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AbstrAct
In the last years several diagnostic systems have been installed on JET providing new information 
which may be potentially useful also for disruption prediction. The fast visible camera can deliver 
information about the occurrence of MARFE (Multifaceted Asymmetric Radiation From the Edge) 
instabilities which precede disruptions in density limit discharges. Two image processing methods 
– the Sparse Image Representation (SIR) using overcomplete dictionaries and the Histogram of 
Oriented Gradients (HOG) – have been used for developing MARFE classifiers with supervised 
learning. The methods have been tested with JET experimental data and a good prediction rate has 
been obtained. The HOG method is able to provide predictions useful for online disruption prediction.

IntroductIon
Disruptions represent a key issue for the operation of the next generation of tokamaks and in 
particular for ITER. The sudden loss of confinement may lead to very harmful events. During a 
short time interval, a large heat load can be deposited on the first wall. A following plasma current 
quench induces eddy currents on the surrounding metallic structures, leading to high electromagnetic 
forces [1-2]. The vertical stability of the plasma can also be compromised, particularly in the case of 
elongated plasmas which are more vertically unstable. The following vertical displacement events 
(VDE) usually cause the highest forces. The fast current quench may lead also to the production 
of relativistic runaway electrons [3] which can cause significant damages to the plasma facing 
components and to the first wall. Disruptions may lead also to deconditioning and therefore long 
periods of time may be necessary for recovering the optimal operational conditions.
 The risk associated with disruptions is already quite significant for the present large devices. The 
disruption rate can be reduced but not completely avoided. In JET, with the carbon wall, the rate 
was reduced to 3.4%  [4] while with the new full-metal ITER-like wall (ILW) this rate increased 
to 8% [5]. For ITER the risk is significantly higher due to the much higher plasma energy content. 
The engineering limit for the ITER disruption rate is about 10%, with 1% cases for those in which 
VDE are developed [6]. 
 Therefore a significant effort has been dedicated during the last years to the understanding of the 
disruption causes and to the development of prediction and mitigation methods in order to minimise 
the structural damages and the erosion of plasma facing components.
 The main factors triggering disruptions are believed to be, as summarized in [7], the following: i) 
Mode Lock (ML), ii) Density Limit (DL), iii) High Radiated Power (RP), iv) d) H/L mode transition 
(HL), v) Internal Transport Barrier (IT), vi) Vertical Displacement Event (VDE). However, as proved 
in Ref. 4, the root causes for the majority of disruptions are related with various instabilities and/
or failures of the control systems. A surveying picture of the causes generating disruptions in JET 
[5] showed that they are structured in highly complex patterns of chain events. 
 Automatic machine learning techniques have proved to be able to tackle with this complexity. 
These methods extract the useful information from complex combinations of several measured 
plasma diagnostic parameters related to several destabilizing factors. In these approaches the 
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disruptions are considered to be triggered by an initiating event with subsequent precursors which 
can be identified in plasma diagnostic signals. The predictor is then constructed based on detecting 
disruption precursors with suitable online diagnostics. The learning from examples mechanism 
succeeds to overcome the difficulties which arise from the non-linear nature of disruptions and from 
the influence of the electromagnetic properties of the devices, which is believed to play a significant 
role in the evolution of the disruptions.    
 The first approaches were based on artificial neural networks [8-10] . They succeeded to provide a 
