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AbstrAct
Pattern recognition is becoming an increasingly important tool for making inferences from the 
massive amounts of data produced in fusion experiments. In this work, we present an integrated 
framework for (real-time) pattern recognition for fusion data. The main starting point is the inherent 
probabilistic nature of measurements of plasma quantities. Since pattern recognition is essentially 
based on geometric concepts such as the notion of a distance, this necessitates a geometric formalism 
for probability distributions. To this end, we apply information geometry for calculating geodesic 
distances on probabilistic manifolds. This provides a natural and theoretically motivated similarity 
measure between data points for use in pattern recognition techniques. We apply this formalism to 
classification for the automated identification of plasma confinement regimes in an international 
database and the prediction of plasma disruptions at JET. We show the distinct advantage in terms 
of classification performance that is obtained by considering the measurement uncertainty and 
its geometry. We hence advocate the essential role played by measurement uncertainty for data 
interpretation in fusion experiments. We finally discuss future applications such as the establishment 
of scaling laws.

1. IntroductIon
Present-day fusion devices generate large amounts of data that are stored in massive databases. 
A significant potential lies in such data collections for enhancing the physical understanding of 
fusion plasmas by learning structures or patterns of interest directly from the data and through 
data visualization for subsequent expert interpretation. Furthermore, real-time data interpretation 
is indispensable for plasma control and also in this case data-driven approaches can provide 
considerable benefits. An important feature of the data-driven approach is that no (or few) physical 
or modelling assumptions are needed in order to derive valuable conclusions from the measurements. 
It should also be stressed, however, that this does not exclude the incorporation of trustable 
information regarding the physical model; i.e. the model-based and data-driven approaches can be 
easily complementary.
 In this paper we present a novel integrated framework that tackles various pattern recognition 
challenges related to fusion data. The aim is to construct an informative representation of complex 
stochastic data sets that allows an efficient recognition of interesting data patterns and to adapt pattern 
recognition methods to maximally profit from this representation. Adopting a probabilistic approach, 
the framework is especially suitable for analysing measurements that are subject to a great deal of 
uncertainty, such as it can be the case in fusion devices. Hence, we respect the inherent probabilistic 
nature of the data by developing pattern recognition methods that are able to deal with probability 
distributions. Pattern recognition essentially relies on geometric concepts such as distance, dispersion 
and projection. Therefore, our proposed method is based on information geometry, which provides 
a natural geometric structure to probability spaces. In information geometry a metric tensor on 
probabilistic manifolds is defined, allowing the calculation of a geodesic distance (GD) between 
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probability distributions. A key observation in this work is that, in addition to being the proper 
formalism for treating uncertainty, the probabilistic description of data drastically improves the 
performance of classification and visualization techniques. We furthermore demonstrate the value of 
our technique via two applications in a tokamak: the identification of plasma confinement regimes 
and plasma disruption prediction.
 The real-time automated identification of confinement regimes (basically L- and H-mode) has 
important applications in plasma control and will be an important tool for ITER. In addition, extracted 
patterns from confinement data, such as clusters of similar plasma regimes, can contribute to the 
understanding of the physics. Furthermore, the concept of regime identification is closely related to 
the establishment of scaling laws for the L to H transition power threshold and the energy confinement 
time. Previous approaches to automated confinement mode identification include the work described 
in [1], where fuzzy logic and support vector machines were used for the classification of confinement 
regimes at JET. In [2], support vector machines were applied for classification of confinement modes 
in the International Tokamak Physics Activity (ITPA) Global H-mode Confinement Database. A 
neural network classier for JET confinement modes was used in [3]. However, none of the previous 
methods took a fundamentally probabilistic approach to the subject.
 The second application that we study is disruption prediction at JET. Several studies have 
addressed automated real-time disruption prediction in recent years. The idea is to employ a set of 
indicator signals representing various physical plasma quantities and to train a learning system to 
recognize disruptive behaviour on this basis. Provided this can be done sufficiently early before 
the disruption (typically a few tens of milliseconds), dedicated control systems can take mitigating 
actions. At JET, encouraging results were obtained with a neural network predictor, but the system 
