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Abstract
MARFE instabilities may reduce confinement leading to harmful disruptions. They cause a significant
increase in impurity radiation and therefore they leave a clear signature in the video data. This 
information can be exploited for automatic identification and tracking. A MARFE classifier, based 
on the phase congruency (PhC) theory, has been developed and adjusted to extract the structural 
information in the images of JET cameras. This approach has the advantage to use a dimensionless 
quantity and to provide information that is invariant to image illumination, contrast and magnification. 
The method is tested on JET experimental data and has proved to provide a good prediction rate.

1.	 Introduction
Video cameras have recently become diagnostic tools widely used on Joint European Torus (JET) 
for fusion plasma diagnostic and control. Camera based instruments provide essential information 
for both the control of the experiments and the physical interpretation of the results. These cameras 
can produce up to hundreds of kframes per second and their information content can be very 
different, depending on the experimental conditions. However, the relevant information about the 
underlying processes is generally of much reduced dimensionality compared to the recorded data. 
The extraction of the relevant information, which allows the full exploitation of these diagnostics, 
is a challenging task.
	 Recently, several methods were developed for the automatic identification and tracking of objects 
in videos. A complete MARFE identifier, based on morphological operators and Hu moments [1], 
and a MARFE tracking method, based on the motion estimation within the MPEG video compressed 
domain [2], were reported. These methods can be applied to explore JET database for retrieving 
specific events needed for physical studies.
	 The real-time detection is extremely important as these instabilities may trigger harmful 
disruptions. Currently, at JET, the fast imaging systems are not yet used for their real time control. 
Two main aspects will have to be solved to use fast cameras for protection and control: the streaming 
of the data in real time and the developments of image processing algorithms fast and accurate 
enough to extract the relevant information. This paper deals only with the second class of issues.
	 Several approaches, which aim to use the video data for the real time identification of MARFE 
have been reported in the literature. A hardware solution is based on the real-time image processing 
capability of cellular nonlinear/neural network-based chips [3]. A highly parallelized software 
implementation of the method introduced in Ref. 1 was recently reported [4].Although a good rate 
of correct classifications and high speed implementations were achieved by the above mentioned 
methods, the problem remains open for approaches based on different paradigms which may lead to 
further improvements. In this paper we report first results obtained by using the phase congruency 
(PhC) theory.
	 PhC theory is based on physiological and psychophysical evidences which show that visually 
discernable feature coincides with those points where the Fourier waves, at different frequencies, 
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have congruent phases. PhC was introduced by Morrone et al. [5] and it provides a simple but 
biologically plausible model of how mammalian visual systems detect and identify features in 
an image. The extraction of features at points of high PhC is sustained by some recent studies in 
neurobiology using functional magnetic resonance imaging [6]. PhC has the advantage to be a 
dimensionless quantity and to provide information that is invariant to image illumination, contrast 
and magnification.
	 PhC was used in the past as a tool for several image features significance estimation [7-10]. 
Recently, it was brought back into attention together with the development of Image Quality 
Assessment (IQA) methods. IQA methods attempt to quantify the differences between a distorted 
image and a reference image using a variety of known properties of the human visual system. 
The interest for accurate and easy to use IQA methods increased dramatically in a wide range of 
application like image acquisition, transmission, compression, restoration and display. Several 
IQA methods make use of the assumption that the human visual system is adapted to the structural 
information in images. The visual information in an image is often very redundant, but the human 
visual system understands the image mainly based on its low-level features, such as edges and zero-
crossing. A measurement of structural similarity should provide a good approximation of perceived 
image quality. PhC, as a dimensionless measure of the significance of a local structure was used 
as a component in defining the FSIM (Feature Similarity Index) index [11]. A similarity score was 
developed based on the cross correlation between partitioned PhC maps [12]. PhC was extended 
to phase coherence in order to characterize the image blur [13] and sharpness [14].
	 The ability of PhC to extract highly informative features is used in our approach for MARFE 
automatic identification by full reference similarity. Reference ‘pristine’ MARFE frames are used 
in order to identify distorted or displaced similar patterns in input video data. The PhC concept and 
its implementation for MARFE automatic identification is presented in Section 2. Experimental 
results and the method assessment are presented in section 3.

