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Abstract
Edge Localised Modes (ELMs) are bursts of instabilities which deteriorate the confinement of H 
mode plasmas and can cause damage to the divertor of next generation of devices. On JET individual 
discharges can exhibit hundreds of ELMs but typically in the literature, mainly due to the lack of 
automatic analysis tools, single papers investigate only the behaviour of tens of individual ELMs. 
In this paper, an original tool, the Universal Event Locator (UMEL), is applied to the problem of 
automatically indentifying the time location of ELMs. With this approach, databases of hundreds 
of thousands of ELMs can be built with reasonable effort. The analysis has then been focussed on 
the investigation of the statistical distribution of the inter ELM intervals at steady state for type-I 
ELMs. Numerous probability distributions have been tested to address the data analysis and different 
distributions provided a best fit for sets of data from different experiments. This result constitutes 
robust experimental evidence that Type-I ELMs are not all the same type of instability. Moreover, 
the most likely distributions are not memoryless meaning that the waiting time, from a particular 
instant until the next ELM, does depend on the time elapsed from the previous event. These properties 
pose important new constraints on the models aimed at describing the ELM dynamics. This work 
also demonstrates the widespread applicability of the UMEL tool.

1.	T he relevance of instabilities and their statistical behaviour 
The operational space accessible to a Tokamak is highly restricted by a large set of macroscopic 
instabilities, which can affect the confinement and sometimes even cause the unplanned extinction 
of the plasma [1]. Some of these instabilities have a periodic or quasi-periodic pattern which needs 
to be interpreted in order to understand the dynamical behaviour of the instabilities. Any satisfactory 
dynamical model of a macroscopic instability must be able to reproduce its time and spatial evolution. 
It is therefore crucial to determine the statistical properties of the instabilities, such as their period 
or the probability density functions of the intervals between successive occurrences, in the case of 
non periodic events. 
	 During a Tokamak discharge, hundreds of these macroscopic instabilities can take place. Typically 
the identification and time location of these events is achieved by means of visual analysis of 
plasma signals (normally waveforms of amplitude versus time). Given the fact that on JET tens 
of gigabytes of raw data can be collected in each shot, the proper analysis of all this data is very 
heavy in terms of human resources (if not absolutely prohibitive). Experts have therefore to devote 
an enormous amount of time examining in great detail each waveform in order to determine the 
events (e.g. ELMs, sawteeth, disruptions etc.) and their temporal locations. In future devices, with 
pulse lengths at least 100 times longer than in JET, the manual analysis of signals for detection of 
events will become impossible and this task will have to be performed automatically. Recently, 
data mining and artificial intelligence tools have been applied to fusion databases. These methods 
provide fast and accurate results in locating and identifying plasma phenomena [2,3]. Moreover, 
they can predict dangerous plasma phenomena (such as disruptions) before they occur [4,5,6]. 
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These automatic tools present several advantages with respect to the manual analysis of data. An 
important issue to take into consideration is the cost of the analysis. The typical visual analysis of 
the waveforms requires a lot of manpower and hence, it is expensive. Computer codes are much 
cheaper. Their price includes their design and maintenance / update but then, they can be run many 
times without additional costs. They therefore allow the analysis of large quantities of data on a 
low-cost basis. Another advantage of data mining techniques is their speed. Computer codes can be 
faster than any visual analysis carried out by experts. Visual analysis is time-intensive and the only 
way to speed up the process is increasing the number of experts and thus, increasing the costs. The 
deterministic behaviour of computer codes is also one of their benefits. The results of an analysis 
using a computer code are always the same, no matter the number of times that the program is 
executed. It is important to note that it does not imply that the codes are error-free; it does just mean 
that the same errors (if they exist) are made. This cannot be guaranteed by the analysis carried out 
by experts. For example the same event can be located by two experts at two slightly different times 
and even the same expert can determine two different times for the same event. The reasons of 
these differences can be, among others, a different detail level in the analysis (the higher the level 
of detail, the longer the analysis time) or just a mistake.
	 Once a sufficiently representative and reliable database has been built, adequate tools have to 
be deployed to determine the statistical properties of the events of interest. One of the typical tasks 
consists of determining the appropriate probability density function (pdf) for fitting the properties 
of the events. In [7] for example, starting from simple experimentally motivated assumptions, the 
authors derived a Weibull pdf for the waiting times between ELMs. To test this hypothesis they 
considered 84 datasets with a steady period of type I or type III ELMs that lasted for at least 3 
seconds, finding that Weibull and Gaussian pdfs provided a similarly good fit to type I ELM data, 
but a clearly better fit to the type III ELM data. 
	 The distribution parameters that make a distribution type best fit the available data can be 
determined in several ways. The most common technique to obtain the parameter values is known 
as maximum likelihood estimation (MLE). Once a model is specified with its parameters, goodness-
of-fit allows evaluating how well the data are modeled by that distribution. In the present paper 
various tests, such as the Kolmogorov-Smirnov [8], the Anderson-Darling [9], the Cramer Von 
Mises [8] and proper model selection tools, such as the Akaike Information Criterion and Bayesian 
Information Criterion [10,11] have been applied. In order to assess the effects of the macroscopic 
plasma parameters on the dynamical behaviour of the instabilities, the events must be properly 
grouped. The technique typically used to decide whether the different samples belong to the same 
population is the analysis of variance (ANOVA) [13]. Unfortunately these techniques assume that 
all samples belong to a population having a normal distribution. In general this hypothesis cannot 
be met and therefore it is necessary to utilise more advanced methods such the Kruskal-Wallis test 
[14]. 
	 In this paper, a coherent methodology to assess the general statistical properties of quasi periodic 
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instabilities is described in detail. As mentioned, it consists of the deployment of data mining tools, 
mainly the Universal Multi Event Locator (UMEL), for the automatic identification of events [15]. 
Then a series of statistically sound techniques is utilised to determine the statistical properties of 
the instability. To exemplify the potential of these techniques, they are applied to one of the most 
important macroscopic instabilities in Tokamaks, Edge Localised Modes or ELMs [16], which affect 
H-mode plasmas. The main results obtained with the new techniques indicate that the dynamics of 
the Type I ELMs is more involved than originally thought and that probably they comprise more 
than one simple type of instability.
	 When Tokamak plasmas reach the H-mode, the plasma confinement improves. The energy 
confinement increases typically by a factor of 2. This is due to a thin region of increased gradients 
at the edge known as the Edge Transport Barrier (ETB). Originally discovered on ASDEX [17], the 
H mode was reproduced by most of the other major international Tokamaks in the following years. 
The H-mode was reached in other tokamaks devices e.g, PDX in 1984 [18], DIII-D in 1986 [19], 
JET in 1987 [20] and even stellarator devices e.g. W 7-AS in 1993 [21], demonstrating that the 
H-mode is a generic feature of fusion by magnetic confinement [22]. The H mode is now a routine 
regime of operation of all major Tokamaks. 
	 During the operation of ASDEX in H-mode in 1982, bursts in the Ha signal were detected [17]. 
These bursts or spikes were associated with MHD instabilities at the edge of the plasma and, in 
1984, they were named Edge Localised Modes (ELMs) [23]. ELMs cause a reduction in density 
and temperature in the outer zone of the plasma (edge), resulting in a deterioration of the plasma 
confinement through the reduction of the ETB.
	 Originally, three different types of ELMs were identified in the DIII D tokamak in 1991 [22]:

•	 Type I, giant ELMs: the Type I ELMs are instabilities typically showing a ballooning behaviour 
and whose repetition frequency increases with power and drops with increasing current. They 
appear as large isolated sharp bursts on the emissivity signal (Ha or Da). An example of Type 
I ELMs in JET is reported in Figure 1a. Type I ELMs are the most dangerous ones, given the 
large heat losses involved and the consequent unacceptable high heat load on the divertor.

