformal predictions use an alternative framework that makes predictions sequentially, 
basing each new prediction on all the previous samples. In this way, to make a prediction with a new 
sample, a shortcut is taken in fig. 2 and the classification process moves from the training samples 
directly to the prediction (fig. 5). From a mathematical point of view, conformal predictors are 
always valid. This means that the long-run frequency of errors at confidence level 1 – e is e or less.
Focusing the attention on the formulation of a Venn predictor [13], the starting point is a training set 
whose only assumption about the examples is that they satisfy the i.i.d. hypothesis. Let {z1,...,zn-1} be 
the training set, where each zi ∈

 Z = X×Y is a pair (xi, yi) consisting of the sample or feature vector 
xi and its class yi. Given a new feature vector xn, the objective of a Venn predictor is to estimate the 
probability of belonging to one class Yj from a set of J classes (Yj ∈

 {Y1,..., YJ}).
	 The Venn prediction framework assigns each one of the possible classifications Yj to xn and 
divides all examples {(x1, y1),..., (xn-1, yn-1), (x1, YJ)} into a number of categories. To carry out this 
division, Venn machines use a taxonomy function An, n ∈ , which classifies the relation between 
a sample and the set of the other samples:

(1)
		
Values ti are called categories and are taken from a finite set T = {t1, t2,,..., tT}. Equivalently, a 
taxonomy function assigns to each sample (xi, yi) its category ti, or in other words, it groups all 
examples into a finite set of categories. This grouping should not depend on the order of examples 
within a sequence.
	 For the reader convenience, it is important to mention several types of taxonomies that can be 
used with multi-class problems in the Venn prediction framework. Five different taxonomies are 
analyzed in [40], where the Venn predictors are based on neural networks. Lambrou et al. [37] 
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shows an application of inductive conformal predictors to develop an inductive Venn predictor 
with a taxonomy derived from a multi-class Support Vector Machine classifier. Nouretdinov et al. 
[41] describes the logistic taxonomy, which is created from the probabilistic method of logistic 
regression.
	 In this article, as it is explained in section 7, the selected taxonomy has been the nearest centroid 
taxonomy (NCT) [42]. Due to the fact that there are two classes for the disruption predictor
(Y = {YDisruptive, YNon-disruptive}), the number of categories in the NCT Venn taxonomy is also 2 
that correspond to the cases ‘disruptive’ and ‘non-disruptive’. This means that the NCT sets the 
category ti (eq.1) o.f a sample zi equal to the label of its nearest centroid (fig. 6). The mathematical 
formulation of the NCT is
	

(2)
	
where
	

Cj are the centroids of the two classes and ||.|| is a distance metric. In this article, the Euclidean 
distance has been chosen.
	 Proceeding with the formulation of the Venn predictors, after having chosen a taxonomy with 
T categories, the classification process of a new sample xn with unknown label yn and J possible 
labels (Y1,..., Y1} is a (J+1)-step procedure. The first step is to assume that yn = Y1 and partition the 
n samples {(xi, y1),...,(xn-1, yn-1), (xn, Y1)} into categories using the taxonomy that was previously 
chosen. The empirical probability distribution of the labels in the category t that contains (xn, Y1) 
will be

	
This is a probability distribution for the class of xn. In other words, after determining the category 
t which xn is located, the probabilities of each label within the category t are computed. Therefore, 
a row vector (pY1(Y1),..., p

Y1(YJ)) with J components (one per label) is obtained.
	 The second step is to assume that yn = Y2 and partition the n samples {(xi, y1),...,(xn-1, yn-1),
(xn, Y2)}in the same way as in the first step to obtain the row vector (pY2(Y1),..., p

Y2(YJ)). These 
steps are carried out J times to obtain all empirical probability distributions.
	 After having assigned all possible labels to xn, the above row vectors obtained between steps 1 
and J form a square matrix of dimension J:
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The last step in the prediction process (step J+1) is to assign a label to the sample xn to classify. The 
Venn predictor outputs the prediction yn = YJbest, where

and p(k), k = 1,..., J is the mean of the probabilities obtained for label Yj, j = 1,..., J among all 
probability distributions (i.e. the mean of every column of matrix PJ). In other words, the label of the 
column with the maximum mean value is the prediction. The probability interval for the prediction 
yn = YJbest is [L(YJbest), U(YJbest)], where U(YJbest) and L(YJbest) are respectively the maximum and 
minimum probability of the column with the maximum mean value.