2.	 Methods
2.1 Phase congruency
Morrone and Owens [15] define the PhC function in terms of the Fourier series expansion of a 
signal at some location x as:

(1)

where: An represents the amplitude of the n-th Fourier component, ϕn�(x) represents the local phase 
of the Fourier component at position x and ϕn�(x) is the mean local phase angle of all the Fourier 
terms at the position x. The construction of PhC from the Fourier components is illustrated in Fig.1.
	 An alternative approach is to calculate points of maximum PhC by searching for peaks in the 
local energy function, which is defined by the following relation:

Σn Ancos (φn(x) - φn(x))
Σn An

PC (x) = maxφ(x) ∈ [0.2π]
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(2)

where F �(x) is the signal with its DC component removed, and H �(x) is the 90 deg. phase shift of F(x)
(the Hilbert transform). The energy is equal to phase congruency scaled by the sum of the Fourier
amplitudes [16]:

(3)

Approximations of F �(x) and H �(x) can be obtained by convolving the signal with a quadrature pair of
filters. Linear-phase filters must be used in order to preserve phase information. A widely used 
approach is represented by nonorthogonal wavelets that are in symmetric/antisymmetric quadrature 
pairs [17]. Let Qn

even and Qn
odd  be the the even-symmetric and odd-symmetric filters on scale n and 

let be [en (x), on (x)] the responses of the quadrature pairs to a 1-D signal I�x. The local amplitude 
on scale n is given by the relation:

(4)

and the energy components are:

(5)

Therefore the 1-D PhC can be calculated as:

(6)

where:
–	 ε is a small positive constant introduced in order to address the case when all the Fourier 

amplitudes are very small, and therefore the PhC calculation become ill conditioned.
–	 T is a multiple of the mean noise response; T is introduced in order to eliminate spurious 

responses to noise. It ensures that PhC of a legitimate feature is significant relative to the level 
of noise.

PhC is significant only if it occurs over a wide range of frequencies, for a specific location. Therefore a
multiplicative weighting factor w� (x) must be introduced in (6), in order to penalize PhC at locations
where the spread s�� (x)  of the filter responses is narrow. Kovesi [18] suggested that a measure of filter
response spread can be achieved by the following relation:

(7)

E (x) =    F(x)2 + H(x)2

E (x)
Σn An

PhC (x) = 

An =     en(x)2 + on(x)2

F(x) = Σn en (x), H(x) = Σn on (x)

E(x) - T

Σn An(x) + ε
PhC (x) = 

Σn An(x)
Amax(x) (x)

1
Ns (x) = 
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where N is the total number of scales being considered and Amax(x) is highest individual response 
at x. The weighting function is constructed by applying a sigmoid function to the filter response 
spread value:

(8)

where c is the cut-off value of the filter response spread below which phase congruency values 
become penalized, and g is a gain factor that controls the sharpness of the cutoff.
	 The PhC calculation for 2-D images is obtained by applying 1-D calculation over several 
orientations and combining the results in some appropriate way. A lateral extension of the filters is 
introduced by mean of a spreading function applied across the filter, perpendicular to its orientation. 
An appropriate choice is the Gaussian function which may induce amplitude modulation in the 
image, but leaves the phase unaffected. Therefore it ensures PhC preservation any features in the 
image.
	 An adequate solution for constructing the symmetric/antisymmetric quadrature pairs of filters 
are the Gabor filters. These filters became popular in image vision partly because Daugman [19-20] 
showed that the receptive fields of most orientation receptive neurons in the (cat’s) brain looked very 
much like Gabor functions. In the spatial domain, a 2-D Gabor filter is a Gaussian kernel function 
modulated by a sinusoidal plane wave. This filter will therefore respond to some frequency, but 
only in a localized part of the signal (see e.g. Ref. 21 for a detailed discussion). The Gabor filters 
are self-similar: all filters can be generated from one mother wavelet by dilation and rotation. 
Self-similarity leads to a straightforward implementation over several scales and orientations. The 
main limitation resides in the impossibility of ensuring both an arbitrarily wide bandwidth and a 
reasonably small DC component. The transfer function of an even-symmetric Gabor filter, in the 
frequency domain is the sum of two Guassians (centered at plus and minus centre frequency). The 
two Gaussians overlap, leading to a non-zero DC component.
	 An improved alternative to the Gabor function is the log-Gabor function proposed by Field [22]. 
Field suggests that natural images are better coded by filters that have Gaussian transfer functions 
when viewed on the logarithmic frequency scale. Log-Gabor filters can be constructed with arbitrary 
bandwidth which can be optimized to produce a filter with minimal spatial extent. On the linear 
frequency scale, the log-Gabor function has a transfer function of the form:

(9)

where ω0 is the filter’s centre frequency. To obtain constant shape ratio filters the term k/ω0 must also 
be held constant for varying ω0. By definition, the log-Gabor function has no DC component. The 
transfe function has an extended tail at the high frequency end, preventing the under-representation 
of high frequency components.