•	 Type II, grassy ELMs: they are believed to appear when the plasma edge is in the connection 
regime between the first and the second stable ballooning regimes. They are irregular and 
low-amplitude ELMs (Figure 1b).

•	 Type III: they are medium amplitude ELMs whose repetition frequency decreases as the power 
is increased. The plasma edge pressure gradient is below the ideal ballooning limit. Figure 
1c provides an example of Type III ELMs in JET.

Experiments have shown that it is possible to obtain ELM-free H mode phases. Unfortunately, the 
ELM-free H-mode is typically non stationary and ELMs are therefore an unavoidable aspect of this 
regime of operation. In the rest of the paper, the analysis will focus on Type I ELMs, since these 
are the most common in the present regimes of JET operation. They are also potentially the most 
dangerous and therefore the most urgent to understand and control. 
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With regard to the structure of the paper, the next section describes the basics of the data mining tools 
and statistical techniques utilised in the rest of the paper. Section 3 describes the results obtained 
in the localization of ELMs using UMEL. In section 4 the analysis is focussed on the steady state 
phases of the discharges to determine the pdf of the inter ELM intervals. The main implications of the 
identified pdf for the dynamics of the ELMs are discussed in section 5. The ELMs are then divided 
in coherent groups in section 6. The final conclusions of the statistical analysis with the implications 
for the formulation of dynamical models of the ELMs are discussed in the last section 7 of the paper. 

2.	I nvestigation of ELMs with advanced machine learning and 
statistical tools

In this section the mathematical background, on the data mining and statistical tools used in the 
rest of the paper, is provided. In subsection 2.1, Support Vector Regression and its use by UMEL is 
introduced. Section 2.2 describes the goodness-of-fit and model selection tools deployed to extract 
the most appropriate pdf to interpret the experimental data. Section 2.3 illustrates the method adopted 
to cluster the various examples in their proper groups.

2.1.	 Introduction to machine learning for identification of events: UMEL 
This subsection describes UMEL, a technique to locate events in plasma waveforms and films. 
UMEL is a universal technique because it is independent of the type of the pattern sought (peaks, 
drops or slope changes) and the type of waveforms analysed (time domain or frequency domain). 
UMEL is based on Support Vector Regression (SVR) [24], a version of SVM [25] for function 
estimation. SVR fits the training data without depending on factors such as sampling rate or noise 
distribution. This technique computes a fitting function and, in addition, it retrieves a list of the 
points from the training set that become Support Vectors (SVs). 
	 SVR uses the e-insensitive loss function, also called e-tube:

                         (1)

The goal of SVR is to find the flattest function that fits the training data within the e-tube. The errors 
lower than e are not taken into consideration (the value of the e-insensitive loss function is 0 in the 
region [x [–e;+e]) but the errors higher than e are minimised. It is therefore possible to define the 
e-tube in such a way that the normal variations in the signals, including noise, remain within it and 
the specific events to be detected fall outside this interval.
	 A representative example is fitting to data sampling the Mexican hat. The Mexican hat is the 
well-known function:

                     (2)
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In this example, a data set of 30 points from the Mexican hat has been randomly chosen to illustrate 
the use of SVR. A white Gaussian noise has been added to the samples. Four different kernels have 
been tested: linear, polynomial, Radial Basis Function (RBF) and Gaussian. Figure 2 depicts the 
results obtained with the various kernels.
	 The regression function obtained by the linear kernel is shown in Figure 2a. The blue line 
represents the Mexican hat given by Eq. (2) with s = 2. The blue crosses indicate the data points. 
The green solid line is the regression function and the green dashed lines are the bounds of the 
e-tube. Since it uses a linear kernel, the regression function computed by SVR is a straight line. 
The fit obtained with the polynomial kernel of degree 2 is depicted in Figure 2b. Figures 2c and 2d 
show the results of the RBF and Gaussian kernels respectively.
UMEL can be used as an exact locator of singular points within signals. To achieve this, UMEL 
gives a novel interpretation of the SVs. In SVM and SVR, the complexity of the model determines 
the number of SVs (the higher the complexity, the larger the number of SVs). The regression of 
complex data sets requires large numbers of SVs. In contrast, simple data sets require smaller 
numbers of SVs. But the number of SVs does not depend only on the complexity of the data set to 
regress. It also depends on the smoothness of the regression function. Smoother functions require 
fewer SVs than crispy functions. Using UMEL, not all the SVs have the same degree of relevance. 
The SVs that lie on or outside the e-tube are called External Support Vectors (ESVs). In contrast, 
the SVs within the e-tube are called Internal Support. They are defined by the relations: 

                        (3)

ISVs are necessary samples for the regression estimation, but they do not provide the same degree 
of relevance that can be assigned to ESVs. UMEL is based a novel interpretation of ESVs: the SVs 
that become ESVs are the most difficult samples to regress (they cannot be fitted inside the e-tube) 
and these SVs provide essential information in the regression process. ESVs reveal the occurrence 
of special patterns inside a signal: peaks, high gradients or segments with different morphological 
structure in relation to the bulk of the signal.
	 Figure 3 shows two examples of UMEL using a step function and a sinusoidal function. The 
green dashed lines delimit the e-tube. Then, the SVs within these lines are ISVs (cyan squares) and 
the SVs outside the e-tube are ESVs (red circles). The ESVs are clearly the most difficult samples 
to regress. In the case of the step function (Figure 3a), the samples around the step become ESVs. 
The ISVs are found inside the e-tube. In the case of the sinusoidal function (Figure 3b), the ESVs 
appear at the beginning of the function and at the extremal points corresponding to the maximum 
and the minimum of the function.
 	 Most plasma phenomena are characterised by high frequency components in the time domain 
(spikes, drops, rapid slope changes, etc.). For example, an ELM is recognised as a spike in the Da 
signal accompanied by a drop in the diamagnetic energy as well as a drop of the plasma density at 
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the plasma edge. A disruption is identified by a fast drop in the plasma current at the same time that 
a plasma loop voltage peaks [15]. Therefore, it is possible to apply UMEL to locate these events. 
All the mathematical details about UMEL can be found in [15]. More details about the application 
to ELM detection are given in section 3.