7. Implementation details of the disruption predictor from scratch
This section describes the rationale of the DPFS implemented in this article. As stated in section 
6, the requirement about reliable predictions (R10) has been the starting point in the search of a 
predictor from scratch. The use of Venn predictors is justified due to three main facts. Firstly, no 
additional assumptions to the typical machine learning i.i.d. hypothesis about the samples are 
necessary. Secondly, Venn predictors provide a probability interval for each prediction instead of 
a single probability. This probability interval can be seen as a probability error bar. Thirdly, the 
predictions are well calibrated, which means that the accuracy falls between the lower and upper 
probability interval.
	 Due to the use of the Venn prediction framework, it is important to clarify the terminology before 
describing the implementation details. In particular, the term ‘training set’ has to be detailed. In 
machine learning, a ‘training set’ is typically a dataset made up of examples with well-known labels. 
In the case of non-conformal predictors, the ‘training set’ is used to obtain a model (fig.2) and from 
that moment, the training set can be ignored because only the model is necessary to make predictions. 
However, with Venn predictors, there is not a model and, therefore, the ‘training set’ cannot be 
ignored. The ‘training set’ is always used together with each new sample to classify (fig.5). Due to 
this reason, in the following, the term ‘model’ is no longer used. Instead, ‘training set’ is utilized.
	 Focusing the attention on the Venn predictor of this paper, it should be noted that the prediction 
of the disruptive/non-disruptive behaviour of a discharge has to be carried out at regular time 
intervals during the execution of the discharge. In each time interval, a feature vector is generated 
with several plasma quantities and this feature vector is used together with the ‘training set’ to make 
the prediction. The ‘training set’ is the dataset that is generated after each re-training. Therefore, it 
is important to establish that in the case of a DPFS based on a Venn predictor, the term ‘re-training’ 
means to create a new ‘training set’.
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The following subsections are devoted to discussing the specific implementation details of the Venn 
disruption predictor from scratch. Once an explicit selection of a probabilistic predictor has been 
performed under requirement R10, subsection 7.1 discusses the particular aspects of requirements 
R1-R9. Subsections 7.2, 7.3 and 7.4 describe the precise choices to optimize the issues related to 
the real-time response of the DPFS. Finally, subsection 7.5 presents the implementation of the 
predictor from scratch developed in this article.

7.1 Analysis of requirements R1-R9
To deal with the issue of learning from scratch (requirement R1), an important consideration about 
the training examples is needed. In machine learning, it is very difficult in most cases to achieve good 
results without presenting examples of all the classes. This means that the first training process of 
the DPFS requires at least one disruptive example and one non-disruptive example. It is important 
to emphasise that the term ‘example’ is not necessarily equivalent to ‘discharge’, i.e. one discharge 
could provide lots of examples and, conversely, one example could summarize data corresponding 
to several discharges.
	 Concerning the real-time response of the DPFS (requirement R2), a Venn predictor has been 
chosen. However, it is well-known that the major issue of any conformal predictor is usually the 
computation time. To overcome this crucial difficulty, the selection of, first, a reduced number of 
features, second, the concentration of knowledge about disruptive and non-disruptive behaviours 
and, third, the choice of a proper Venn prediction taxonomy are essential points. These three aspects 
are discussed in sections 7.2, 7.3 and 7.4 respectively.
	 The ageing effect of a classifier from scratch (requirement R7) has to be tackled in the perspective 
of defining a re-training strategy to maintain an updated system. In the present implementation of 
the DPFS, the policy has been to only re-train after a missed alarm. This criterion is the closest 
one to a real on-line operation in which it is not possible to determine whether or not an alarm is 
true. In this paper, the DPFS is applied to a database of JET discharges and, therefore, the predictor 
performances are assessed after the analysis of the predictions.
	 Requirements R8 and R9 are discussed together due to their close relation in the DPFS 
implementation. First of all, it is important to remember that a Venn predictor does not use the 
deductive/inductive steps of fig. 2. To make predictions, Venn predictors jointly use all previous 
samples and the new sample to classify. Consequently, depending on both the total number of samples 
and the feature vectors dimensionality, the Venn predictor framework can be computationally very 
expensive and, therefore, the computational needs can be an issue under real-time requisites. This 
implies to handle the least possible number of samples with a reduced dimensionality. All aspects 
related to this are treated in sections 7.2, 7.3 and 7.4.
	 The requirements R3-R6 are final objectives and they cannot be used to impose “a priori” 
implementation constraints. Results about the success rate (R3), number of disruptions to have a 
reliable classifier (R4), average warning time (R5) and false alarm rate (R6) can only be assessed 
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after analysing a particular implementation of a DPFS. If the predictor evaluation is not good enough 
in terms of requirements R3-R6, the specific choices performed in requirements R1, R2, R7-R9 
will have to be reviewed.