was applied to a limited database, while both the success rate and the number of false alarms leave 
room for improvement [4]. In [5] an extensive database of JET pulses was used for training and 
testing a support vector machine classier. The system was designed to operate in real time and is 
based on the observation that disruptive plasma behaviour is characterized by the occurrence of 
high-frequency components in several representative plasma signals. Although using this system 
good performances were obtained, there is still considerable interest to improve the performance of 
automated disruption predictors in general. Particularly critical issues are related to the prediction 
capability in a more early stage before the time of disruption and in those instances where the 
plasma conditions differ substantially from those for which the classier was trained (generalization 
performance). In this work, we employ a set of probabilistic features corresponding to distributions 
of indicator signals in the wavelet domain and show that this leads to very encouraging results.
 The paper is organized as follows. In Section 2 we present the motivation for our probabilistic-
geometric framework and the details of the approach. Section 3 discusses the first application to 
confinement mode discrimination, while Section 4 contains the description and results of the second 
application to disruption prediction. Section 5 concludes the paper and gives an outlook to future 
developments.
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2. A geometrIc-probAbIlIstIc pAttern recognItIon frAmework
2.1 Pattern recognition for fusion data
The term ̀ pattern recognition’ encompasses several concepts. Regression refers to learning a|possibly 
nonlinear| relation between variables. Clustering and classification are used to group data points 
according to similarity of their characteristics. Searching a database for a pattern in a given query 
is called information retrieval. All of these tasks basically require a similarity measure or a distance 
between data points, which is one of the most fundamental concepts in geometry.
 Pattern recognition for fusion data is hampered by several data characteristics. First, the databases 
are vast and pattern learning from large data amounts often requires considerable computational 
resources. Learning methods therefore need to work sufficiently fast. For instance, a closed-form 
expression for a similarity measure between data points is very convenient for classification or 
clustering purposes.
 Second, fusion plasmas are described by tens to hundreds of variables. Depending on the 
organization and representation of the data set, the dimensionality of diagnostic data may run up 
even more, e.g. when each sample in a signal has its corresponding dimension in the data space. It is 
well known that learning methods usually perform poorly in data spaces of excessive dimensionality. 
Therefore, it is essential to reduce the data dimensionality, for instance by projecting the data into a 
lower-dimensional space, preferably with a minimum of distortion in the configuration of data points.
 Third, there is a considerable redundancy between measured quantities due to complex, nonlinear 
interactions. Data redundancy induces data patterns, which in multidimensional data spaces are 
manifested through lower-dimensional manifolds, or multidimensional regression surfaces, around 
which the data points lie scattered. This is the basis of an important class of dimensionality reduction 
techniques that learn the geometry of such manifolds from the data, which is also strongly linked to 
regression. However, due to the general nonlinearity of data manifolds, this is a highly challenging 
enterprise.
 Finally, measurements in fusion devices are often subject to a substantial uncertainty, both 
stochastic (e.g. measurement noise, plasma fluctuations, etc.) and systematic. Classic pattern 
recognition or statistical methods deal with this uncertainty in a way that somewhat decouples 
the measurement value from its fundamental uncertainty property. That is, the primary object of 
interest is usually considered to be the measurement value itself, while its associated error bar or, 
more comprehensively, its probability distribution, is treated as a side-effect of the measurement 
process, which ultimately influences the reliability of inferences. In contrast, in our approach the 
fundamental object is the probability distribution itself, taking full advantage of the extra information 
that it contains over the measurement value alone. Information on the probability distribution that 
underlies a measurement can be obtained by fitting a distribution to a set of repeated measurements. 
Alternatively, error analysis can be applied to derive a measure for the dispersion of the underlying 
probability distribution. In some cases Gaussian error propagation suffices, but if the forward 
model is complicated, possibly involving multiple diagnostics, a more advanced error analysis may 
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be appropriate. A suitable framework to do this is integrated data analysis (IDA) using Bayesian 
probability theory [6]. Dependencies between physical variables can be captured in a multivariate 
distribution, although many nonlinear relations are too complex to be efficiently described by tractable 
probability models. Such relations are better characterized by a dedicated regression analysis.