2.2 Criteria to assess the quality of pdf fit
In this paper, the maximum likelihood estimation (MLE) method is used to estimate the parameters 
of theoretical models directly on the basis of the available data. According to this approach, from 
the theoretical probability density function f (pdf), analytically known, it is possible to estimate the 
vector of distribution parameters q according to the sample observations.
	 The maximum likelihood method consists of estimating q so that the likelihood function

(4)

or equivalently, its logarithm, is maximized.
	 Then, after the model parameters are estimated, model validation and model selection, the 
assessment of theoretical models quality to interpret the observed data, is carried out using different 
statistical tests. In particular, the Kolmogorov–Smirnov (K–S) test, the Cramer-Von Mises test (C-
VM), the Anderson-Darling (A-D) test, the Akaike Information Criterion (AIC) and the Bayesian 
Information Criterion (BIC) have been applied. The main properties of these criteria, relevant to 
the discussion in the rest of the paper, are given in the following.
	 The Kolmogorov–Smirnov (K–S) test [8] is a goodness-of-fit test for any statistical distribution, 
based on the comparison between the empirical cumulative distribution function Fn(x) of n 
experimental data and the theoretical one F(x). The K–S test consists on finding the K-S statistic,

(5)

that is the greatest discrepancy between the empirical and theoretical distribution function, and 
comparing it against the critical K-S statistic for that sample size. If K is greater than a critical 
value depending of the significance level α, then the null hypothesis H0: F(x) = Fn(x) is rejected at 
the significance level α. 
	 The Cramer Von Mises test [10] is an alternative to the K-S test. The C-VM test consists on 
finding the statistic

(6)

It quantifies the difference between two cumulative distribution functions by comparing these two 
functions over their entire range. A problem with the Cramér-von Mises statistic is that the difference 

, 

. 
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between the empirical distribution function and the reference cumulative distribution functions tends 
to zero when x → ±∞. Consequently, the value of W² is rather insensitive to the precise positions 
of the observations in the tails of the distribution.
	 A modification of the statistic consists in granting more importance to these observations by 
introducing a ponderation function into the definition of the statistic so as to make these observations 
more influential in the outcome of the test. The most widely used ponderation function is that of the 
Anderson-Darling test [9], [F(x)(1 – F(x))]-1, which is minimal around the median of the distribution, 
and tends to infinity when x → ±∞. In fact, it can be shown that F(x)(1 – F(x)) is the variance of 
the empirical distribution function in x, so that the test statistic is now the integral of the squared 
standardized difference between the empirical distribution function and the reference cumulative 
distribution function.
	 The A–S test statistic is

 (7)

Critical values of the Anderson-Darling test statistic depend on the specific distribution being tested. 
The effectiveness of these statistics is that they are distribution-free as long as F is continuous, that 
is the probability distribution of this statistic is free of F. When the shape and the parameters of the 
theoretical distribution function are estimated from the data, the distribution of the test statistics under 
the null hypothesis depends on the tested distribution, and the critical values, have to be recalculated 
[26]. An alternative is the parametric bootstrap, a data-based Montecarlo method [27] that has been 
mathematically shown to give valid estimate of goodness of fit probabilities. Bootstrap generates a 
new bunch of statistics under the null hypothesis that really represents a random sample from the 
tested distribution with parameters determined by the data. The p-value of the goodness of fit test 
is given by the percentage of bootstrap samples for which the calculated statistic is higher than the 
one evaluated from the original data. Thus, if the p-value is greater than the confidence level a, the 
null hypothesis H0: F(x) = Fn(x) cannot be rejected. 
	 The Akaike Information Criterion is a way of selecting a model from a set of models. It is defined 
as
 

(8)

where L is the value of the likelihood function evaluated with the MLE method and k is the number 
of parameters of the model. Given a set of candidate models for the data, the preferred model is 
the one with the minimum AIC value. Hence AIC not only rewards relative goodness of fit, but 
also includes a penalty that is an increasing function of the number of estimated parameters. This 
penalty penalises overfitting.
	 The Bayesian Information Criterion is a criterion alternative to AIC. It is defined as

 

.
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(9)

Also for BIC, given a set of candidate models for the data, the preferred model is the one with the 
minimum BIC value. The fitted model favoured by BIC ideally corresponds to the candidate model 
which is “a posterior” more probable.

2.3 The Kruskal-Wallis criterion 
The technique typically used to decide whether different groups of samples belong to the same 
population is the analysis of variance (ANOVA). Using this approach, the variation between different 
sample means is used to estimate the variation between individual observations, assuming that the 
variation among the means reflects only random sampling from a population, in which individuals 
vary with a normal distribution, and that the variance of the means of random samples of size ni 
is s2/ni, where s2 is the population variance. In our application, the hypothesis that all samples 
belong to a population having a normal distribution cannot be met, because time intervals between 
ELMs are positive quantities, which cannot be described by a distribution defined also for negative 
values. For these reasons, it has been necessary to use a different method, the Kruskal-Wallis test 
[14]. This test makes no assumption about the distribution of samples, but requires using ranked 
data instead of the original observations. This can be achieved by listing all the observations in 
order of magnitude and replacing the smallest by 1, the next-to-smallest by 2, and so on; if there 
are ties (two or more equal observations), each observation is replaced by the mean of the ranks to 
which it is tied. The test statistic to be computed is:

	 (10)

where C is the number of groups, Ri is the sum of the ranks in the ith group. The sum in the 
denominator is over all groups of ties, Tj = tj

3 – tj for the j-th group of ties, tj being the number of 
tied observations in the j-th group. If the samples come from identical continuous populations, 
for high ni, H is approximately distributed as c2 (chi-squared distribution) with C – 1 degrees of 
freedom. If the samples come from identical continuous populations and the ni are not too small, H 
is distributed as c2 distribution with C – 1 degrees of freedom and the critical H statistic is given by

(11)

where α is the significance level and F-1(x) is the inverse cumulative distribution function of the c2 
distribution with C – 1 degrees of freedom. If a

crHH > , then the null hypothesis H0, that the samples 
come from the same population, is rejected at the significance level α.

, 

, 
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3.	 Automatic localisation of ELMs with UMEL
Most ELMs taking place in JET experiments are not indexed and thus it is not easy to study them 
using a large statistical base. Average ELM studies contain dozens of ELMs, a greatly reduced set 
of the total number of ELMs in the JET database. For example, JET pulses can contain more than 
one hundred ELMs each and the JET database currently contains more than 80,000 pulses (the 
majority of which, even if not all, presents ELMs). Previous work has developed an automatic 
ELM classification system [15]. This tool utilises the ELM times as an input and classifies them 
as Type I or Type III. It has been tested using a small set of 256 ELMs (122 training and 143 test) 
manually located by experts.
	 In order to apply this system to a wide range of discharges, it is necessary to provide an automatic 
tool to locate ELMs without human intervention. With one exception, all present codes to locate 
ELMs are completely dependent on waveform amplitudes and affected by noise. In those cases, 
if the amplitude or noise changes from one discharge to another (or even in a single discharge), 
the software must be retuned. The exception is Ref. [7], that uses the signal’s average amplitude 
and standard deviation, calculated over a short time period prior to the time point in question to 
determine thresholds for the onset of an ELM. This allows their algorithm to be applied to signals 
that vary in real time, or from different experiments, without needed to change settings within the 
code. The method described here is different, but has the same benefits of being able to be applied 
to a wide range of plasma discharges without human intervention or modification of the code. This 
subsection describes the application of UMEL to the location of ELMs in plasma pulses [28]. The 
method described in the following can be applied to a wide range of plasma discharges without 
human intervention or modification of the code. It is made up of two steps: first the location of 
the temporal interval containing ELMs and then the location of individual ELMs within it. This 
method has been applied to a JET database of more than 1,200 JET pulses, locating more than 
220,000 ELMs. The typical sequence of a plasma pulse starts with the plasma in L-mode. Then, 
when auxiliary power is injected to the plasma above a certain power threshold, the plasma accesses 
the H-mode. The plasma returns to L-mode after the injected power is switched off. Since ELMs 
occur only during the phase when the plasma is in H-mode, the location of the H-mode implies the 
determination of the region where ELMs appear and vice versa. The focus of this first step is to 
delimit the time interval in which ELMs appear rather than the location of every single ELM, so 
this phase is actually a gross H-mode locator system.
	 Three sequential tasks are carried out in this first step: Da normalisation, dimensionality reduction 
and H-mode location.