7.2 Use of a reduced number of features in the DPFS
To satisfy the requirement of simplicity (R8), the predictor architecture consists of just one single 
classifier instead of using a multi-layer architecture as APODIS. This has been decided to avoid the 
extra computation of several classifiers plus their combination into a single output.
	 The starting point has been to select a reduced number of signals to identify disruptive and non-
disruptive behaviours. Due to the characteristic of ‘starting from scratch’, only those quantities 
that are considered essential diagnostics from the start of a fusion device have been considered. In 
particular, the same signals that are used by APODIS in JET (table 2) have been chosen.
	 After this decision, it is necessary to take advantage of some knowledge derived from the use 
of APODIS. APODIS has shown that mean values (in the time domain) and standard deviations 
(in the frequency domain) corresponding to temporal windows of 32 ms provide a powerful 
parameterization of the disruption configuration space. Therefore, the new predictor will also use 
32 ms long temporal windows, (with sampling periods of 1 ms for all the signals), as basic time 
segments inside which the mean values (time domain) and standard deviations after removing the 
DC component (frequency domain) are computed to be used as features. So, the discharge behaviour 
(disruptive/non-disruptive) will be evaluated every 32 ms from the plasma start to the plasma 
extinction with the same APODIS additional condition that the plasma current is above 750 kA.
However, in spite of this low dimensional parameterization of the disruption configuration space 
(14 features), the real-time computation requirements (the smaller amount of features the better) 
motivate an even further reduction of dimensionality. The objective is to find out which subset 
of the 14 features can be used. Therefore, it is necessary to perform a combinatorial analysis to 
determine the minimum number of features that provide good enough prediction results. All possible 
combinations with a number of features between 2 and 7 have been tested. This means that 9893 
different predictors have to be analysed:
	