2.2 the geometry of Probability distributions
For the purpose of the classification and visualization methods presented in this work, a notion of 
similarity between data points is needed. In a probabilistic description this translates to a similarity 
measure between probability distributions. This can be obtained within the field of information 
geometry, where probability density families are interpreted as (Riemannian) differentiable 
manifolds [7, 8]. A point on the manifold corresponds to a specific probability density function 
(PDF) within the family and the family parameters provide a coordinate system on the manifold. 
Cramér [9] and Rao [10] observed that the Fisher information can be regarded as a metric tensor 
(Fisher-Rao metric) on such a manifold. Once the metric is known, one can establish and solve the 
geodesic equations, allowing the calculation of the geodesic distances on the manifold [11]. Thus, 
the geodesic distance (GD) is a natural and theoretically motivated similarity measure between 
probability distributions. Given a probability model p(x|q) for a vector-valued variable x, labelled 
by an N-dimensional parameter vector q, the components of the Fisher information matrix gmn are 
defined through the relations

where the expectation is with respect to the data vector x. In this paper we discuss applications 
that are based on a univariate Gaussian model (confinement mode identification) and a univariate 
zero-mean Laplace distribution (disruption prediction).

2.2.1 Univariate Gaussian distribution
The univariate Gaussian distribution, parameterised by its mean m and standard deviation s, is 
defined by the following PDF:

The Fisher-Rao metric can be given via the quadratic line element [12]:

A closed-form expression exists for the GD, permitting a fast evaluation. Indeed, for two univariate 
Gaussian distributions p1(x|m1,

 s1) and p2(x|m2,
 s2), parameterised by their mean mi and standard 

deviation si (i = 1, 2), the GD is given by [12]

gµν (θ ) = − E
∂2

∂θµ∂θν
ln p(x |θ ) , µ, ν = 1 . . . N,

p(x|µ, σ ) =
1
2πσ

exp −
(x − µ)2

2σ2
.

ds2 =
1
σ2
dµ2 +

1
σ2
dσ2.
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For illustration purposes, an (approximately) isometric embedding of the Gaussian manifold in 
three-dimensional Euclidean space is shown in Figure 1a. Every point on this surface represents a 
Gaussian distribution, characterized by a mean and a standard deviation. The Euclidean distance in 
the three-dimensional Euclidean space between any two points on the surface, equals the true GD 
between the corresponding distributions. An example of a geodesic between two arbitrary Gaussians 
is drawn on the surface and the evolution of the distribution along the geodesic is visualized in 
Figure 1b.
 Finally, in the case of multiple independent Gaussian variables it is easy to prove that the square 
GD between two sets of products of distributions is given by the sum of the squared GDs between 
corresponding individual distributions [12].

2.2.2 Zero-mean Laplace distribution
The univariate Laplace distribution is a particular case of the generalized Gaussian distribution or 
GGD (exponential power distribution). The generalized Gaussian distribution is characterized by 
the PDF

Here, G(.) denotes the Gamma function and b > 0 is called the shape parameter, which is related 
to the kurtosis (peakedness) of the distribution. Clearly, b = 1 yields the univariate Gaussian PDF, 
while the case of b = 1/2 is called the Laplace distribution. Note that s is a dispersion parameter 
that can be identified with the standard deviation of the distribution only in the Gaussian case. The 
smaller b, the more peaked the distribution becomes and the heavier its tails, in comparison with 
the reference Gaussian distribution. The GGD is often used to model wavelet detail statistics, as 
outlined in Section 4. A plot of a Gaussian and a Laplace distribution fitted to a typical wavelet 
histogram are shown in Figure 2, with the Laplace distribution clearly providing a better fit.
 The information geometry of the family of univariate elliptic distributions, to which the GGD 
belongs, was studied in [13] and extended to the multivariate case in [14]. Geodesics and geodesic 
distances for this type of distributions were calculated in [15] and, specifically for the multivariate 
GGD, in [16, 17] and [11]. Focusing on the univariate zero-mean Laplace distribution with dispersion 
parameter , the quadratic line element is simply given by