1)	Da normalisation. In order to optimise the computation of the SVR regression and allow the 
use of the same UMEL parameters over a wide range of discharges, the Da signal is normalised 
to between 0 and 1.

2)	Dimensionality reduction. The computation time of the SVR regression can be shortened 
significantly by reducing the number of samples to regress. Since this step implements a gross 
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H-mode locator, a high decomposition level of the Wavelet transform is used to reduce the 
number of samples to regress. The approximation coefficients of the wavelet transform are 
used to model the Da waveform. These coefficients retain the most relevant signal information 
in both the time and frequency domains. The wavelet decomposition level has been set to 5. 
For example, a signal with 150,000 samples is reduced to 4,688 samples.

3)	H-mode location. The capability of UMEL to locate time segments with relevant behaviour has 
been applied to locate the H-mode time interval in a plasma discharge. Given a pulse number, 
a SVR regression with UMEL is computed using the wavelet approximation coefficients of 
the Da signal. Then, a histogram of the ESVs in time windows of 0.1 s length is computed. 
This histogram defines the temporal segment that has been more difficult to regress, and 
therefore, the time interval where the Da signal contains high frequency components (peaks). 
This temporal interval corresponds to the H-mode region and therefore, the time phase with 
ELM activity. The borders of this region are the first and the last bins with more ESVs than a 
certain threshold value. The outputs of this step are the boundaries of the time interval with 
ELMs.

Usually, individual ELMs are localised by means of visual analysis. The process consists of 
recognizing peaks in the Ha / Da signals that are synchronous with a drop in the stored diamagnetic 
energy. The second phase of the UMEL analysis implements this process. Since the Da signal 
typically has a better signal-to noise ratio, the ELM location process begins by searching peaks in 
this signal. Then, simultaneous drops in the diamagnetic energy are sought. This searching process 
is limited to the time interval determined in the previous step. The location of ELMs is carried out 
in four steps: Da peak location, ESVs combination, diamagnetic energy division and combination 
of information.

1) Da peak location. This step locates the peaks in the Da signal that are candidates to be 
ELMs. It is important to note that not all these peaks are ELMs (it must be checked using the 
diamagnetic energy). The location of peaks in the Da waveform is performed using UMEL 
. Figure 4 shows the location of ELMs in JET Pulse No: 73337. The points of the waveform 
outside the e-tube become ESVs. Although the SVR fit can seem a straight line, it is adapted to 
the low frequency shape of the Da waveform. The identification of peaks as the points above a 
certain threshold is not valid since ELMs have different amplitudes and the Da amplitude can 
vary from one pulse to another. The main advantage of using UMEL resides in the fact that 
UMEL looks for samples that do not fit a smooth regression, independently of their amplitudes.

2)	ESVs combination. As can be observed in Figure 4 left, more than one ESV appears on 
each peak of the Da signal. This step concentrates all the ESVs of each peak in a single one. 
The selected point is the Da sample with the highest amplitude. After this task, each peak is 
represented by just one ESV. Figure 4 right shows the result of this step using the peaks in 
Figure 4 left as inputs. After this step, only one ESV remains on each peak, located at the 
maximum of the Da waveform.
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3)	Diamagnetic energy division. The diamagnetic energy waveform is divided into small 
segments around the time of each Da peak located in the previous step. These segments must 
allow the identification of the drop in diamagnetic energy without possible confusion from 
signal noise. It has been empirically determined that a segment of 35ms is enough for a clear 
recognition of the diamagnetic energy drop. Figure 5 shows the time windows computed for 
the Da peaks located in the previous tasks.

4)	Combination of information. The last step of this method locates the drops in the diamagnetic 
time windows determined in the previous step. UMEL is again used as event locator. It is not 
possible to set a simple threshold to determine the drop in the diamagnetic energy because 
the amplitude of the waveform changes from one pulse to another. On the one hand, if one 
or more ESVs are found in the diamagnetic energy at a maximum distance of 5ms from the 
Da peak, it has been empirically demonstrated that the event can be reliably classified as an 
ELM. In this case, the time of the ELM is determined as coincident with the maximum value 
of the diamagnetic energy just before the drop (see figure 6). On the other hand, if no ESV is 
found in the diamagnetic energy within 5ms of the Da peak, it is discarded.

The ELM location method was applied to a JET database of more than 1,200 pulses in the range 
of discharge numbers [73337; 78156], which correspond to the last campaigns with the carbon 
wall. 226,751 ELMs have been identified in these pulses. Due to the lack of a large validated ELM 
database for benchmark, the performance of the ELM location method has been tested comparing 
its results with the ELMs manually located by experts in 20 JET discharges from the above range. 
The method achieves a success rate of 95% in the location of ELMs. The main statistical properties 
of all the ELMs in the database are reported in table I.
	 It is probably worth mentioning that the use of additional signals, presenting a clear signature 
of the ELMs occurrence, would increase the reliability of the detection even further. On the other 
hand, at least on JET, in many cases the Da alone provides sufficient information for a quite 
accurate determination of the ELM times. The method can therefore be used, with care, even if the 
diamagnetic energy signal is not available, as can be the case in some discharges

4.	 Analysis of a Global Database at Steady State 
4.1 Database at steady state 
To study the type I ELM dynamics, the analysis has been restricted to time intervals in which the 
plasma conditions are stationary. To determine stationarity, plasma current, vacuum toroidal field at 

R=2.96, neutral beam input (NBI) power and lower triangularity of the equilibrium field have been 
considered as the crucial input quantities. The signal tolerances of ±4% for toroidal magnetic 
field, ±2% for plasma current, ±10% for NBI input power and lower triangularity, have been taken 
into account. Moreover, only cases in which the heating power of the plasma has just only two 
contributions, ohmic power and neutral beam power, have been used, since the greatest contribution 
to the variation of the input power is given by radiofrequency and LH-waves heating. In addition, 
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all experiments dealing with ELM control and mitigation techniques have been excluded. Attention 
has also been paid to ensuring that good quality signals are available (mainly the diamagnetic 
energy time trace). In the end, a database of 60 shots (reported in Appendix 3) has been retained 
for a total of 3448 Type I ELM time intervals. In Table II, a list of the candidate experiments for 
full analysis has been reported.
	 Figure 7 shows the planar orthogonal projections of the input space for each pulse, to provide a 
visual overview of the database characteristics.
	 As shown in this figure, there is a noticeable correlation between the plasma current and the 
toroidal magnetic field. This does not result from a physical relationship, but from the choices made 
in the implementation of the experimental programme. As will be noticed, the different pulses 
have been taken under different plasma conditions. A statistical analysis has been performed first 
generally over the whole set of examples, then a more detailed analysis has been performed either 
for each individual discharge or for a suitable subset of discharges (see section 5). 