1
1 + eγ(c-s(x))w (x) = 

2 (log    )k
ω0

2

2

G (ω) = e

(log    )ω
ω0
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By using Gaussians as spreading functions, the 2D log-Gabor function is defined by the following
relation:

(10)

Where σR = log k/ω0, θj is the j-orientation angle of the filter and θσ determines the filter’s angular 
bandwidth.
	 The PhC values obtained for different orientations have to be combined ensuring that features 
or conjunction of features, at all orientations, are treated equally. This can be achieved by summing 
and normalization over all orientations and scales:

(11)

PhC can be used to identify significant features in the image as it values varies between 0 (a feature 
with no significance) and 1 (a very significant feature).

2.2 MARFE automatic identification
The MARFE instability is a tokamak edge phenomenon characterized by greatly increased radiation,
density and density fluctuations, and decreased temperature in a relatively small volume. MARFE 
usually occur on the high field side of the torus [23] and are the manifestation of a thermal instability, 
with impurity radiation being the main energy loss mechanism from its volume. MARFEs can reduce
confinement and, more importantly, they can cause disruptions which lead to the sudden losses of 
plasma confinement which determine the abrupt end of the discharge. They may represent a risk 
for the integrity of the devices. As MARFEs cause a significant increase in impurity radiation, they 
leave a clear signature in the videos recorded by visible cameras: they appear as ribbons of radiations 
moving up and down the vacuum vessel on the high field side. A typical MARFE sequence of 
images recorded at JET is presented in Fig.2. For the JET database, the video signature is visible 
for a number of frames between 3 and 65 [10].
	 Some specific MARFEs characteristics can be exploited for automatic identification. MARFEs 
are characterized by their top-to-bottom movement, and they have a clearly defined ribbon-like 
shape, at least for the first part of the movement (Fig.2). However, the identification method must 
be able to avoid the confusion with other video objects, like e.g. flashes, probably caused by ELMs 
(Edge Localized Modes) or high radiation from the poloidal limiters.
	 A region of interest can be defined to encompass the area corresponding to the first part of the
evolution of a MARFE (Fig.4). PhC is calculated over several orientations θk (Fig.4). PhC is evaluated 
for the current frame in the input video data and also for one or more reference frames, over several 
orientations θk , determined by the MARFE ribbon-like shapes (Fig.4).
	 A similarity map between these frames can be constructed using the following relation [24]:

2σ 2
Γ

2
ΓG2D = e × e

(log    )ω
ω0

22

2σ

(θ-θj)

Σo Σn wno (x) Eno (x)-T
Σo Σn Ano (x) + ε

PhC (x) = 



6

(12)

where Imcur is the current image, Imref is the reference image and T′ is a positive constant introduced
in order to ensure the stability of the calculation of SIM. The SIM map contains similarity values for
each location x, ranging within (0, 1]. For multiple reference images PC refj (j = 1,..,N) the 
corresponding similarity indexes  SIMj are multiplied in order to obtain a global structural similarity 
map:

(13)

where � is the total number of reference images.
	 The SIM map, which contains similarity values calculated at each location x can be pooled into 
a single similarity score using the relation:

(14)

where Ω is the map domain and D is its area.

3. Results
The PhC image classification method has been implemented following the steps described previously.
	 For each analyzed image, the PhC evaluation implies the calculation of its Fourier transform, 
and the convolution with the pre-calculated odd and even filter components, at each scale. The 
amplitudes of odd and even responses are used for the calculation of energy (Eq.2) and PhC (Eq.6) 
values. We used a total number of 4 wavelet scales and a scaling factor of 2 between successive 
filters. The ratio of the standard deviation of the Gaussian describing the log Gabor filter’s transfer 
function in the frequency domain to the filter center frequency is k/ω0 = 0.5 �(Eq.9). The standard 
deviation for the angular filter component is σq = 1.3.
	 The noise affecting the signal may have a significant influence on the PhC behavior due to the
normalization used in Eq.6. Therefore a careful evaluation of the factor T (Eq.6), introduced in 
order to ensure that PhC is significant in respect to the noise level, must be ensured. A detailed 
procedure is described in Ref. 18. It assumes that the noise is Gaussian with random phase and it is 
based on the estimation of the influence of noise in the calculation of the energy E (x) (Eq. 2). The 
influence of the image noise is estimated from the response of the smallest scale filter pair, which 
has the largest bandwith, and therefore, it gives the strongest noise response. The response across 
the whole image will be primarily determined by the noise distribution. The response will differ 
only at feature points in the image. However features occur at isolated locations in the image and 
the wavelet have a small extent at this scale. Therefore the influence on the noise induced by the 