high prediction rate, but the time interval between the prediction and the moment when the disruption 
occurs was of the order of a few milliseconds. Earlier predictions (several hundreds of milliseconds 
before the disruption) were provided later by approaches based on fuzzy logic techniques (see e.g. 
Refs. 11-14). Successful approaches dedicated to JET disruption prediction were also reported 
[15-16]. Recently a new predictor, called the Advanced Predictor Of DISruptions (APODIS), [17] 
was developed at JET. APODIS is a combination of supervised classification systems, based on a 
support vector machines (SVMs). It was deployed in real-time during the last campaigns with the 
ILW providing very good results: detection of 300 out of 305 disruptions and a very low number of 
false alarms [18]. The very early prediction allows the use of various mitigation tools for reducing 
the detrimental effects of the disruptions on the plasma facing components and vacuum vessel. 
The automatic classification of the disruptions type represents also a very important issue in order 
to allow the optimal choice for the mitigation strategy. An approach based on clustering using the 
geodesic distance was recently reported [19]. It is able to take into account the error bars of the 
measurements uncertainties, leading to a more precise classification. The method is suitable for 
online implementation.
 In the last years several diagnostic systems have been installed in JET providing new information 
which may be potentially useful also for disruption prediction. For example, both infrared [20] and 
fast visible [21] cameras, installed on the wide angle endoscope [22], can provide information about 
the occurrence of MARFE (Multifaceted Asymmetric Radiation From the Edge) instabilities [23-25] 
which normally precede density limit. MARFEs cause a significant increase in impurity radiation, 
and therefore, they leave a clear signature in the video data. This footprint, which occur several 
hundreds of milliseconds before the disruption, can be used for automatic early identification.
 On JET several methods were developed in the last years for MARFE identification and tracking. 
Different principles like morphological operators and HU moments [26] and phase congruency [27] 
and also a tracking method, based on the motion estimation within the MPEG video compressed 
domain [28], proved to work successfully. Currently, on JET, the fast imaging systems are not yet 
used for their real-time control because real time data streaming is not yet available. However 
valuable approaches were already proposed for real-time identification of MARFEs. A first attempt 
was based on the real-time image processing capability of cellular nonlinear neural network–based 
chips [29]. Recently, a highly parallelized implementation of the method introduced in Ref. 30 
achieved an image processing rate of more than 10 000 frame per second.
The present approach investigates the MARFE identification potential of two image processing 
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methods, based on supervised learning strategies, which achieved significant results in computer 
vision and surveillance: Sparse Image Representation (SIR) [31] and Histogram of Oriented 
Gradients (HOG) [32]. SIR leaded, in the last years, to significantly improved results especially for 
image denoising [33] and encouraging results were reported also for texture segmentation [32] and 
object recognition [35-36]. HOG proved to significantly outperform existing methods for human 
detection by analysing the video sequences provided by visible and infra-red cameras (see e.g. 
Refs. 37-38). Significant results were reported also for face and gesture recognition (see e.g. Refs. 
39-40), and vehicle detection [41]. 
 With regard to the structure of the paper, the next section provide a briefly description of the SIR 
and HOG methods.  Section 3 reports in detail the implementation of these methods for MARFE 
automatic identification in JET videos. The performances of the methods and the suitability for 
on-line implementation are also discussed this section. Several conclusions are drawn in the last 
section of the paper. 