The GD between two zero-mean Laplace distributions p1(x|s1) and p2(x|s2) then becomes [17]

GD( p1 || p2) = 2 ln
1 + δ
1 − δ

= 2 2 tanh − 1 δ, δ ≡
(µ1 − µ2)2 + 2( σ1 − σ2)2

(µ1 − µ2)2 + 2( σ1 + σ2)2
1/ 2

.

p(x|µ, σ, β ) =
β

Γ 1
2β 2

1
2 β σ

exp −
1
2

x − µ
σ

2β

.

ds2 =
1
4
dσ2.

GD(p1 || p2) =
1
2
ln
σ2
σ1
.
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3. confInement regIme IdentIfIcAtIon
Our first application of information geometry to pattern recognition for fusion data is the classification 
of plasma confinement regimes. At this stage we do not intend to present a dedicated classification 
platform for application in the field, although the proposed methods can certainly be used for that 
purpose. Rather, the objective of the experiments discussed here, is to provide a benchmark for 
classification algorithms that use different data models and similarity measures. This is also important 
with a view to future work, where we intend to apply our framework to regression for scaling laws.

3.1 itPa database
In this work for confinement mode identification we employ measurements from the International 
Tokamak Physics Activity (ITPA) Global H-mode Confinement Database (DB3, version 13f), 
henceforth referred to as the `ITPA database’ [18, 19]. The ITPA database contains more than 10; 
000 validated measurements of various global plasma and engineering variables at one or several 
time instants during discharges in 19 tokamaks. The data have been used extensively for determining 
scaling laws for the energy confinement time, mainly as a function of a set of eight plasma and 
engineering parameters: plasma current, vacuum toroidal magnetic field, total power loss from the 
plasma (Ploss), central line-averaged electron density (ne), plasma major radius, plasma minor radius,
elongation and effective atomic mass. The objective is then to extrapolate to ITER conditions. We 
used the same eight variables to discriminate between, roughly, L- and H-mode plasmas. Specifically, 
all database entries with a confinement mode labelled as H, HGELM, HSELM, HGELMH, HSELMH 
and LHLHL were considered to belong to the H-mode class, while discharges labelled with L, OHM 
and RI were assigned to the non-H-mode class, or L-mode for brevity.
 The ITPA database lists typical error estimates of measurements for the various plasma and 
engineering variables. It should be noted that this represents very limited information on the 
probability distribution underlying each quantity. Furthermore, the interpretation of the error 
estimates is not always unambiguous and in some cases it is not clear to what extent the estimates are 
sufficiently reliable for subsequent analysis. Nevertheless, let us assume for the moment that the error 
bars pertain to a statistical uncertainty in the data, specifically that they represent a single standard 
deviation. According to the principle of maximum entropy the underlying probability distribution 
is Gaussian with mean the measurement itself and standard deviation the error bar. Let us also 
suppose that, for stationary plasma conditions, all variables are statistically independent and so the 
joint distribution factorizes. Put differently, the joint distribution for the eight variables mentioned 
above is assumed to be just the product of the individual univariate Gaussian distributions. Clearly, 
this is a strong assumption and it is imposed here mainly for keeping the calculations tractable. It is 
also important to note that our formalism has no difficulties with the heterogeneous sources of the 
measurements, coming from different tokamaks and possibly with different error bars for essentially 
the same physical quantities. The reason is that the error estimates are automatically embedded in 
the probabilistic data description.