4.2 Exploratory Analysis of the Whole Database at Steady state 
A first exploratory approach to the data has been graphical. By means of a histogram of the ELM 
time intervals T and a non-parametric estimation, based on a normal kernel, of the probability density 
function (fig. 8), it has been possible to draw some important conclusions about the statistics of 
the data. It is important to note that all timings of the signals are affected by the discreteness of the 
sampling, performed in this case with a time step of 0.1ms. It is also worth mentioning that in some 
cases post-cursor/weakly compound ELMs are present, as can be confirmed by their signatures 
in both the D-alpha and the bolometric signals. For these cases the post-cursor component is not 
counted as an ELM. Of course, in the future the same tools could be directly applied to investigate 
also the statistics of this type of secondary events.
	 Figure 8 suggests a probability distribution defined on non-negative real numbers, having a 
maximum at about 32 ms. In this context, an attempt has been made to find the theoretical probability 
distribution which best describes the experimental data. Thus, the search scope has been reduced 
to the distributions listed in table III.
	 The maximum likelihood method has been used to estimate the parameters characterizing these 
models on the basis of the available data. For each distribution, the parameters that maximize the 
likelihood function have been evaluated. Table III lists the values of these parameters. The detailed 
mathematical expression for each of the pdfs in Table III is reported in Appendix 1.
	 Table IV shows the results for the different goodness of fit and model selection tests for all the 
pdfs investigated.
	 The results of AIC and BIC criteria have been sorted in ascending order by assigning a rank 
to each distribution. In this way, the distribution with rank 1 is the one that according to the used 
criterion best fits the experimental data. The top three distributions according to the AIC and BIC 
criteria are, in rank order, the Burr XII, Pearson VI and Dagum distributions. The K-S, C-VM and 
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A-D tests lead to the rejection of the null hypothesis for all the distributions, with the exception of 
the Burr XII and Dagum distributions. In addition, the A-D test failed, for all other distributions, 
rejecting the hypothesis that the distributions belong to the same population with a significance 
level of 5%.
	 For the reader’s convenience, the best two distributions are repeated here: 
	 • Burr

  	 (12)

	 • Dagum

 	 (13)

The validity of the previous results can be confirmed by a graphical method, known as the quantile-
quantile (Q-Q) plot, used for comparing the empirical and theoretical probability distributions. In a 

Q-Q plot, the quantiles of the sample are plotted against the quantiles of the theoretical distribution. If 
the two sets come from a population with the same distribution, the points should fall approximately 
along a 45-degree reference line. The greater the departure from this reference line, the greater 
the evidence for the conclusion that the sample set has come from a population with a different 
distribution. Indeed in our case, the Q-Q plots clearly confirm that the Burr distribution provides 
the best fit (see Appendix 2). The Q-Q plot for the Burr distribution is shown in figure 9, together 
with the pdf and the cumulative distribution function, to show the good quality of the fit obtained. 
	 Of course a good fit of the entire database does not imply necessarily that the obtained pdf 
represents properly the physics in the data. This fact will be discussed in detail in section 6 devoted 
to a more detailed analysis of subsets of the database.

5.	 Memorylessness property
The analysis described in the previous section indicates that all distributions, which can be properly 
fitted to the data, are very far from an exponential distribution, which is well known for being the only 
pdf with the property of memorylessness. This clear statistical evidence motivates the investigation 
of the presence of memory between subsequent ELMs. 
	 The memorylessness property [29] refers to the conditional behaviour of random variables 
related to the time intervals between two subsequent events. Let T be the time interval between 
two subsequent ELMs. Suppose we know in advance that the time T between two ELMs is greater 
than a fixed value τ. The conditional probability that we need to wait less than another Δτ seconds 
before the subsequent ELM, given that the following ELM has not yet happened after τ seconds, 
is given by

(14)

  

. ∆ ∆ ∆
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where FT(τ) is the cumulative distribution function.
	 If the probability (14) is independent of τ, i.e. if

(15)

then, the distribution is called memoryless.
	 The probability (14) has been evaluated on the entire database and its dependency on the variable τ 
has been used as an indicator of the presence of memory. Figure 10 shows the conditional probability 
for the model Burr distribution with respect to the variables τ and Δτ.
	 As it can be noticed from the contour lines in fig. 10, the dependence on the variable τ is not 
negligible, thus the process is not memoryless. If α is the conditional probability (14), the contour 
line indicated by α in fig. 11 represents the values of τ and Δτ for which the conditional probability 
Pr{T ≤ τ + Δτ|T ≥ τ} = α. For example, the last contour line at the top is related to α = 99%. Thus, 
looking at the point (150, 250) in the graph, if after τ = 150ms no ELM has occurred, then there is 
a 99% probability that the next ELM occurs within other Δτ = 250ms. As it can be noticed from the 
contour lines, the dependence on the variable τ is not negligible, thus the process is not memoryless. 
In fact, if the process was memoryless, the contour lines would be parallel to the x-axis, indicating 
no dependence on τ. This result applies to the whole database, as demonstrated here, and also applies 
equally to the cliques (sets of three or more pulses) since they cannot be fitted with an exponential 
pdf either.
	 It is also worth mentioning that Eq.14, in the limit of Δτ sufficiently small, tends to the conditional 
probability p(t) in [7]. Moreover, for type I ELMs, in the same paper it was found that the conditional 
probability p(t) increases roughly linearly with time or faster, and this is consistent with our analysis. 

6.	G rouping of different shots at steady state 
All the analyses and observations reported in the previous section have been made assuming that 
the inter ELM intervals of pulses all belong to the same population. But the question can be asked 
whether this assumption is correct or not, and whether the different pulse conditions affect the 
statistical behaviour of ELMs. In our case, as already mentioned in section 2.3, the hypothesis that 
all samples belong to a population having a normal distribution cannot be met, because time intervals 
are positive quantities which cannot be described by a distribution defined also for negative values. 
For these reasons, classical techniques of the ANOVA type cannot be applied and it is necessary 
to use a different method, the Kruskal-Wallis test, introduced in subsection 2.3. This test makes no 
assumption about the distribution of the samples.
	 The Kruskal-Wallis test has been applied first to the observations of ELM intervals of all pulses, 
giving a negative result. In fact, for the test samples, the H statistic gives H = 1981.4, which, 
compared with the c2 distribution of 59th degree, is quite large. Therefore, it is concluded that, in 
all probability, different samples, i.e. ELM intervals belonging to different pulses, do not belong to 
the same population.