2. Methods
2.1 SparSe image repreSentation
The sparse image representation consists of representing signals using an overcomplete dictionary 
that contains prototype image-atoms. The signal is represented as a linear combination of the 
image-atoms. The optimal overcomplete dictionary ensures the lowest reconstruction error, given 
a fixed sparsity factor L (number of coefficients in the representation). Arranging the atoms along 
the columns of the dictionary matrix  D ∈ RN×K is the total number of pixels in the image and  is 
the total number of atoms in the dictionary), the representation of the image f can be formulated 
using the relation:

(1)

where a is a sparse vector of approximation coefficients, the l0  norm || ||0 counts the number of 
non-zero coefficients and S is the number of active atoms in the representation. The dictionary can 
be a fixed, general one (DCT, wavelet, curvelets, etc) but it was proved that improved results are 
obtained by learning non-parametric dictionaries simultaneously with the signal representation 
(see e.g. Ref. 29). 
 Thus, the reconstructive dictionary D is learned adaptively from the data such that the respective 
decomposition  is sparse (i.e., no more than L non-zero elements), by solving the optimization 
problem:

(2)

where l is a regularisation parameter. Since images are usually large, the decomposition is 
implemented on overlapping image patches gj = Pj f  instead of the whole image f (Pj is the operator 

f ≈ Da

such that ||g||0 ≤ S

{a, D, f} =  argmina,D,g + lΣ    ||gj – Daj||2
image

reconstruction

j=1
M LΣ l=1 ||al ||0

sparsity
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which extracts a specific patch gj from the image f; M is the total number of patches). The first term 
of the objective function quantifies the signal reconstruction error while the second one measures 
the representation sparsity. 
 The usual strategy is based on iterative algorithms which start with an initial guess of D and 
alternates between sparse coding (finding the matrix  of sparse approximation coefficients given 
a fixed dictionary) and dictionary update (adjusting the dictionary D given a fixed approximation 
coefficient matrix).  In the first step the orthogonal matching pursuit (OMP) algorithm [42] is an 
efficient tool to decompose the image signals with respect to the given dictionary. In the second step 
a least-squares problem is solved for updating all the atoms simultaneously. The K-SVD algorithm 
[43], generalizing the K-means clustering process, succeed to obtain significant acceleration by 
combining, in the second step, the update of the dictionary columns with an update of the sparse 
representations. After the training process the atoms are adapted to the training set of images.
 The image classification can be obtained by learning multiple dictionaries (one dictionary for each 
class of images) which are simultaneously reconstructive and discriminative. In principle a signal 
belonging to one class is reconstructed poorly by a dictionary corresponding to another class. The 
classification can be performed by using residual reconstruction errors of a signal by the dictionary 
belonging to a class as a discriminative operator for classification. 
 The discriminative power of the dictionaries is related to their mutual incoherency. Incoherent 
dictionaries are desirable whenever sparse approximations are used for revealing a certain underlying 
structure or clustering in the data.  The coherence of a dictionary indicates the degree of similarity 
between different atoms. A measure of the mutual coherence is defined as the maximum absolute 
inner product between any two different atoms of the dictionary:

(3)

where di are the elements of the dictionary D. 
 If multiple dictionary are used (a dictionary for each class for example) then mutual incoherence 
between them have to be also promoted. A discriminative term can be introduced in (2) in order to 
encourage dictionaries associated to different classes to be as independent as possible, while still 
allowing for different classes to share features [44]:

 
(4)

where the dictionary incoherence term is calculated using the Frobenius norm [45].
 However, atoms representing common features in all classes tend to appear in all dictionaries. 
The corresponding reconstruction coefficients have a high absolute value. This lead to similar 
reconstruction errors for different dictionaries and does not allow a sharp classification. The 

µ(D) = maxi≠j |〈di, dj〉|2

{a, D, f} =  argmina,D,g + ηΣi≠j ||Di Dj||F+ lΣ    ||gj – Daj||2
image

reconstruction

j=1
M LΣ l=1 ||al ||0

sparsity

T 2
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discrimination power can be increased by ignoring the coefficients associated to these common atoms 
when computing the reconstruction error. These atoms may be identified by inspecting the already 
available inner products between atoms Di

T Dj. A certain threshold can be used to select the most 
discriminative atoms. In a recent approach [44], a de-correlation step is introduced in the dictionary 
update step. The decorelation is accomplished by an iterative projection method complemented by 
a rotation of the dictionary.

2.2 the hiStogram of oriented gradientS
The use of edge orientation histogram in object recognition became very popular together with the 
introduction of SIFT (Scale Invariant Feature Transform) descriptors [47-48]. 
 The SIFT key-points are extracted at the local extrema of the scale-space representation of the 
image, ensuring in this way invariance to scale change. The key-points are then represented using 
histogram of gradients. A dominant direction is determined and it is used as a reference for all image 
gradients. As the gradient structure is very characteristic of local shape, SIFT proved to be very 
effective in extracting distinctive features from images which are used for matching of different 
views of a scene. 
 The Histogram of Oriented Gradients (HOG) descriptors can be viewed as inherited from the SIFT 
descriptors. The basic idea, formulated by Dalal and Triggs [32], is that the local object shape can 
be well approximated by the distribution of edge directions, even without precise knowledge of the 
corresponding gradient or edge positions. In contrast with SIFT descriptors, which are computed 
at a sparse set  of scale and rotation invariant key points, and used individually, HOG descriptors 
use a dense representation of the image by means of a local statistic of edge orientations. While 
SIFT descriptors are optimized for sparse matching, HOG descriptors rely on a dense robust 
coding of shapes.
 The HOG descriptor is constructed as a pack of histograms. First the image is divided in a 
number of cells Nc with Nx  ×