7

3.2 data visualization
A first step towards the identification of patterns in the ITPA database consists of the visualization 
of the data through a scatter plot in the natural two-dimensional Euclidean space. Since the original 
data dimensionality is eight, the data visualization involves a dimensionality reduction procedure. 
This is done using metric multidimensional scaling (MDS), searching for a configuration of points 
in the Euclidean plane yielding minimal distortion of all pairwise distances. Specifically, suppose 
the (geodesic) distance in the original data space between data points i and j is dij, while the 
coordinate vectors of the corresponding projected points in the reduced Euclidean space are xi and 
xj, respectively. Metric MDS then comes down to an optimization problem, looking for a set of 
coordinates xk (k = 1,..., n) in the reduced space, for which the following cost function E becomes 
minimal:

Here, n is the total number of data points and jj  jj refers to the Euclidean norm. Clearly, there is 
some ambiguity related to the freedom of choice of the reference frame. However, once this is fixed, 
E has a single global minimum.
 Figure 3 shows two approximately isometric projections of the ITPA data into the Euclidean plane, 
obtained via MDS. For Figure 3a (and 3b) the measurement uncertainty was not considered and 
MDS was carried out on the basis of simple Euclidean distances in the original data space. On the 
contrary, the MDS in Figure 3c is based on GDs between Gaussian product distributions. It can be 
clearly noticed that the projections obtained with the GD, which take into account the measurement 
error, exhibit considerably more structure compared to the Euclidean case. In particular, it is much 
easier to visually discriminate between the L- and H-mode clusters. This suggests an important 
potential of our framework for regression.

3.3 confinement mode classification
We next performed a series of classification experiments with two classes (L- and H-mode) using 5% 
of the data for training. We carried out k-nearest neighbour (kNN) classification with k = 1, effectively 
assigning a point to be classified to the class that its nearest neighbour belongs to. The results are 
shown in Table I. The experiments were performed once without and once with consideration of 
the measurement error. If all eight plasma parameters are used, the performance of the classifiers 
is excellent but relatively similar. In order to more clearly show the advantage of the probabilistic 
approach, we repeated the experiments using only measurements of  ne and Ploss. One can see clearly 
now that the results are better if the measurement error is considered, even using the Euclidean 
distance. The best results are obtained with the GD, since it properly takes into account the geometry 
of the probabilistic manifold. It is remarkable that even the approximate and limited information 
in the ITPA database on the underlying probability distribution is beneficial to the classification 

E ≡
i<j
(|| x i − x j || − dij )2 , i, j = 1 , . . . , n.Σ
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task. The results of a final experiment are also shown, wherein randomized values of the error bars 
were used (although still within the same range as before). This proves that it is indeed the specific 
uncertainty information mentioned in the database that contains useful information.

4. dIsruptIon predIctIon
The methodology behind the application regarding disruption prediction in this work, is based on 
the experiments described in [5] and we also compare to this method. It has been observed that 
several plasma signals contain information on the onset of a disruption, both in their absolute value 
and their frequency content. In this work we only take into account features that are related to the 
frequency components of the signals obtained via the wavelet transform. Hence, it is important 
to note that the results should not be compared to the classification performance of other systems 
in the field. Rather, we intend to demonstrate the superior performance of the wavelet statistical 
features in conjunction with the GD, compared to Fourier features in a Euclidean space, as in [5].

4.1 Wavelet statistical features
Changes in the frequency content of several indicator signals can typically be observed from about 
200ms before the time of disruption (ToD) [5]. In addition, in many cases the development of a 
disruption is accompanied by transient signal features such as spikes, which can be adequately 
translated into the wavelet domain. Finally, the feature vectors should not depend on specific signal 
patterns and a statistical framework is best suited.
 The one-dimensional discrete wavelet transform of a time-domain signal s(t) is a multi-scale 
representation defined as follows. Given a `scaling function’ f (t) (father wavelet) and a `wavelet 
function’ y (t) (mother wavelet), both defined in the time domain and of a limited duration, one 
can construct the scaled and translated variants

The signal can then be decomposed in this basis at a prespecified level J as follows:

with the approximation coefficients aj,k  and detail coefficients dj,k given by

Intuitively, the detail coefficients measure the local changes of signal levels at a certain scale. 
We use the statistics of these coefficients to characterize the frequency content of an indicator 

φj,k = 2− j/ 2 φ(2− j t − k),

ψj,k = 2− j/ 2 ψ(2−j t − k).