∆ ∆ ∆ , 
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Given the previous results, it has been decided to group together, when possible, pulses relative to 
similar inputs, taking into account the signals’ typical uncertainties or tolerances (±4% for toroidal 
magnetic field, ±2% for plasma current, ±10% for NBI input power and lower triangularity), and 
to perform a more detailed analysis of the new groups. In particular, two input conditions have 
been considered similar if all the input parameters have fallen within the limits dictated by their 
tolerance. A set of pulses is classed as a group if each pair of pulses of the set is characterized by 
similar input conditions and if all pulses belong to the same experiment. It has been possible to 
distinguish between three different cases: single pulses, pairs of pulses and cliques (sets of three or 
more pulses). The algorithm used for finding cliques is clearly reported in [30].
	 By means of this division, from the initial 60 pulses, 24 groups have been created, including 10 
of singles, 4 of pairs and 10 of cliques. The groups are listed in table V.
	 For each group, the number of samples, the input conditions, the identifier of the experiment 
and the result of the Kruskal-Wallis test with 5% confidence level are reported. With this kind of 
division, there are four groups (6, 10, 16, 19) for which the test gave a positive result.
	 With regard to the other groups, it has not been possible to say with good confidence that the 
intervals of a single group belong to the same distribution, therefore pulses belonging to these 
groups have been kept unpaired.
	 For the two cliques 16 and 19, a more detailed analysis has been performed, by repeating the 
same steps executed for the total database. Thus, this approach differs from that described in [7] 
where all pulses are individually analysed.
	 The maximum likelihood method has been used to estimate the parameters characterizing the 
distributions on the basis of the available data. For each distribution, the parameters that maximize 
the likelihood function have been evaluated. The verification of conformity of the observed data to 
the different theoretical models, i.e., the goodness of fit, has been carried out using five statistical 
tests: the Kolmogorov–Smirnov test, the Cramer-Von Mises test, the Anderson–Darling test, the 
Akaike Information Criterion and the Bayesian Information Criterion. Table VI shows the results 
for the different tests for clique 16.
	 Unlike the previous case, the K-S, C-VM and A-D tests give a positive result also for Log-Logistic 
distribution. The A-D test faile for all other distributions, rejecting the hypothesis that the distributions 
belong to the same population with a significance level of 5%. These results are confirmed by the 
AIC and BIC criteria, assessing that the best fitting distribution is the Dagum distribution. Given 
the small difference between AIC and BIC of the Burr XII and Dagum distributions, and since 
the log-logistic distribution is a subset and a link between the two above-mentioned distributions, 
the distribution fitting related to the clique 16 confirm the results obtained for the entire sample, 
although statistical conclusions are “weaker” because of the lower number of samples.
	 Different results have been obtained for clique 19. In that case, by means of a histogram of the 
ELM time intervals T and a non-parametric estimation, based on a normal kernel, of the probability 
density function (fig.11), it has been determined that the statistics that describes the data set has a 
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bimodal distribution. Bimodal distributions have also been found in the six pulses analysed in [31].
	 This pdf cannot be reproduced by the distributions considered and will probably require further 
examination. In any case, it is a general conclusion that the cliques do not seem always to obey the 
same statistics as the total database. The same conclusion has been reached in [31] by applying delay 
plots to the measured inter ELM time intervals in only six similar plasmas in the JET tokamak. 

Conclusions 
In this paper, a technique, based on the event identifier UMEL, has been applied to the localisation 
of ELMs in a large JET database. The success rate of the technique is better than 95% allowing 
the building of large, good quality databases of ELM events. Such positive results should strongly 
motivate the analysis of large databases of ELMs from other experiments to improve the statistical 
basis on which to draw conclusions about their dynamics. 
	 The analysis has then been particularised to Type I ELMs at steady state as a basis for the 
assessment of their dynamical behaviour. Overall the required conditions have been met by 60 
shots, corresponding to 24 experimental conditions, for a total of 3448 Type I ELM time intervals. 
It has been demonstrated that by far the most widely applicable, even if not universally valid, pdfs 
to interpret the distribution of the inter ELM intervals for this set of ELMs are the Burr and the 
Dagum. Moreover, the memorylessness property has been investigated suggesting the presence of 
memory in the ELM time intervals for the type I ELMs considered here, in agreement with previous 
studies [7]. The presence of memory in these time series is relevant not only for the modelling of 
the ELMs but can also be significant for the optimisation of the tools to control them. 
	 On the other hand, there are clear subsets of the database, which cannot be fitted with the Burr and 
Dagum distributions. Therefore, at least from a statistical point of view, Type I ELMs do not show 
the same behaviour in their inter-ELM periods. The main consequence is that the analysis should 
be restricted to a homogeneous set of shots and care must be taken in deriving global conclusions 
from large datasets without a detailed analysis of the statistical properties of the various subsets. 
In particular, the operational regimes will have to be analysed in detail to see what parameters of 
the discharge could explain the differences in the statistical behaviour. In any case, the evidence 
presented indicates quite strongly that the so called Type I ELMs could in reality comprise more 
than one single dynamical behaviour. Again this aspect can have implications also for the strategies 
of ELM controls.
	 With regard to future developments, the evidence that different subsets of shots present different 
inter-ELM time statistics requires redefining the analysis to understand the critical discharge 
parameters influencing this aspect of the dynamics. After that, it will be possible to perform a 
critical investigation of more sophisticated aspects of the ELM evolution, such as memory effects, 
determinism and presence of chaotic behaviour. The same methods could then also be applied to 
other ELM types, to identify the major differences and similarities between them. Moreover, since 
after the installation of the new ITER Like Wall, the ELM dynamics have changed significantly on 
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JET, it is planned to perform the same studies for the new campaigns to assess these differences 
in a sound statistical way. The tools presented in this paper are considered perfectly adequate to 
perform this investigation in a robust and efficient way and, being absolutely general, can also be 
deployed for the study of other types of instabilities. 
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Table I: Distribution of the periods of the located ELMs

Table II: List of candidate experiments for full analysis. The left column reports the acronym of JET experiments the 
analyzed shots belong to.

Period (s) Number of ELMs Period (s) Number of ELMs 

< 0.01 3,200 0.04 to 0.05 19,809 

0.01 to 0.02 56,550 0.05 to 0.06 11,409 

0.02 to 0.03 61,373 0.06 to 0.07 6,800 

0.03 to 0.04 30,100 0.07 to 0.08 4,000 

Experiment 
N° of 

pulses 

E-1.1.1 Characterisation of divertor detachment 1 

E-1.1.6 Massive gas injection 2 

E-1.3.2 Carbon Migration – ITER Like Wall (ILW) reference scenarios 8 

E-1.3.4 Disruption mitigation by massive gas injection 1 

E-1.3.5 Fuel retention - ILW reference scenarios 1 

E-2.4.1 Characterization of large/regular ELMs 36 

H-1.1.1 
ITER Like Antenna commissioning at 42MHz + High resolution Thomson 

scattering 
1 

HLC-1.1.4 Large ELMs (>0.5MJ) 1 

HLC-9 Quarts Microbalance tests 1 

S1-2.4.9 Pedestal identity with AUG & DIII-D + rho* scan 2 

S1-2.4.12 Scaling of confinement and pedestal with rho* and beta 6 
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Table III: List of distributions and best fit parameters.

Table IV: Results of tests for each theoretical model. Highlighted in grey distributions for which the K-S, C-VM and 
A-D tests gave a positive result.

