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AbstrAct

The present paper deals with a nonlinear unsteady heat flux calculation in the case when measurements 
are provided by only one thermocouple (TC) embedded in the material and the spatial shape of the 
unknown surface heat flux is given. This inverse problem is solved with the Conjugate Gradient 
Method (CGM) combined with the adjoint state, the direct problem being solved with the finite 
element method. This heat flux estimation technique is illustrated in the case of the plasma facing 
components located in the JET tokamak divertor that can be exposed to several MW.m−2 during 
more than 10 seconds. In those tiles, few embedded thermocouples (TC) located 1 cm below the tile 
surface are used to measure the bulk temperatures of the Carbon Fiber Composite (CFC) composite 
tiles (which are coated with 14μm of tungsten for the International Thermonuclear Experimental 
Reactor (ITER) like wall). A numerical study is first presented in order to validate the heat flux 
calculation and to study the accuracy of the method. Then experimental data from a recent shot with 
the ITER-like wall configuration are used in the heat flux calculation presented here. Results are 
compared with those obtained with the deconvolution technique in the linear case, on a simplified 
geometry of the tiles.

1. IntroductIon

Internal components of magnetic confinement fusion machines are subjected to significant heat 
fluxes. As an example, in the Joint European Torus (JET), several MW are injected in the plasma 
for about 10 seconds [1]. A large part of this power (between 50% and 70%) is directed towards the 
uncooled Plasma Facing Components (PFC). These components were originally made of Carbon 
Fiber Composite (CFC) composites. Since 2011, in the ITER-like Wall project, all PFC surfaces 
are made of metallic materials: a part of the divertor CFC tiles (numbered 1,3,4,6,7,8) have been 
covered with a tungsten deposit of about 14μm [2, 3], tiles no5 are made of bulk tungsten [4] and 
the upper part of the machine is coated with a beryllium deposit. In JET experiments, for better 
understanding and control the heat transfer from the plasma to the surrounding wall, it is important 
to measure the surface temperature of the PFC and to estimate the imposed surface heat flux. An 
infrared system and several embedded thermocouples are used to measure respectively the surface 
and bulk temperatures of the PFC [5].
 Concerning the heat flux estimations, several methods have been developed in the past using only 
the IR data [6] or both TC and IR data [7] on CFC tiles. In [7], the thermocouple (only one sensitive 
TC per CFC tile) was used to estimate the heat flux with a deconvolution method associated to a 
regularization procedure. Since the heat flux depends both on time and space, the TC measurement 
was not sufficient to find both time and space heat flux dependencies. So, the heat flux spatial shape 
was fixed after an analysis of IR data. Computation of heat flux was done in a direct way, just 
applying the IR data as Dirichlet’s conditions. The comparisons between the two estimated heat 
fluxes (with TC and with IR) showed a good agreement on the CFC tiles with ’clean’ surfaces but 
a poor agreement on tiles having an unknown carbon layer poorly attached to its surface, coming 
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from erosion of CFC tiles elsewhere in the Tokamak. The correct heat flux on that ’non-clean’ tiles 
was estimated with the embedded TC because it has been demonstrated that it was not sensitive 
to the surface carbon layer properties. Only the heat flux spatial shape had to be known. Another 
advantage of the deconvolution method is its fast computing ability. This is due first to the simplified 
tile geometry used by the thermal quadrupoles modelling [8]. This fast computing is also due to the 
linear system theory inherent to the deconvolution method: thermophysical properties are supposed 
constant with temperature. Then, heat flux estimations are typically done is less than one minute 
with an error less than 20%.
 In the metallic environment of the ITER-like wall tiles, IR thermography, which remains 
undeniably the major system to monitor the surface temperature of the plasma facing components, 
becomes more challenging than carbon environment due to low emissivities (0.2 for Beryllium 
and 0.4 for tungsten) and then high reflection issues. Parallel work is done to develop temperature 
measurement devices of such metallic surfaces using the active pyrometry principle [9, 10]. 
Without such advanced thermographic measurement, heat flux estimation has to be done only with 
the thermocouples measurements but its spatial shape cannot be estimated with IR data anymore 
because of the multiple reflections. This heat flux spatial profile will then be given by a heuristic 
formulation depending on the plasma parameters proposed by [11].
 The present paper proposed an alternative method to the deconvolution of TC measurements. 
It is an inverse thermal calculation based on Conjugate Gradients Method (CGM) used to deduce 
the deposited heat flux without use of IR measurements. The variations of the thermal properties 
with temperature are taken into account and the exact geometry of the tile is modelled using finite 
elements nodes in two dimensions (CAST3M software). The first part of this paper is devoted to 
the description of the experimental set-up, including the JET Tokamak, the materials, the geometry 
of the tiles and the studied shot. The second part is dedicated to the presentation of the heat flux 
estimation, for the divertor tiles of the JET tokamak, by the Conjugate Gradient Method (CGM) 
with the adjoint state. In the third part, numerical data are used for a sensitivity analysis in order 
to show that the thermocouple measurements are not sensitive to the tungsten layer deposited on 
the surface and that this layer can be neglected. Uncertainties on the estimated heat flux are also 
investigated in this part with the numerical data. Finally, we present experimental results of heat 
flux computation on 2 tiles of the divertor during a shot with Neutral Beam Injector (NBI) heating, 
performed in March 2012. Results will be compared with those obtained with the deconvolution 
technique [12] in the linear case, on a simplified geometry of the tiles.