s(t) =
k
aJ,k φJ,k +

j ≤ J k
dj,k ψj,k ,Σ Σ Σ

aj,k =
∞

−∞
s(t)φj,k dt,

dj,k =
∞

−∞
s(t)ψj,k dt.
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signal. Usually most of the detail coefficients are close to zero, since signal changes are relatively 
rare. Important signal characteristics are therefore located in the heavy tails of the distribution of 
detail coefficients. This is the reason that often wavelet detail statistics are not well modelled by a 
Gaussian distribution, whereas a distribution with a higher kurtosis better captures the shape of the 
distribution. Since an approach using histograms of wavelet coefficients is time-consuming and 
rather impractical for our purposes, we model wavelet detail coefficients with a Laplace distribution. 
An example of a wavelet histogram, together with the maximum likelihood t by a Gaussian and a 
Laplace distribution, is shown in Figure 2.

4.2 database and feature extraction
In previous studies at JET, several physical variables, acquired from a number of dedicated 
diagnostics, were identified to contain useful information for disruption prediction [5]. The 13 
variables used in the present work are listed in Table II. The data were obtained from a series of 582 
disruptive JET discharges during campaigns C15–C27 (2004–2009) and the database was compiled 
in the work described in [5]. The ground truth for the current experiments, i.e. the actual ToD in 
each disruptive discharge, was determined by a team of experts.
 Each plasma signal was resampled to a common time base (1kHz) and normalized to the interval 
[0; 1]. Since the minimum time required for the actuators at JET to take countermeasures against 
an upcoming disruption is about 30ms, each time series was then divided in windows of 30 ms 
duration (30 samples) to mimic the situation of real-time disruption prediction. Non-disruptive 
features were calculated for each of these intervals up to one second before the ToD (`non-disruptive 
phase’), while the disruptive features were obtained from the last 210ms before the ToD (`disruptive 
phase’ ). The non-decimated (no subsampling) discrete wavelet transform at levels one to three was 
carried out for each interval and every signal using Daubechies’ 4-tap wavelets. Finally a zero-mean 
Laplacian was t to the wavelet detail coefficients in every subband, and the resulting  parameters for 
all subbands and for all 13 indicator signals in an interval were concatenated into a single feature 
vector. In calculating the GD between feature vectors, the different plasma signals and wavelet 
subbands were, again, assumed to be mutually independent. This permitted a pairwise evaluation 
of the GD between corresponding signals and subbands, with the total squared GD given by the 
sum of squares of the individual GDs.
 In Figure 4 an example for JET Pulse No: 69617 is shown. This discharge disrupted at around 
12.78s after a complicated sequence of events, starting with a large sawtooth crash that triggered a 
neoclassical tearing mode (NTM) which subsequently locked. The rising signal of the mode lock 
amplitude is shown just before the termination of the discharge, together with the corresponding 
non-decimated wavelet detail signals at three subsequent scales. The changing statistics of the 
wavelet detail coefficients can clearly be observed, indicating the appropriateness of the proposed 
wavelet features for classification.
 We compared our results with features based on the Fourier transform of the indicator signals. 
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Following [5], we calculated the standard deviation of the Fourier power spectra of the signals 
(excluding the DC component).