7.3. Selection of training feature vectors to condense the 
knowledge about disruptive/non-disruptive behaviours

The previous subsection has determined that the potential disruption predictors will have a number 
of features between 2 and 7. In fact, this number of features will be computed every 32 ms to predict 
the plasma behaviour. However, it is necessary to define the feature vectors that form the initial and 
successive ‘training sets’ after each re-training (as explained at the beginning of section 7, it should 
be reminded that ‘re-train’ means the creation of a new ‘training set’).
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In the discussion of requirement R1, it was established the fact that both disruptive and non-
disruptive samples are necessary in the training sets. But it is important to realize that, in the 
normal operating scenario of a tokamak, a high unbalance between disruptive and non-disruptive 
discharges is an intrinsic property. For example, over the last years of JET operation with C plasma 
facing components, the unintentional disruption rate was 3.4% and with the ILW campaigns the 
unintentional disruption rate is slightly above 10% [43]. But in terms of machine learning, the 
unbalance is not only related to the number of disruptive and non-disruptive discharges. The 
discharges are evaluated on a periodic basis (for example, tens of ms) and, therefore, a non-disruptive 
discharge in JET can contain thousands of non-disruptive samples. On the contrary, only the last 
samples of a disruptive discharge (let’s say 1 s before the disruption) can be considered disruptive. 
This unbalance between disruptive and non-disruptive samples was analysed in [33] for predictors 
from scratch and the conclusion was to use balanced training sets. Therefore, the DPFS will be 
using a balanced approach of disruptive and non-disruptive examples in the training sets.
Given a number of features between 2 and 7, the first training set will be made up of just 1 disruptive 
feature vector and 1 non-disruptive feature vector. Fig. 7 shows the set of feature vectors 32 ms 
long corresponding to the first disruptive discharge. They have been ordered backwards from the 
disruption time tD. The right column gives the time intervals of the temporal windows. The feature 
vector that characterizes the first disruptive feature vector in the first ‘training set’ corresponds to 
the time window previous to the disruption (gray background in fig. 7). This selection is based on 
the fact that all signals show the most clear morphological patterns of an incoming disruption just 
in the time segment closest to the disruption.
	 The selection of the first non-disruptive feature vector for the first ‘training set’ is not as 
straightforward as the disruptive one. It is clear that there are much more non-disruptive discharges 
than disruptive ones (and, of course, much more non-disruptive feature vectors than disruptive ones). 
The objective is to use a feature vector able to condense (in some sense) the non-disruptive character 
just into a single vector. A random choice of a non-disruptive feature vector does not guarantee the 
selection of a feature vector that represents an ‘average behaviour’ of non-disruptive behaviours. 
The ‘average behaviour’ feature vector has been defined as the mean value of the components of 
all previous feature vectors of non-disruptive discharges (fig. 8).
	 After defining the first ‘training set’ once the first disruption has occurred, it is possible to make 
predictions. According to the retraining strategy, this ‘training set’ can be used until the first missed 
alarm. When this happens, new knowledge has to be incorporated to the predictor. Taking into 
account the objective of using a balanced system, the new training set will include, in addition to 
the previous training feature vectors, knowledge about both the missed alarm and the non-disruptive 
discharges from the first ‘training set’. The information to include relatively to the missed alarm 
is the last feature vector previous to the missed disruption (see fig. 7). With regard to the new 
feature vector corresponding to non-disruptive behaviours, an ‘average behaviour’ feature vector, 
whose components are the mean value of the components of all non-disruptive discharges from the 
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preceding training up to the last safe discharge previous to the missed disruption, is added. This 
criterion ensures balanced training sets between disruptive and non-disruptive samples.
	 However, it is necessary to note that this balance can be altered under a specific condition. If two 
or more consecutive discharges are disruptive and the predictor fails in the recognition, there are 
not safe discharges between the contiguous disruptive ones and, therefore, only the feature vectors 
of each disruptive discharge previous to the disruptions will be included.

7.4 Venn predictor taxonomy
The next aspect to consider is the choice of the Venn taxonomy for the DPFS. The disruptive/non-
disruptive behaviours ideally should be condensed in two regions of the parameter space that are 
well separated between them. This condition looks for achieving enough generalization capability 
with the predictor, independently of the number of feature vectors in the training set. To concentrate 
as much as possible the information of both behaviours in just two points, the Venn predictor uses 
the nearest centroid taxonomy that was described in section 6.2.

7.5 DPFS algorithm
In relation with the DPFS, it is necessary to emphasize the importance of making predictions as 
soon as possible, i.e. with the minimum number of examples. Taking into account the decision of 
using balanced ‘training sets’, ideally, the first predictor should be put into operation after the first 
disruption (typically, when a tokamak starts the operation, a number of k1 non-disruptive discharges 
are produced before the first disruptive one). These k1+1 discharges will be used to generate the 
initial training set. The Venn predictor is used for the first time with the discharge k1+2. During 
this discharge, feature vectors to assess the plasma behaviour are calculated every 32 ms and each 
feature vector, together with the initial ‘training set’, is used to make predictions. The initial ‘training 
set’, with both disruptive and non-disruptive discharges, remains valid until it misses an alarm. 
At this moment, it is necessary to re-train the predictor, which means to generate a new ‘training 
set’. Algorithm 1 represents in pseudo-code the DPFS working scheme from the beginning of the 
tokamak operation.

Algorithm 1: Pseudo-code of the DPFS predictor. The Venn prediction output depends on both the 
‘training set’ and the ‘feature vector’ to classify at each time instant. When a new ‘training set’ is 
set-up, it includes all the previous samples plus knowledge about the last missed alarm and the safe 
discharges after the previous training.