2. descrIptIon of the experImentAl set-up

The Joint European Torus, based at Culham in Great Britain is a large Tokamak (major radius torus: 
R = 3m, minor radius: r = 0.9m) with a divertor at the bottom of the vacuum vessel. The divertor 
function is to modify magnetic field lines in the plasma boundary region to conduct both particles 
and heat fluxes emerging from the plasma to the divertor volume which is separated from the main 
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plasma volume. The main interaction between plasma and wall takes place in the divertor. It is 
designed for improved particle and heat exhaust and reduced pollution of the main plasma. The JET 
divertor is symmetric around the torus principal axis and is localized at the bottom of the tokamak 
(Fig.(1)). The divertor function is controlled by a set of dedicated poloïdal magnetic coils in the 
divertor volume. Carbon tiles covered with tungsten deposit constitute the target of the particle 
and heat fluxes that follow the magnetic lines. For the duration of the high power pulses they rely 
basically on passive cooling only. The temperature rise limits the duration of high power pulses to 
about 10 secs. The deposited heat flux is slowly transferred to the divertor cooling system between 
the pulses. It is precisely on these target tiles that the heat flux is maximum.
 In JET, some plasma facing components are tile-like structures (Fig.(1) and (2)) made of Carbon 
Fiber Composite (CFC) coated with a tungsten deposit of about 14μm. The thermal properties of the 
composite are presented in Fig.(3) in the weave plane of the CFC (depth and toroidal directions for 
the vertical tiles), constituted by the z and y directions in Fig.(1) [5]. The thermal conductivity in 
the poloïdal direction x is about a factor 4 lower for the vertical tiles (so λy =

 λz and λx ≈ λz/4). The 
density does not depend on the temperature and is equal to 1820kg.m−3. Two internal temperatures 
are measured by two type K thermocouples (Fig.(1)) with acquisition time step of 20ms. The tile 
studied in this paper and the thermocouple location are also presented in Fig.(2). In all calculations, 
x represents the poloïdal direction, y the toroïdal direction and z the depth in the tile. The tiles are 
mounted onto the tile carriers with a dumbbell fixation and the back of tiles are in contact with 
the carrier only in discrete locations. Moreover, the JET chamber is under high vacuum condition 
during operation.

3. conjugAte grAdIents method wIth the AdjoInt problem

The direct heat conduction problems are concerned with the determination of temperature at 
interior points of a region when the initial and boundary conditions, thermophysical properties and 
heat sourced or flux are specified. In contrast, the inverse heat conduction problem involves the 
determination of the surface conditions [13, 14, 15, 16, 17, 18, 19], energy generation [16, 20] and 
thermophysical properties [20, 21, 22, 23] from the knowledge of temperature measurements taken 
at several points in the body or at the boundaries. The solution of inverse problems is much more 
difficult in comparison with direct problems due to instability in solution: thus, they are called ill-
posed problems. One application among these inverse problems is heat flux estimation from boundary 
conditions [14, 15, 18, 19]. To solve these inverse problems, different inverse methods have been 
developed over the years [24]. One of these methods known for its robustness and accuracy is the 
Conjugate Gradient Method (CGM) with the adjoint problem. The CGM is an iterative method of 
minimization of gradient type which allows accurate estimation of surface heat flux, thanks to an 
accurate modelling of heat exchanges. The CGM is also called an iterative regularization method, 
which means the regularization procedure is performed during the iterative processes and thus the 
determination of optimal regularization conditions is controlled by the choice of the stopping criterion.
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The stopping criterion will be defined by the discrepancy principle to stop the iterations at the 
optimal step [24, 25]. The bases of the method are written in [13, 26]. The particularity of the CGM 
comes from that the directions of descent of each iteration are conjugated with the preceding one, 
through a conjugation coefficient. Several conjugation coefficients are introduced in the literature 
with different performances [27]. Here in addition of the CGM we use the adjoint problem. This 
problem results in an expression for the gradient direction involving a Lagrange Multiplier. It 
prevents from the computation of the sensitivity matrix, which is a time-consuming process when 
the number of values to be estimated becomes large. This property enables the estimation of a large 
number of values especially in nonlinear problems as presented here.