4.3 classification exPeriments
Again we used a simple k-nearest neighbour classier (k = 1), but in a later stage an algorithm that 
is more tailored to the specific problem can be applied (e.g. more computationally efficient). In a 
first experiment, data from 334 disruptive pulses from campaigns C15–C20 were employed, with 
65% of the data used for training and the rest for testing the classier. The training percentage was 
chosen to be the ratio above which no significant performance improvement could still be noticed. 
Note also that the ratio of training samples is much higher than the 5% used for confinement 
mode classification in Section 3, indicating the different level of difficulty of the classification 
problems. As mentioned before, we made a comparison with the results of a classier that uses the 
standard deviations  of the Fourier spectra. In the latter case, we first used the Euclidean distance 
as a similarity measure between the vectors of standard deviations. Second, we treated each  as the 
standard deviation of a zero-mean Gaussian distribution, hence taking into account the probabilistic 
interpretation of the features.
 A good disruption predictor not only should recognize an upcoming disruption, it should also 
avoid triggering a false alarm, as this would unnecessarily shut down the discharge and waste 
experimental or operational time. Therefore the performance of every experiment was measured by 
calculating the true positive rate (TPR, rate of correctly recognized disruptive samples (i.e. windows 
of 30 ms duration)) and false positive rate (FPR, rate of non-disruptive samples wrongly identified 
as disruptive) in the testing phase. Furthermore, we measured the rate of pulses for which there 
was a missed alarm (MA, disruption not detected in disruptive phase), a false alarm (FA, disruption 
detected in non-disruptive phase). In addition, the success rate (SR = 1– (MA + FA)) was recorded, 
or the rate of pulses where the disruption was detected in the disruptive phase, as well as the average 
time (AVG) of the correct detection of a disruption before the ToD.
 The results of the classification experiments are shown in Table III. Each experiment, including 
training and testing, was repeated 20 times and the average rates were calculated. The standard 
deviation of each of the rates was used as an error estimate and is mentioned in the table as well. 
It can be clearly observed that for the Fourier features the GD performs better than the Euclidean 
distance. In addition, our method based on wavelet Laplace features with the GD as a similarity 
measure, yields still considerably better results.
In a second experiment, we tested the generalization capability of the classifiers. To this end, without 
performing any further training, we applied the classifiers to data from each of the JET campaigns 
C21 until C27, from which no data was used for training. The resulting success rates are displayed 
in Figure 5 for all three classifiers. Again, our method exhibits very promising generalization 
capabilities for all campaigns.
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conclusIons And outlook
We have stressed the important potential of pattern recognition methods for the analysis of fusion 
data and we have discussed the specific difficulties in the field of nuclear fusion, specifically the 
strongly stochastic nature of the measurements. We have argued that a fundamentally probabilistic 
modelling of the data is required. In order to apply pattern recognition to collections of probability 
distributions, we have employed the formalism of information geometry. This provides a natural 
distance measure on manifolds of distribution families in the form of the geodesic distance (GD). 
We have applied a simple k-nearest neighbour classier together with the GD in two entirely different 
applications: confinement regime identification and disruption prediction. We have obtained 
classification results where our technique consistently outperforms existing state-of-the-art methods.
 It is remarkable that in both our applications there is a clear benefit from the probabilistic 
description of the data. In the case of the recognition of confinement regimes, the uncertainty 
information is limited, but apparently still sufficient to aid in the classification task. Hence, not 
only does our framework allow an intrinsic treatment of the uncertainty information, but also this 
information itself contributes to the discrimination of confinement modes and disruptive behaviour. 
This is a strong argument that supports the importance of uncertainty or error estimation for fusion 
diagnostics. By treating the probability distribution as the fundamental result of the measurement 
act, not only a single or mean measurement value, we acknowledge this point of view, faithfully 
taking into account the inherent probabilistic nature of the measurement. Moreover, our framework 
is not restricted to the traditional Gaussian error estimates, but can deal with any probability model 
(possibly requiring numerical evaluation of the GD).
 Future work will include several aspects of this research. On the one hand, we intend to 
further expand our geometric-probabilistic pattern recognition framework by addressing other 
pattern recognition tasks. This includes more sophisticated classification algorithms, as well 
as dimensionality reduction and regression on probabilistic manifolds. Regression will be very 
useful for setting up scaling laws where the regression function is intrinsically influenced by all 
uncertainty information (i.e. the distribution), rather than only depending on a simple weighting of 
the measurements according to their error bar. On the other hand, we will also adapt the applications 
to confinement regime identification and disruption prediction so that they can be used in the field 
as competitive alternatives to the state-of-the-art. Furthermore, we intend to study substructures of 
the confinement mode classes, which may be linked to specific physical aspects of the confinement, 
such as edge-localized mode (ELM) types. Likewise, we will investigate whether substructures of 
a disruptive class of discharges can be linked to different types of disruptions.
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Variables Mode Euclidean Euclidean GD GD with
w/o errors with errors with errors random errors