Start of tokamak operation
K1 non-disruptive discharges
First disruptive discharge
First ‘training set’
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Prediction loop
	 Start of discharge
	W hile Ip > 750 kA and every 32 ms
	    Form ‘feature vector’
	    prediction = Venn predictor output
		  • ‘training set’
 		  • ‘feature vector’
	    If prediction == ‘disruptive’
		  break
	    End of If prediction
	 End of While Ip 
	 End of discharge
	 If prediction == ‘non-disruptive’ & it is false
	    Missed alarm
	    New ‘training set’
 		  • Previous training set
 		  • Knowledge about
	     	    º the missed alarm
 	    	    º safe discharges from the last training
	 End of If prediction
End of Prediction loop
Evaluation of success rate and false alarm rate

8.	R esults
Algotithm 1 has been implemented and it has been applied to a database of 1237 JET discharges 
(1036 safe discharges and 201 unintentional disruptions) corresponding to the three first JET 
experimental campaigns after the installation of the metallic wall. The first predictor is obtained 
after the first disruption and, from that moment, all discharges are analysed in chronological order. 
Each discharge is analysed by simulating a real-time data processing. Feature vectors are created 
every 32 ms and they are classified as disruptive or non-disruptive. After a missed alarm, a new 
‘training set’ is created to incorporate new knowledge as previously explained.
	 Table 3 shows the 14 features used with the Venn predictors. All possible combinations between 2 
and 7 features have been tested (9893 predictors have been developed). Given a specific combination 
of features, the algorithm 1 is executed for the whole dataset of discharges. The first predictor is 
generated after the first disruption and it is used with all posterior discharges, subject to re-train 
after every missed alarm. The statistics presented in this section correspond to the evaluation of the 
predictors after the analysis of the 1237 discharges. In other words, the success and false alarm rates 
are the cumulative results of algorithm 1 after 1237 discharges. It is important to note that the rates 
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are expressed in terms of discharges and not in terms of the number of feature vectors classified. 
This means that one discharge is classified as safe when all its feature vectors are classified as non-
disruptive. Also, one discharge is recognized as disruptive when just 1 feature vector is classified 
as disruptive. Finally, a single feature vector classified as disruptive in a safe discharge is enough 
to identify the event as a false alarm.
	 The first result to emphasise is the achievement of the same success rate, 94%, for almost all 
predictors. The lower bound of false alarms is 4.21% and the average prediction probability is high 
(the minimum value of the error bar is 0.604 and the maximum one is always 1). This high prediction 
probability gives enough confidence about the reliability of the predictors in spite of the low number 
of training samples that have been used. The use of probabilistic classifiers has been contemplated 
just to validate the prediction results as long as the prediction probabilities are high enough.
	 According to the table 5, the best candidates for predictions are the ones with false alarm rates 
of 4.21%. Among the five candidates, the predictors with lower number of features are preferred 
(simplicity requirement R8). This reduces the possibilities to only two options. The final selection 
between them is favourable to the predictor with the smaller probability error bar (the predictor 
with features 2, 3, 4 and 5) because it means a more accurate prediction.
	 Figure 9 corresponds to the results of the predictor with features 2, 3, 4 and 5. Fig. 9a shows 
the evolution of the success rate with the number of disruptions. It is important to observe the fast 
learning rate achieved in the learning process, as a success rate of 90.91% is reached with a training 
set made up of only 2 disruptive examples and 2 non-disruptive examples. The squares in the figure 
show the missed alarms. Fig. 9b represents the evolution of the false alarm rate. The false alarm 
rate tends to slightly increase with the number of disruptions. Last but not least, fig. 9c gives the 
evolution of the prediction probability as the system learns. The prediction probability increases and 
the error bars diminish (which means more accurate predictions) with the number of disruptions.
	 The comparison of these results with the APODIS version from scratch described in [33] is 
favourable to the Venn predictors. The Venn predictors do not need tens of disruptions to achieve 
stable and good enough success and false alarm rates as in the case of APODIS from scratch [23] 
(fig. 10). One important issue of the APODIS from scratch version is the need of about 40 disruptions 
to provide good performances. This problem is avoided with the Venn predictors, as it can be seen 
by comparing the success and false alarm rates of figs. 9a, 9b and 10.
	 From table 5 it is clear that both the stored diamagnetic energy time derivative and the total input 
power do not play any role in the prediction from scratch. The most important signal is the locked 
mode, which is present in both time and frequency domains in practically all feature combinations. 
The interpretation is clear taking into account the known relation between disruptions and MHD. 
The density signal also becomes important in both domains as the number of features increase.
	 The plasma current contributes but only with the information in the frequency domain. Again, 
the interpretation is straightforward. The plasma current amplitude cannot determine the presence 
of an incoming disruption but its frequency spectrum (through its standard deviation after removing 
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the DC component) is a good precursor of a disruption. The use of the power spectrum as disruption 
precursor was discussed in section 3.
	 Conversely to the plasma current, the plasma internal inductance to predict from scratch is only 
significant in the time domain. Finally, it is important to note that the radiated power contribution 
to the predictions mainly comes from the temporal domain.
	 Moreover, the warning times obtained for the different predictors should also be carefully 
evaluated. Table 6 provides the average warning time of the predictors shown in table 5 together 
with the accumulative fraction of detected disruptions at a time instant 30 ms previous to the 
disruptions. The comparison of these warning times with the ones obtained by APODIS during the 
same experimental campaigns, (see section 1), has to be interpreted in the sense that the predictors 
from scratch are much more sensible to the disruptive behaviour. This also explains the larger value 
of the false alarm rate. On the other hand, it should be noted that the cumulative fraction of detected 
disruptions 30 ms before the disruption is lesser than in the case of APODIS.
	 Figure 11 shows the warning times obtained with the Venn predictor with features 2, 3, 4 and 
5. The vertical line at 30 ms shows the minimum time in JET to perform mitigation actions. This 
figure should be compared to fig. 1 that shows the results with APODIS in JET.