 Ny pixels (Fig.1). After calculating the image gradient, the histogram 
of gradients is calculated for each cell, using N0 bins. As proved in Ref.32 the most efficient way 
for calculating the image gradient is a simple one, by image filtering using the one-dimensional 
filter (–1 0 1) and its transpose.  Within a cell, every pixel votes for its gradient orientation weighted 
by its gradient magnitude. This procedure strengthens the votes of the pixels located on an edge 
in respect with those of the pixels located nearly uniform regions. Additionally the contribution of 
each pixel to the gradient histogram can be weighted by a Gaussian window and distributed into 
adjacent spatial cells and orientation bins using trilinear interpolation in order to avoid boundary 
effects [39]. Due to contrast changes in the image sequence cells histograms are locally normalized. 
Several cells are grouped in a block (see again Fig.1) and the normalisation is performed at the level 
of a block using L1-norm  V → V/    ||V ||1 + ε or L2-norm  V → V/    ||V ||2 + ε2 schemes – V  is the 
unnormalised descriptor vector and  is a regularising constant needed for example in case of zero 
gradients. Overlapping blocks allow a specific cell to be involved in different block normalisation 
operations. According Dalal and Triggs this redundancy may significantly improves the performances 

2
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of the HOG descriptor. Block normalisation can be followed by clipping, which limits the values of  
to a certain limit (typically 0.2)  in order to reduce non-linear illumination changes. All histograms 
in a block  are combined as a vector  and all these vectors are concatenated in a single feature vector.
 A detailed analysis of the influence of all the ingredients implied in the HOG descriptor calculation 
was performed in Ref. 32. Their main conclusion, derived from this analysis emphasizes outline that 
fine scale derivatives, many orientation bins and block-based normalisation are usually essential 
for good performance. Smoothing should be avoided because blurring may hide the foreground-
to-contour transition which is critical for object identification. A coarse space quantisation, with 
its size adapted to the size of the objects to be identified in the image is sufficient for obtaining a 
good descriptor.
 The HOG descriptors are usually associated with Support Vector Machines (SVM) classifiers 
[49]. SVM are based on the concept of decision planes that define decision boundaries. When data 
is not linearly separable, the kernel trick technique is applied. A function  is used for mapping the 
input space into a higher dimensional linear separable feature space. For a training data set {xk, yk}, 
where xk are the training examples HOG feature vector, and yk ∈{–1,1}the known class labels, the 
algorithm search for the maximum-margin hyper-plane f (x) = w . f (x) + b that divides the points 
belonging to the two classes. This hyper-plane lies furthest from the data sets belonging to both 
classes. This can be imagined as two hyper-planes (the so called supporting planes) that start from 
the boundary and are pushed apart towards the points corresponding to the two classes:

(5)

This relation can be rewritten as:
 

(6)

The region bounded by them is called “the margin”. The distance between the supporting planes is 
2/|| w ||2. Maximising the distance is equivalent with minimizing the following problem:

(7)

The maximisation is performed subject to condition (5) in order to prevent data points from falling 
into the margin. The vector w is known as the weight vector. The weights directly reflect the 
importance of a feature in discriminating the two classes.
 However, usually noise or outliers may affect the data and influence the determination of the 
boundary. The soft margin technique [50] is used in order to make the classifier insensitive to noise 
in the data. It consists in relaxing the condition for the optimal hyper-plane by allowing a certain 
amount of slackness:

 f (x) = 1,  for the points with the class label +1
 f (x) = –1,  for the points with the class label –1

yi f (xi)) ≥ 1

minw,b     ||w||21
2
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(8)

The introduction of slack variables ξi, which measure the degree of misclassification of the data , 
lead to an additional term in the minimisation problem:

(9)

The minimisation problem searches for the optimum compromise between a large margin and a 
small error penalty.