All 8 L 96.2 97.4 98.3 94.5
H 94.1 95.4 97.7 92.3

n̄ e , Ploss
L 85.1 87.7 91.0 82.4
H 88.6 89.4 93.0 86.0

tinUemanlangiS

AtnerrucamsalP)1(
(2) Poloidal beta

s)2(foevitaviredemiT)3( − 1

TedutilpmakcoledoM)4(
(5) Safety factor at 95% of minor radius

s)5(foevitaviredemiT)6( −1

W

W
W

rewoptupnilatoT)7(
(8) Plasma internal inductance

s)8(foevitaviredemiT)9( −1

(10) Plasma vertical centroid position
m
m

ytisnedamsalP)11( −3

(12) Stored diamagnetic energy time derivative
(13) Net power (input minus radiated power)

Table II: List of physical variables used for feature extraction.

Table I: Correct classication rates (%) of connement regimes using a kNN classier for dierent sets of variables,
Euclidean and geodesic distance measures and with or without consideration of the uncertainty information.

Performance Fourier Fourier Wavelet
measure Euclidean GD GD

TPR (%) 73.5 ± 2.7 81.6 ± 2.2 94.2 ± 1.6
FPR (%) 23.2 ± 3.2 24.0 ± 2.9 5.9 ± 2.2
MA (%) 1.0 ± 0.9 0.6 ± 0.8 0.7 ± 0.7
FA (%) 62.2 ± 6.9 61.3 ± 4.9 10.7 ± 3.1
SR (%) 36.8 ± 6.8 38.1 ± 4.7 88.5 ± 3.2
AVG (ms) 166.3 ± 9.2 174.3 ± 6.6 184.9 ± 2.9

Table III: Results for kNN classication experiments with non-disruptive and disruptive features for JET campaigns 
C15{C20. Fourier and wavelet statistical features were used, with the Euclidean distance and GD as similarity measures. 
The experiments were each repeated 20 times, resulting in sample standard deviations that are mentioned as well.
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Figure 1: (a) Embedding of the univariate Gaussian manifold and geodesic between two arbitrary Gaussians p1 (µ1 
= –4, s1 = 0.7) and p2 (µ2 = 3, s2 = 0:2). The full lines are curves of constant mean, the dashed lines are curves of 
constant standard deviation. (b) Visualization of the distributions along the geodesic, parameterized by t. Each slice 
along the t-axis shows the distribution at the corresponding point on the geodesic.

Figure 2: (a) Typical heavy-tailed wavelet detail histogram, together with the best-t Gaussian and Laplace distribution 
obtained via maximum likelihood. (b) Zoomed display of (a), clearly showing the better t of the tails by the Laplace 
distribution compared to the Gaussian t.
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Figure 3: Two-dimensional projections of the ITPA data using MDS, with indicated L- and H-mode clusters. (a) Using 
the Euclidean distance without measurement error and with the L-mode points on top. (b) The same, but with the 
H-mode points on top for better visibility. (c) Using the GD with measurement error.

(b)

L Mode
H Mode

CPS13
.16

96
-3

c

(a)

L Mode
H Mode

CPS13.1696-3a

(b)

L Mode
H Mode

CPS13.1696-3b

2

1

0
1

0

-1
1

0

-1
1

0

-1

12.2 12.4 12.6 12.812.0

(a
.u

.)

Time (s)

C
P

S
1
3
.1

6
9
6
-4

c

JET Pulse No: 69617

10

20

30

40

50

60

70

80

90

100

0
C21 c22

Fourier kNN + Euclidean distance
Fourier kNN + geodesic distance
Wavelet kNN + geodesic distance

c23 c24 c25 c26 c27

S
uc

ce
ss

 ra
te

s 
(%

)

JET Campaigns

C
P

S
13

.1
69

6-
5c

Figure 4: From top to bottom, the panels show the mode 
lock amplitude and the corresponding non-decimated 
wavelet detail signals at scales 1, 2 and 3, respectively, 
for JET Pulse No: 69617.

Figure 5: Success rates of the classiers for generalization 
to each of the campaigns C21 until C27.
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