9. Discussion
This article has shown the viability of developing high learning rate disruption predictors from 
scratch. The prediction probabilities are high enough to guarantee the reliability of the predictors. 
After applying the algorithm 1 to 1237 JET discharges (1036 safe and 201 disruptive) and using 
only four features from three different signals (plasma current, mode lock and plasma internal 
inductance), the results of predicting from scratch give a success rate of 94%, a false alarm rate 
of 4.21% and a warning time of 654 ms. Table 7 summarizes the generation of training sets after 
the missed alarms. It is important to note that the first predictor (grey background in the table) is 
generated after the first disruption.
	 The results obtained with the Venn predictor from scratch are absolutely comparable to the ones 
obtained with APODIS. However, there exists an important difference. APODIS was trained with 246 
disruptive discharges and 4070 non-disruptive discharges. Taking into account that 3 feature vectors 
per disruptive discharge were used with label ‘Disruptive’, a number of 738 disruptive samples 
were necessary to train APODIS. In addition, about 500 feature vectors per safe discharge were 
used with label ‘Non-disruptive’, which gives 2035000 safe samples in total. For a fair comparison 
with the present Venn predictors, the number of safe and disruptive training samples, 2035000 safe 
and 738 respectively, has to be compared with the samples used in the adaptive Venn predictor. The 
first Venn predictor uses just 1 disruptive feature vector and 1 non-disruptive feature vector and a 
very limited number of feature vectors is included during the posterior re-trainings after the missed 
alarms. According to table 7, only 12 retrainings were needed and the final ‘training set’ after 12 
missed alarms consists of just 13 disruptive feature vectors and 13 non-disruptive feature vectors.
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The good results obtained with so few training feature vectors have to be interpreted as a combination 
of several factors. Firstly, the feature selection (mean values and standard deviation of the power 
spectrum after removing the DC component) is good enough to describe disruptive and non-disruptive 
behaviours. This fact is not new and it has been used from the first versions of APODIS. Secondly, 
the particular choice of feature vectors should be mentioned. The feature vector previous to a missed 
alarm as disruptive example, together with the selection of an average vector to summarize a non-
disruptive behaviour, allows condensing the disruptive/non-disruptive information in a convenient 
way. Thirdly, the use of a nearest centroid taxonomy has provided a high generalization capability 
to distinguish between both types of plasma behaviours.
	 It should also be mentioned that the union of the Venn predictors with APODIS from scratch is a 
valid possibility to predict without previous information. Venn predictors can be the first predictors 
up to about 50 disruptions. Fig. 9b shows a false alarm rate of 2% for these predictors. From this 
moment, APODIS from scratch can be used because with 50 disruptions there are enough information 
to provide high success rates and low false alarm rates (fig. 10).
	 The Venn predictors described in this article have been the first adaptive predictors that have 
been trained from scratch and with very good results in terms of success rate, false alarm rate 
and warning time. The several predictors developed with different number of features satisfy all 
operational requirements discussed in section 5.
	 The prediction from scratch is an open research line in nuclear fusion in the perspective of 
ITER/DEMO and important efforts should be devoted to them. As a first suggestion in the line of 
this article, it should be mentioned the need of improving the predictions to reduce the false alarm 
rates. As a second point, it is important to note that ITER is going to have different time-scales 
to JET and, therefore, an analysis about the influence of sampling times in the warning times is 
necessary and, perhaps, it could show a significant effect. Finally, another very important aspect 
is the validation of the approach with different isotopic compositions of the main plasma. Indeed, 
it must be considered that ITER operation will include different fuels mixtures, from H and He to 
full D-T, and the performance of adaptive predictors in these varying conditions should be carefully 
assessed.
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ILW campaigns (years 2011-2012) % 
True positives (disruption success rate) 98.36 
False positives (missed alarm rate) 1.64 
True negatives (non-disruptive rate) 99.08 
False negatives (false alarm rate) 0.92 