Distribution Parameters Distribution Parameters 

Burr XII 
k = 1.8385, 

 = 2.6276,  = 0.0507 
Levy  = 0.0302 

Dagum 
k = 0.6225, 

 = 3.7915,  = 0.0457 
Log–Logistic  = 3.0902,  = 0.0370 

Fatigue Life  = 0.6044,  = 0.0357 Log-Normal  = 0.5769, µ = 3.3201 

Frechet  = 1.5978,  = 0.0269 Pearson VI 1 = 4.2871, 2 = 14.910 

 = 0.1372 

Gamma  = 3.3424,  = 0.0127 Rayleigh  = 0.0346 

Generalized Gamma 
k = 1.0475, 

 = 3.2125,  = 0.0142 
Weibull  = 1.8418,  = 0.0478 

Inverse Gamma  = 2.9570,  = 0.0894 Weibull (3P) 
 = 1.7368,  = 0.0450 

γ = 0.00237 

Inverse Gaussian 
 = 0.1061 

µ = 0.0423 

Kolmogorov- 

Smirnov 

Cramer- 

Von Mises 

Anderson- 

Darling 
AIC BIC 

Distribution 

Statistic P-Value Statistic P-Value Statistic P-Value Value Rank Value Rank 

Burr XII 0.0183 0.193 0.2053 0.276 1.5154 0.175 -10086 1 -16957 1 

Dagum 0.0165 0.317 0.1709 0.34 1.5375 0.184 -10074 3 -16946 3 

Fatigue Life 0.0579 0 3.4426 0 17.771 0 -9963 8 -16842 8 

Frechet 0.1061 0 15.427 0 94.073 0 -9061 14 -15941 14 

Gamma 0.0358 0 0.7053 0.01 4.5715 0.003 -10033 4 -16887 7 

Gen. Gamma 0.0498 0 1.6358 0 9.4171 0 -10017 5 -16899 4 

Inv. Gamma 0.0880 0 9.2138 0 51.409 0 -9567 13 -16447 12 

Inv. Gaussian 0.0622 0 4.1252 0 21.409 0 -9927 9 -16756 9 

Levy 0.3935 0 161.98 0 757.57 0 -5599 15 -12487 15 

Log-Logistic 0.0324 0.003 0.8871 0.007 7.5503 0 -10015 6 -16888 5 

Log-Normal 0.0443 0 2.1979 0 12.329 0 -10007 7 -16888 6 

Pearson VI 0.0248 0.03 0.6678 0.014 3.8108 0.012 -10078 2 -16949 2 

Rayleigh 0.0799 0 5.2845 0 28.971 0 -9716 12 -16595 11 

Weibull 0.0629 0 3.5819 0 24.537 0 -9764 11 -16351 13 

Weibull (3P) 0.0564 0 2.7866 0 18.432 0 -9862 10 -16734 10 



21

Table V: Groups with division by input conditions and belonging to the same experiment.

G Pulses ni Inputs Exp. 

K-W 

test 

(5%) 

1 
73397, 73445, 73446, 73447, 

73450 
246 

2.5MA, 2.4T, 

12.5-14.5MW, 0.23-0.27 
E-1.3.2 NO 

2 73484 108 2.5MA, 2.4T, 14.8MW, 0.28 E-1.3.2 NO 

3 74130 78 2.5MA, 2.4T, 13.6MW, 0.25 E-1.3.2 NO 

4 74364 116 2MA, 1.8T, 15.5MW, 0.36 E-1.3.2 NO 

5 

74365, 74366, 74367, 74368, 

74369, 74371, 74372, 74373, 

74374, 74375 

347 
2.5MA, 2.5T, 

15.5-18.5MW, 0.34-0.35 
E-1.3.2 NO 

6 74375, 74376 54 
2.5MA, 2.5T, 

15.1-15.5MW, 0.33-0.35 
E-1.3.5 YES 

7 
74378, 75724, 75726, 75727, 

75728, 75731, 75732, 76481 
497 

2MA, 2T, 

11-12.8MW, 0.32-0.37 
HLC-9 NO 

8 
74378, 75724, 75726, 75727, 

75728, 75731, 75732, 76476 
497 

2MA, 2T, 

12.1-14.5MW, 0.32-0.37 
E-2.4.1 NO 

9 

74378, 75724, 75728, 75731, 

75732, 76473, 76474, 76475, 

76476, 76477, 76478, 76479 

705 
2MA, 2T, 

12.5-15.2MW, 0.32-0.37 
E-2.4.1 NO 

10 74443, 74444 90 2.5MA, 2.7T, 14-15.8MW, 0.32 E-2.4.1 YES 

11 74612, 74613, 77073 291 
2.6MA, 2.3-2.4T, 

16.7-17MW, 0.36 
E-2.4.1 NO 

12 74793, 74795 286 
1.7MA, 1.6T, 

9.1-10.5MW, 0.35-0.36 
E-2.4.1 NO 

13 74798 120 1.7MA, 1.6T, 16.8MW, 0.37 E-2.4.1 NO 

14 75118 33 1.7MA, 1.8T, 9.4MW, 0.26 E-2.4.1 NO 

15 

75724, 75728, 76471, 76472, 

76473, 76474, 76475, 76476, 

76477,76478, 76479 

439 
2MA, 2T, 

12.6-15.4MW, 0.32-0.37 
E-2.4.1 NO 

16 
76428, 76430, 76431, 76437, 

76438 
197 2MA, 2T, 7.5MW, 0.35 E-2.4.1 YES 

17 76440, 76443, 77192 126 2MA, 2T, 7.5-8.4MW, 0.31-0.36 E-2.4.1 NO 

18 76470, 76480 45 2MA, 2T, 16.8-19.8MW, 0.37 E-2.4.1 NO 

19 

76470, 76471, 76472, 76473, 

76474, 76475, 76476, 76477, 

76478, 76479 

363 
2MA, 2T, 

14.5-16.8MW, 0.35-0.37 
E-2.4.1 YES 

20 76812 60 2MA, 1.8T, 18.5MW, 0.37 E-2.4.1 NO 

21 78448 19 2.5MA, 2.7T, 12.9MW, 0.4 S1-2.4.9 NO 

22 78750 104 1.5MA, 1.8T, 17.6MW, 0.32 S1-2.4.9 NO 

23 79389 132 2MA, 2T, 11.9MW, 0.32 S1-2.4.12 NO 

24 79546 177 1.5MA, 1.8T, 17.7MW, 0.45 S1-2.4.12 NO 
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Table VI: Results of tests for each theoretical model for clique 16. Highlighted in grey distributions for which the K-S, 
C-VM and A-D tests gave a positive result.