3.1. Direct formulation
On the tiles of the divertor JET, the heat flux depends mainly on the x location and it is deposited 
directly at the surface G2. Furthermore the heat flux presents a symmetry in the toroïdal direction 
(y-direction in Fig.(1)). This direction will therefore be neglected in modeling, the problem is 
then bi-dimensional in x and z (see Fig.(2)). The mathematical formulation of this unsteady heat 
conduction problem is given as follows (for clarity we note T = T(x, z, t):

(1a)

(1b)

(1c)

(1d)

This mathematical formulation is solved by the finite element method with the software CAST3M 
[28]. The geometry is composed by 628 elements, the elements are quadratic with 4 nodes. These 
direct calculations enable to compute the unsteady temperature field T(x, z, t) in the tile, particularly 
at the TC location.

3.2. inverse Problem
We denote p, the function to be determined, in our case this function is the heat flux φ(x, t) of the 
tile surface:

(2)

The objective of the inverse analysis is to determine the unknown time evolution of the heat flux 
given the unsteady embedded measurement at the TC location. We note Y (xs, zs, t) the temperature 

p(x, t ) = φ(x, t )

ρCp(T ) ∂T
∂t
− ∇ ∇. λ (T ) (T ) = 0 in Ω

−λ (T ) ∂T
∂n 1

= εcfc σ (T 4 − T 4amb ) on Γ1

−λ (T ) ∂T
∂n 2

= εw σ (T 4 − T 4amb ) − φ(x, t ) on Γ2

T = T0 0=tta
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data taken over time by a thermocouple in the CFC (see Fig.(2)). The solution of the direct problem 
Eqs.(1) obtained for the given function p is noted T(x, z, t; p). The inverse heat conduction problem
consists in the determination of p(x, t) such as ||T(xs, zs, t; p) − Y (xs, zs, t)k is minimal. For this, 
we define the cost function which is the following quadratic criterion measuring the Euclidean 
distances between the experimental data and the model.

(3)

with T(xs, zs, t; p) the temperature at the TC location in the CFC calculated with the function p.
 The Conjugate Gradient Method is the iterative process used to estimate the function p by 
minimizing the cost function J(p). The CGM calculates the new iterate pn+1 from the previous 
iteration pn (with n the iteration number), by:

 (4)

where γn is the step size, determined by the resolution of the sensitivity problem (see part 3.3), and 
dn is the direction of descent given by [13, 26]:

(5)

where ∇J(pn) is the gradient of the cost function, determined by the resolution of the adjoint 
problem (see part 3.4). At the first iteration (n = 0), the steepest method is applied, the direction of 
descent is equal to the gradient of the cost function ∇J(pn). Thereafter the direction of descent dn 
is conjugated to the previous one dn−1 with the conjugate coefficient βn. In the literature, different 
versions of the CGM can be found, depending on how the conjugation coefficients are computed. 
In this study we use the Polak-Ribière-Polyak’s version of the CGM, the conjugate coefficient is 
computed as [29, 30]:

 (6)

3.3. sensitivity Problem anD search steP size
The sensitivity function δT(x, z, t) describes the temperature rise resulting from of a variation of 
function of ηδp, the sensitivity function is defined by [13, 26]:

(7)

To determine the sensitivity problem that defines the sensitivity function,the direct problem Eqs.(1) is 
written first for p, then for p + δp. The results are substrated, and we apply the Eq.(7). Finally we get 
the system describing the evolution of the sensitivity function (for clarity we note δT = δT(x, z, t)):

J (p) = 1
2

t f

0
(T (x s , z s , t ;p) − Y (x s , z s , t )) 2 dt

pn +1 = pn − γn dn

d n =
∇J (pn) if n = 0

∇J (pn) + β n dn− 1 if n > 1

βn =
∇J (pn ) ∇J (pn ) − ∇ J (pn − 1) dt

J (pn − 1) 2

δT (x, z, t ) = limη→0
T (x, z, t ;p + ηδp) − T (x, z, t ;p)