Signal name Acronym Units 
Plasma current Ip A 
Mode locked amplitude ML T 
Plasma internal inductance LI  
Plasma density Ne m-3 
Stored diamagnetic energy time 
derivative 

dW/dt W 

Radiated power Pout W 
Total input power Pin W 

Feature id. Definition 
1 mean(Ip) 
2 std(|fft(Ip)|) 
3 mean(ML) 
4 std(|fft(ML)|) 
5 mean(LI) 
6 std(|fft(LI)|) 
7 mean(Ne) 
8 std(|fft(Ne)|) 
9 mean(dW/dt) 
10 std(|fft(dW/dt)|) 
11 mean(Pout) 
12 std(|fft(Pout)|) 
13 mean(Pin) 
14 std(|fft(Pin)|) 

Table 1: Results of APODIS with the three first ILW campaigns without any retraining from the data corresponding to 
the C wall campaigns C19-C22.

Table 2: List of signals to characterize the disruptive/non-disruptive status of JET plasmas.

Table 3: Feature identification. Acronyms are related to table 2. mean(.) represents the mean value during the time 
window of 32 ms. std(|fft(.)|) signifies the standard deviation of the Fourier spectrum during the time window of 32 ms 
(the DC component has been removed).

Table 4 shows the average success and false alarm rates corresponding to the different predictors developed with 
different number of features. Globally, the success rates are above 96% but the false alarm rates are too high. This 
rate decreases with the number of features but not sufficiently. According to these results, the selection of a specific 
predictor should not to be based on the success rate (quite high in all cases) but on a combination of high success 
rate and false alarm rate (the smaller the better). Table 5 provides the best two predictors for each number of features 
(different cell backgrounds allow the distinction on the number of features).

nfeat C14,nfeat GSR (%) GFAR (%) 
2 91 96.68±2.18 70.30±30.68 
3 364 96.79±2.13 67.82±31.37 
4 1001 96.37±1.97 58.19±30.68 
5 2002 96.34±1.76 54.94±27.81 
6 3003 96.38±1.56 52.97±24.67 
7 3432 96.47±1.39 51.53±21.51 



27

Feature id. SR (%) FA (%) AVP 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 
  x x           94.00 4.70 0.813±0.187 
 x  x           92.50 5.09 0.831±0.169 
 x x x           94.00 4.31 0.809±0.191 
  x x       x    94.00 4.70 0.813±0.187 
 x x x x          94.00 4.21 0.811±0.189 
 x x x       x    94.00 4.21 0.810±0.190 
 x x x x      x    94.00 4.21 0.811±0.189 
 x x x   x x       94.00 4.21 0.803±0.197 
 x x x   x x   x    94.00 4.21 0.803±0.197 
 x x x x      x x   94.00 4.31 0.810±0.190 
 x x x x  x x   x    94.00 4.31 0.802±0.198 
 x x x   x x   x x   94.00 4.31 0.802±0.198 