Kolmogorov- 

Smirnov 

Cramer- 

Von Mises 

Anderson- 

Darling 
AIC BIC 

Distribution 

Statistic P-Value Statistic P-Value Statistic P-Value Value Rank Value Rank 

Burr XII 0.0550 0.575 0.1147 0.526 0.8231 0.478 -473.9 2 -852.1 3 

Dagum 0.0512 0.640 0.1042 0.557 0.7853 0.482 -478.5 1 -856.6 1 

Fatigue Life 0.1596 0 1.4995 0 8.8388 0 -369.7 10 -753.1 11 

Frechet 0.2724 0 5.0472 0 27.820 0 -203.8 14 -587.2 14 

Gamma 0.0883 0.097 0.4549 0.056 2.9634 0.025 -445.2 5 -828.6 5 

Gen. Gamma 0.0885 0.101 0.4245 0.076 2.7816 0.043 -452.0 4 -830.1 4 

Inv. Gaussian 0.1601 0 1.5069 0 8.8837 0 -366.3 12 -749.7 12 

Levy 0.5130 0 14.657 0 67.038 0 12.76 15 -376.0 15 

Log-Logistic 0.0511 0.654 0.0991 0.580 0.7569 0.486 -471.6 3 -855.0 2 

Log-Normal 0.1185 0.006 0.8216 0.007 5.1908 0.003 -407.5 9 -790.9 9 

Inv. Gamma 0.1813 0 2.2259 0 13.173 0 -309.5 13 -692.9 13 

Pearson VI 0.0886 0.071 0.4563 0.038 2.9715 0.022 -445.0 6 -823.2 6 

Rayleigh 0.2572 0 3.9910 0 20.623 0 -368.3 11 -757.0 10 

Weibull 0.1095 0.022 0.8282 0.006 5.2721 0.001 -436.1 8 -819.6 7 

Weibull (3P) 0.1087 0.024 0.8205 0.006 5.2308 0.001 -436.2 7 -814.4 8 
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Figure 1: List of different bursts types as defined in [20]. Top: Type I ELM; Middle: Type II ELM; Bottom: Type III ELM.
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Gaussian Kernel, C = 20, s = 1.1, ε = 20
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Figure 2: SVR of the Mexican hat function using four different kernels. a) linear kernel b) polynomial kernel 
of degree 2 c) RBF kernel d) Gaussian kernel.
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Figure 4: ELMs location step 2. Example of Da peak location and ESVs combination, JET Pulse No: 73337
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Figure 5: ELM location, step 2. Division of the diamagnetic energy example,  JET Pulse No: 73337.

Figure 6: ELM location, step 2. Example of the diamagnetic energy drop location,  JET Pulse No: 73337.
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Figure 7: Planar orthogonal projections of the input space.

Figure 8: Data histogram and non-parametric estimation of the pdf.
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Figure 9: Q-Q plot, probability density function and cumulative distribution function for the Burr XII model 
(parameters: k = 1.8385, α = 2.6276, β = 0.0507). The blue lines are the experimental values and the red 
line the theoretical distribution.
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Figure 11 (a) Data histogram and non-parametric estimation of the probability density function for clique 19; (b) 
example of ELM time series taken from Pulse No: 76474 from clique 19.

Figure 10: Contour plot of probability Pr{T≤τ+Δτ|T≥τ} with respect to τ and Δτ for the Burr pdf using the 
parameters fitting the experimental data (k = 1.8385, α = 2.6276, β = 0.0507).
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Appendix 1
Mathematical expressions of the tested Probability Density Functions

 is the Gamma function,  is the Beta function and 

 is the modified Bessel function of the first kind with order zero. 

Distribution Probability density function Distribution Probability density function 

Burr XII or 

Singh-

Maddala 

,  Levy  

Dagum ,  Log–Logistic ,  

Fatigue Life or 

Birnbaum-

Saunders 

,  Log–Normal 

 

Frechet ,  Pearson VI ,  

Gamma ,  Rayleigh  

Generalized 

Gamma 
 Weibull  

Inverse 

Gamma ,  Weibull (3P) 

 

Inverse 

Gaussian 
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Appendix 2
Q-Q plots and the probability and cumulative density functions graphs 
The following figure shows, for each theoretical model, the Q-Q plots and the probability 
and cumulative density functions graphs. The Q-Q plot is a graphical method  for comparing 
two probability distributions by plotting the quantiles of the first data set against the quantiles of the 
second data set. A 45-degree reference line is also plotted. If the two sets come from a population 
with the same distribution, the points should fall approximately along this reference line. The greater 
the departure from this reference line, the greater the evidence for the conclusion that the two data 
sets have come from populations with different distributions
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Fatigue Life

1.0

0.8

0.6

0.4

0.2

0
0.05 0.10 0.15 0.20 0.25

0.10

0.15

0.20

0.25

0.05

0
0.05 0.10 0.15 0.20 0.25

0

0

Data

Data Quantiles

Q - Q Plot

D
is

tri
bu

tio
n 

Q
ua

nt
ile

s 

Cumulative distribution function

Probability density function

C
PS

13
.3

00
-1

4c

0.05 0.10 0.15 0.20 0.250
Data

25

20

15

10

5

0

http://figures.jet.efda.org/CPS13.300-14c.eps


33

Frechet
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Gentralised Gamma
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Inverse Gamma
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Levy

1.0

0.8

0.6

0.4

0.2

0
0.05 0.10 0.15 0.20 0.25

0.10

0.15

0.20

0.25

0.05

0
0.05 0.10 0.15 0.20 0.25

0

0

Data

Data Quantiles

Q - Q Plot

D
is

tri
bu

tio
n 

Q
ua

nt
ile

s 

Cumulative distribution function

Probability density function

C
PS

13
.3

00
-2

0c

25

20

15

10

5

0
0.05 0.10 0.15 0.20 0.250

Data

http://figures.jet.efda.org/CPS13.300-20c.eps


39

Log-Logistic
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Log-Normal
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Pearson V1
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Rayyleigh
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Weibull
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Weibull (3P)
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Appendix 3
List of Pulses for steady state analysis

Pulse t0 (s) tf (s) Pulse t0 (s) tf (s) 

73397 47.6 50.6 75727 62.1 63.5 

73445 58.4 60.9 75728 62.1 65.3 

73446 58.5 61.6 75731 62.2 66.3 

73447 58.5 60.3 75732 64 65.9 

73450 58.6 61.1 76428 63.2 67.9 

73484 47.6 52.9 76430 65 67.9 

74130 58.5 63 76431 63.3 66.9 

74364 57.1 60.8 76437 63 67.7 

74365 57.2 59.1 76438 64.8 67.7 

74366 57.2 59.6 76440 63.7 67.9 

74367 57.2 58.6 76443 64 67.7 

74368 57.2 58.3 76470 60.1 61 

74369 57.6 60 76471 57.7 58.4 

74371 57.2 59.1 76472 57.8 59 

74372 57.7 59.4 76473 58.2 59.4 

74373 57.2 59.5 76474 57 58.7 

74374 57.1 59.2 76475 57.6 60.2 

74375 57.1 60.2 76476 56.6 58 

74376 59.1 61.4 76477 60.5 61.3 

74378 59.2 67.5 76478 58.5 61.2 

74443 57.3 59 76479 57.7 58.2 

74444 57.4 58.9 76480 57.9 58.6 

74612 51.5 54.7 76481 59.1 60.9 

74613 51.6 54.4 76812 62.2 64.5 

74793 58.2 61.9 77073 54.4 57 

74795 58.7 62.9 77192 63.7 67.9 

74798 62.5 65.8 78448 54.4 57 

75118 64.5 65.6 78750 61 63.7 

75724 66.8 68.7 79389 57.6 59.8 

75726 62.2 64 79546 63.3 67 
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