3. ApplIcAtIon for MArfe IdentIfIcAtIon In Jet vIdeos
3.1 Video recording of marfe inStabilitieS at Jet
The MARFE instability is a tokamak edge phenomenon characterized by greatly increased radiation 
and density, by density fluctuations, and by decreased temperature in a relatively small volume.  
MARFEs usually occur on the high-field side of the torus and are the manifestation of a thermal 
instability, with impurity radiation being the main energy loss mechanism from its volume. The 
impurity radiation is the cause of the specific signature which appears in the videos recorded by 
the wide angle fast visible camera (Fig.2). The identification method must be able to avoid the 
confusion with other video objects, like e.g. flashes, probably caused by ELMs (Edge Localized 
Modes) or high radiation from the poloidal limiters (Fig.3).
 The MARFE image database was described in Ref.30 and it is summarised in table 1. It contains 
videos recorded using the wide angle fast visible camera. The camera is viewing the full poloidal 
cross-section of the vacuum vessel and it is covering a toroidal extent of 90o. The wide angle view 
is designed for the study of pellet ablation, large scale instabilities and plasma wall interactions. It 
can grab an image at each ~33ms which impose a tough limit for on-line MARFE detection. 
 A learning data set has been built by selecting 50 images containing MARFEs in case of the 
SIR method. For the HOG method the training set includes also a distinct set containing 50 images 
containing objects with morphological characteristics similar to MARFE and 50 images displaying 
all other type of objects. After training the methods have been tested on the rest of the existing data. 

3.2 Sir implementation and reSultS
Several strategies were tested for using SIR as a MARFE detector, aiming at a high identification 
rate, a low number of false alarms and also at minimising the computation time. The best results 
have been obtained by learning a dictionary for the MARFE images and then using this dictionary 
for image classification. The reconstructive dictionary DMARFE has been learned adaptively from the 
data using the procedure described above. The minimisation of Eq.2 starts with random patches as 
a first guess of the dictionary elements and it was performed using the MATLAB implementation 
of the K-SVD algorithm [51]. We have used a dictionary size  K = 256 and patches with a size of 
8×8 pixels. In this stage the algorithm allows an arbitrary number of atoms to represent each image, 

yi (f (xi)) ≥ 1– ξi, i = 1, ..., N

minw,b     ||w||2 + Cw,b Σ     ||w||21
2 j=1

M
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until a specific representation error Err = Σ    ||gj – Daj||2j=1
M is reached (the sparsity condition is not yet 

enforced).  The representation error  is related to the estimated noise in the gray-level image, assumed 
to be white Gaussian: , where  is the standard deviation of noise.  In the experiments presented in 
this paper , and  is estimated using the method described in Ref.52. This method uses a zero mean 
operator which is almost insensitive to the image structure and it is implemented by mean of the 

mask 
1 –2 1
–2 4 –2
1 –2 1

. The mask is derived starting from the idea that image structures like edges have 

strong second order differential components and therefore a noise estimator should be insensitive 
to the Laplacean of an image.  Thus the operator is derived using the difference between two masks 
which both approximate the Laplacean of the image. The learned dictionary is presented in Fig.4.
 Then, using DMARFE, for each new image in the test set, its representation  {aj} with respect to  
the dictionary has been determined. The sparsity condition is now applied, limiting the number of 
terms in the representation to Nterms

 = 10. The representation is implemented by decomposing the 
image in 8×8 pixel size patches (2 pixels overlapping), instead of using the whole images. The 
representation is determined using the OMP algorithm.  OMP first find the one atom that has the 
biggest inner product with the signal, and then subtract the contribution due to that atom, and repeat 
the process until the signal is satisfactorily decomposed.
 A similarity map between the image and its representation can be calculated using the following 
relation [53]:

(10)

where lmini is the current analysed image in the test set, lmrep is its representation using the dictionary 
DMARFE and T is a positive constant introduced in order to ensure the stability of the calculation of 
SIM. The  SIM map, which contains similarity values calculated in each image pixel, can be pooled 
into a single similarity score by a summation over the image:

(11)

A representative result is illustrated in Fig.5 for JET Pulse No: 50053. Both the MARFE and non-
MARFE events produce peaks, but with a different width. Therefore SIR transforms the 2D image 
recognition task in a 1D problem. A threshold of Th = 6 frames full width at half maximum of the 
peak height (FWHM) has been introduced order to select the MARFE events. This value has been 
used for analysing all the test dataset. For the available video database, 94.8% of the MARFE events 
are correctly classified. Among the misclassified events, a rate of 4.4% are false positive events 
(like peak ‘E’ in Fig.5) and 0.8% are false negatives. 
 Unfortunately due to the iterative OMP procedure used for retrieving the image representation, 
the method cannot attempt to satisfy the on-line requirements in terms of computational time.  
However SIR may represent a useful tool for off-line analysis of large databases.