2 . PhCcur . PhCref + T’
(PhCcur) + (PhCref)2 + T’   

SIM (x) = i i

i i

N∏j  SIMj (x)SIM (x) = 

1
D

SIMscore =  x∈Ω SIM (x) dx
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filters response to feature in the image may be judged as a limited contamination. This procedure 
has proved to be very efficient. However, as it must be applied for each analyzed image it leads 
to supplementary computing time. A systematic analysis of the results provided by this procedure 
has been performed in order to determine an empirical constant value T = 0.85, able to efficiently 
eliminate spurious responses to noise, applicable for all the videos containing MARFE events.
	 The parameters of the frequency spread weighting function (8) have been set to c = 0.5 and
g = 10. The value of the constant introduced in order to address the case when the all the Fourier 
amplitudes are very small (Eq. 6), has been set to e = 0.001.
	 The method has been tested on videos extracted from the JET database. All the videos were 
recorded using the wide angle view fast visible camera (Photron APX) installed in the Joint European 
Torus JET [25]. The camera is installed on the arm of the IR endoscope and it is viewing the full 
poloidal crosssection of the vacuum vessel and is covering a toroidal extent of ~90o. The wide 
angle view is appropriate for the study of pellet ablation, large scale instabilities and plasma wall 
interactions. The experimental data used in this paper contains a total number of 11500 frames, 
~14.1% represent MARFE events and ~2.8% displays non-MARFE events (ELMs, UFOs etc).
	 For all these video frames the PhC analysis was performed for a maximum number of four 
orientations. This number of orientations proved to be sufficient to provide enough detailed 
information for natural image quality assessment of images [17]. However, as the computation 
time depends strongly on the number of orientations, a detailed analysis of the performances of 
the method in respect with this parameter has been performed. This analysis has proved that good 
results can be obtained using only two orientations.
	 A representative result is illustrated in Fig. 5 for JET pulse #50053. The evolution of the similarity 
score SIMscore is characterized by clearly revealed peaks corresponding to MARFE events (peaks 
M1÷M7). A threshold level, can be introduced to separate peaks corresponding to MARFE events 
from non-MARFE ones (peak E). Taking into account all the videos analyzed, it results that the 
threshold value can be set anywhere in the range SIMscore ∈ �0.900 ÷ 0.904. If the severe degradation 
of the image quality of several frames (like e.g. M1 and M6), due to camera artifacts, can be avoided, 
the range can be significantly increased SIMscore ∈ �0.900 ÷ 0.965. This will allow a more reliable 
discrimination of MARFE events.
	 The developed classifier, adapted to the structural information in images, ensures a good prediction
rate. For the videos used in the experiments reported here, 96.2% are correctly interpreted. From the
misclassified events 0.03% are false positives and 3.5% false negatives.

Conclusion
A method based on PhC principle has been developed for MARFE automatic identification. The 
method combines PhC information over multiple orientations creating a highly localized operator, 
with increased values at locations with increased structural significance. PhC has the advantage to 
be invariant to contrast and luminosity and therefore can work well with JET videos, which can 
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be affected by a variable background. PhC proved to be robust with respect to the distortion and 
magnification of MARFE’s shapes. A good prediction rate is achieved.
	 The method depends on several adjustable parameters. However, once tuned, they remain valid 
for all JET videos. An effort has been devoted to the optimization of the computation complexity. 
Further work will be dedicated to investigating the possibility of an implementation compatible 
with online MARFE identification. As mentioned also in the introduction, this will require also 
an upgrade of the hardware of the cameras since the one presently used and with the right time 
resolution to identify MARFEs cannot perform real time streaming of the videos.
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Figure 1: Illustration of the construction of PhC. The local Fourier components, at a specific location x, are plotted as 
complex vectors adding head to tail. The energy of the signal E (x) and its components F (x) - the signal with its DC 
component removed and H (x) - the Hilbert transform of F (x) are shown.

Figure 2: MARFE image sequence recorded during JET Pulse No: 70050 during the time interval 13.869477-13.869953s 
(frames 1621-1636).
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Figure 3: Video frame showing a video shape similar to 
a MARFE one.

Figure 5: The evolution of the similarity score SIMscore for JET Pulse No: 50053. The range in the SIMscore where a 
threshold level can be introduced to separate peaks corresponding to MARFE events (peaks M1,…M7) from non-
MARFE ones (peak E) is represented: i) dark gray band for the all videos, no matter of the image quality and ii) light 
gray band for the case when frames affected by camera artifacts are removed.

Figure 4: A region of interest (dotted square) and a 
particular orientations kl used for the calculation of PhC.
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