Features AWT (ms) AF30 (%) 
3, 4 654.564 83.0 
2, 4 732.281 79.0 
2, 3, 4 641.798 83.0 
3, 4, 11 654.564 83.0 
2, 3, 4, 5 654.394 83.0 
2, 3, 4, 11 653.884 83.0 
2, 3, 4, 5, 11 654.394 83.0 
2, 3, 4, 7, 8 672.947 83.5 
2, 3, 4, 7, 8, 11 672.947 83.5 
2, 3, 4, 5, 11, 12 707,330 83.0 
2, 3, 4, 5, 7, 8, 11 673.628 83.5 
2, 3, 4, 7, 8, 11, 12 725.883 83.5 

#disruption 
1 
2 

13 
25 
27 
40 
85 
93 

101 
122 
128 
161 
183 

Table 7: The column shows the number of disruption, 
in chronological order, with missed alarms. The row 
corresponding to disruption number 1 is not a missed 
alarm. It allows the generation of the first classifier to 
start to make predictions.

Table 6: The column ‘Features’ identifies the features from 
table 3. AWT is the average warning time of the different 
predictors and AF30 is the accumulative fraction of 
detected disruptions 30 ms before the disruption.

Table 5: Success rate (SR), false alarm rate (FA) and average prediction probability (AVP) for several combination 
of feature vectors. The numbers to identify features correspond to the ones of table 3.
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Figure 1: Accumulated fraction of detected disruptions 
with APODIS during the ILW campaigns of JET in the 
period 2011-2012.

Figure 3: Tests of the APODIS predictor that show the 
stability of the success, false alarms and missed alarms 
rates during several campaigns after the training 
(campaigns C19-C22). Campaign C27 has been the last 
campaign with the C wall.

Figure 2: A classifier has to be understood as consisting 
of two steps: induction and deduction. Both of them are 
indissolubly linked together in the notion of classical 
classifiers.

Figure 4: If the reaction time is larger than the warning 
time, the mitigation action is late.

Figure 5: Conformal predictors do not follow the induction/
deduction steps. All training samples are used with each 
new prediction.

Figure 6: The four left-most samples of this example have 
label ‘square’ and the four right-most ones have label 
‘circle’. Cs and Cc are respectively the centroids of the 
classes ‘square’ and ‘circle’. With the nearest centroid 
taxonomy, the number of categories is equal to the number 
of labels. Therefore, in the example, the category of 
the respective samples derived from the NCT taxonomy 
(eq.(2)) are t1 =   , t2 =   , t3 =   , t4 =   , t5 =   , t6 =   ,
t7 =   , t8 =   .  
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Figure 7: Each row corresponds to a feature vector during 
the discharge. The components (in a number between 2 
and 7) have been calculated in the time interval of the 
last column (times in ms and the disruption takes place 
at time tD). The feature vector that represents a disruptive 
behaviour in the ‘training set’ is the feature vector previous 
to the disruption (in grey background).

Figure 8: The example that describes a safe behaviour in 
the first training set is a row vector whose components are 
the mean values of the different features between the first 
non-disruptive discharge and the last one previous to the 
first disruption. 

D I S R U P T I O N  (tD)

Feat 1
Feat 1
Feat 1

Feat 2
Feat 2
Feat 2

Feat n
Feat n
Feat n

...
... ... ......

...

...

(tD-96, tD-65)
(tD-64, tD-33)
(tD-32, tD-1)

C
P

S
13

.1
50

4-
7c

Feat 1
Feat 1

...

Feat 2
Feat 2

...

Feat n
Feat n

...

...
... ... ......

...

...

32ms
32ms

C
P

S
13

.1
50

4-
8c

mean(col 1) ...mean(col 2) mean(col n)

Feat 1
Feat 1

...

Feat 2

Discharge 1

Discharge K1

Feat 2
...

Feat n
Feat n

...

...
... ... ......

...

...

. . .

32ms
32ms

Figure 9: Results of the Venn predictor with features 2, 3, 4 and 5: evolution of the success rate, false alarm rate and 
prediction probability with the number of disruptions.
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Figure 10: Results of the APODIS version from scratch developed in [33]. It should be emphasized the different scales 
in the Y axis between this figure and fig. 9b.

Figure 11. Warning times from the Venn predictor with features 2, 3, 4 and 5.
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