2lmini. lmrep + T
(lmini)2 + (lmrep)2 + TSIM =

SIMscore = Σi SIMi
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3.3 hog implementation and reSultS
The dense small block descriptors used by the HOG method have an excellent discrimination 
power, but the processing time needed for calculating HOG descriptors represents a critical issue. 
However different strategies were proposed to deal with this problem. One option consists of the 
use of a cascade of rejecters strategy [37]. AdaBoost is used to choose which features to evaluate 
in each stage, where each feature corresponds to one block. A different approach, followed in this 
work, relies on the parallel implementation of the HOG algorithm using the GPGPU (General 
Purpose computation on Graphics Processing Units) technology [54-56]. GPGPU uses the graphic 
processing unit (GPU) as a coprocessor for scientific computations. The CUDA (Compute Unified 
Device Architecture) software platform provide a hardware abstraction mechanism which, hides the 
GPU hardware for the programmer and allows the translation of the C/C++ code onto the GPU for 
that part of the application code which supports a massive parallelization. Functions are executed 
in multiple (usually thousands) parallel threads. Multiple threads are grouped in CUDA-blocks and 
multiple CUDA-blocks are assembled in a grid. Threads have access to several types of memory 
(register, local, shared, global, constant and texture). All threads can access global memory but only 
threads in the same block can cooperate by using a shared memory and by synchronization. Global 
memory access is typically two orders of magnitudes slower than shared memory access. Therefore 
the access to the global memory represents usually the bottleneck of the CUDA implementations.
The implementation of the HOG descriptors method for MARFE automatic identification has been 
performed by modifying the code provided in Ref. 55 and taking into account the multiple factors 
which should be considered for a possible online implementation. In JET, with a carbon wall, the 
time elapsed between the occurrence of a MARFE and the following disruption is of the order of 
several hundreds of microseconds. This relatively relaxed time constraint is strongly sharpened by 
the frame rate of the fast visible camera which imposes a time constraint of 33 μs for image analysis 
and MARFE identification. 
 Fortunately the characteristics of the images provided by the camera can be exploited in order 
reduce the computation time for the HOG algorithm. A region of interest ROI, with a reduced size of 
Nx ×

 Ny  = 112×172 pixels, can be defined to encompass the area where all the MARFEs in the JET 
database leave a signature (Fig.6). Restricting calculations to ROI will reduce the computation time 
for gradients and SVM evaluation. However, an image with reduced size does not necessary lead 
to a straightforward decrease of the computation time, due to the time consuming copy operation 
between global and local memory. Therefore, in order to reduce the effect of the latency of global 
memory access, a set of Ncomb images have been grouped in a combined image which is copied into 
GPU memory and then processed by the GPU. 
 The HOG algorithm spends a significant part of the time for the block histogram computation 
(see again Ref. 51). Reducing the number of sliding windows may lead to a significant improvement 
in the computation speeds. The experiments that we have performed show that non-overlapping 
square HOG-blocks (one block coincides with one cell using the terminology introduced above) 
with a size of 16×16 pixels are sufficient for the discrimination of the MARFE shapes. This reduces 
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the histogram computation effort to a total number of 77 HOG-blocks for each image provided by 
the camera (Ncomb ×

 77 HOG-blocks for the combined image created by assembling the ROIs from  
consecutive images). The  value must be large enough to avoid GPU latency but in the same time 
small enough to provide the MARFE detection result as fast as possible. Ncomb =

 16 represents a 
good compromise between these requirements.
 Further improvement of the computation time can be obtained by taking into account that the 
fast visible camera provides grey-level images where MARFE and non-MARFE events (ELMs, 
UFOs etc.) appear mainly as bright features on a dark background and a low contrast variation 
appear along the image stream. Therefore the normalisation and clipping step can be omitted. 
 After implementing all these approximations, introduced for saving computation time, the 
algorithm have been extensively tested in order assess also the quality of the predictor. A representative 
result of this evaluation is reported in Fig.7, for the same JET pulse (Pulse No: 50053). An output 
value of 1, provided by the SVM, signals the occurrence of a MARFE event. The evolution of SVM 
output is represented together with the SIM index defined for the SIR method in order to allow a 
comparison of the response provided by the two methods. The HOG method provides a sharp answer 
for all the test dataset. The occurrence of MARFE events have been detected with a success rate of 
100%, even if only 74.7% images displaying MARFE shapes have been identified. For the entire 
database, the classifier success rate remains at the level of 100% while 77.8% of MARFE frames are 
correctly identified. A reason for the difference between the identification rate for MARFE events 
and frames respectively is the use of the ROI. For all MARFE events, a certain number of frames, 
but not all of them, leave a signature inside the ROI. Also the selection of frames for building the 
training set may represent another reason for this difference.
 As the prediction capability is very good, the algorithm, tailored as described above, has been 
implemented using a NIVIDIA Quadro 5000 GPU. The computation time for the SVM training is 
not a critical issue. Therefore this step was performed using the SPIDER [57], a complete object 
orientated environment for machine learning in MATLAB. After training the SVM weights have 
been stored for using them later as input for the code implemented on the GPU. The processing time 
needed for each ROI is 0.65ms. The computation time is approximately twenty times greater than 
the time interval between consecutive frames and obviously it does not allow the sequential analysis 
of all images in the video sequence. In order to tackle this problem it has been necessary to define 
a criterion to select the images susceptible to contain MARFE events and to restrict the analysis to 
this data subset. The criterion is based on the total brightness of the image. The sum Sg of the grey-
level values for all pixels in each ROI is calculated for each image in the video stream and the HOG 
algorithm is launched only if Sg is above a certain threshold Tg. A typical example is presented in 
Fig.7. The red marks identify 17 intervals of interest (IOI), selected by using the threshold value 
Tg 

 = 0.1 . Sg
max, where Sg

max is the sum of grey-level values for the white image. This value of the 
threshold has been used for the analysis of all videos in the JET database. 10 intervals correspond 
to 8 MARFE events (in two cases the threshold is reached two times for the same event) and 10 
intervals correspond to non-MARFE events. In one case (MARFE event M5), the gap between 
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the successive IOIs is lower than Ncomb which means that immediately after the HOG analysis of a 
goup of images another one follow. A maximum sequence of 64 images should be analysed which 
means a total computation time of ~42ms. This is the maximum delay in signalling the MARFE 
occurrence. The average value of the time needed for prediction, calculated for the whole database, 
is 15.4ms.  As the time difference between the MARFE occurrence and the following disruption 
is usually of the order of several hundreds of milliseconds, the HOG method is able to provide the 
prediction fast enough to allow time for mitigation tools in order to reduce the detrimental effects 
of disruptions.

conclusIon
Two MARFE classifiers with supervised learning have been developed. They are based on two 
image object identification methods. The first one uses sparse image representation of images using 
overcomplete dictionaries. A dictionary is retrieved for the MARFE class of images by training with 
an appropriate data set. Then the error of the representation of the images in the video sequences, 
using the determined dictionary, is used for classification. In the second method the HOG feature 
vectors are used as input for a SVM classifier. Both methods ensure a robust identification of MARFE 
events. It must be mentioned that the HOG method achieved 100% identification of MARFE events 
when applied to the JET database of discharges. Using a criterion based on threshold for the image 
total brightness for launching the calculations, the HOG method is able to provide the prediction 
fast enough to allow online disruption prediction. As mentioned in the introduction, effective online 
prediction will require also an upgrade of the hardware of the cameras since the ones presently 
used and with the right time resolution to identify MARFEs cannot perform real time streaming 
of the videos. 
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Figure 1: Illustration of the HOG descriptor calculation.

Figure 2: Typical MARFE signatures on the JET videos.

Table 1: Characteristics of the MARFE video database at JET. All the videos were collected during operation with the 
carbon wall.
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Figure 3: Frame showing shapes similar to MARFEs.

Figure 4: The dictionary retrieved using the MARFE 
learning dataset.

Figure 5: The evolution of the SIM index for JET Pulse 
No: 50053. The MARFE events correctly identified are 
marked as Mi; E stands for an event incorrectly classified 
as a MARFE one. 
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Figure 6: The region of interest defined for HOG 
computation.

Figure 7: The evolution of the SVM output (green curve) 
signals the MARFE occurrence. The SIM  index (Fig.5) 
is presented also in order to allow a comparison of the 
response provided by the two methods. The frames for 
which the HOG algorithm is launched are indicated by 
the red marks
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