η
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(8a)

(8b)

(8c)

(8d)

The coefficient γn, which determines the step size between the iterate pn and pn+1 Eq.(4), is obtained 
by minimizing J(pn+1) with respect to γn:

(9)

To calculate the minimum of J(pn+1), a linearization of T(xs, zs, t; p
n  −  γndn) is carried out:

 (10)

Then Eq.(10) is applied in Eq.(9) and after rearrangement, the following expression is obtained 
for step size γn:

(11)

3.4. aDjoint methoD
The adjoint method is used to calculate the gradient ∇J(p) of the cost function J(p). For that, the 
adjoint problem is built by multiplying the equations (1) (of  Ω domains) by the Lagrange multipliers 
(or adjoint function) ψ. Then, the results are integrated over time and space. The results are added 
to the cost function Eq.(4), and finally the expression of the Lagrangian is [13, 24, 26]:

(12)

The directional derivative DdpJ(p) of Eq.(12) is obtained by the variational principle and by using 
the definition of the sensitivity function:

(13)

J (pn +1 ) = 1
2

t f

0
(T (x s , z s , t ;pn − γ n dn ) − Y (x s , z s , t )) 2 dt

T (x s , z s , t ;pn − γ n d n) ≈ T (x s , z s , t ;pn) − γ n δT (x s , z s , t ;d n)

γ n =
t f
0 (T (x s , z s , t ) − Y (x s , z s , t )) δT (x s , z s , t )dt

t f
0 (δT (x s , z s , t )) 2 dt

L (T, ψ, p ) = J (p) +
t f

0 Ω
ρCp(T ) ∂T

∂t
− ∆(λ (T )T ) = 0 ψdΩdt

Dδp J (p) =
t f

0
(T (x s , z s , t ;p) − Y (x s , z s , t )) δT dt

+
t f

0 Ω

∂ρCp (T )δT
∂t

− ∆( λ (T )δT ) − δp∆ T ψdΩdt

∂[ρCp(T )δT ]
∂t

− ∇ . λ (T )∇ (δT ) = 0 in Ω

−
∂[λ (T )δT ]
∂n 1

= 4εcfc σT 3 δT on Γ1

−
∂[λ (T )δT ]
∂n 2

= 4εw σT 3 δT − δp on Γ2

δT = 0 0=tta
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After integrating by parts with respect to t, using Green’s formula and applying the boundary 
conditions of the sensitivity problem, the equations of the adjoint problem can be written as following 
(for clarity we note ψ = ψ(x, z, t)):

(14a)

(14b)

(14c)

(14d)

with the errors terms E defined by:

 (15)

We note that in the adjoint problem the initial condition is replaced by a final condition at t = tf. 
The resolution must be done in a retrograde way. Even if the adjoint problem (as the sensitivity 
problem) is not the direct problem, it can be solved with the same element finite code (CAST3M).

3.5. GraDient equation
The expression of the gradient for the cost function J(p) is [14, 15, 18, 19]:

         (16)

We note that ∇J(p) is always equal to zero for the last time due to the final condition of the adjoint 
problem. The final time cannot be estimated.

3.6. the finite Dimensional case
The inverse problem introduced up to here does not require any a priori information on the nature 
of the unknown function to be resolved, this kind of problem is called ’infinite dimensional’. There 
a priori information is available on the nature of the unknown function p, this one can be written 
as following [13]:

              (17)

where j(x) is the normalized heat flux spatial shape. In our case the ’a priori’ j(x) is given by the 
heuristic formulation built with IR thermography during Carbon-wall operations [11], defined by:

ρCp(T ) ∂ψ
∂t
+ ∇ . λ (T )∇ (ψ) = E in Ω

−λ (T ) ∂ψ
∂n 1

= 4εcfc σT 3 ψ on Γ1

−λ (T ) ∂ψ
∂n 1

= 4εw σT 3 ψ on Γ2

ψ = 0 at t = tf

E (x s , t ) = T (x s , z s , t ;p) − Y (x s , z s , t )

∇J (p) = ψ(x, z, t ) on Γ1

p(x, t ) = p(t)ϕ(x )
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(18)

where x is the target coordinate, x0 is the strike line position, fx is the magnetic flux expansion, 
λq is the power decay length and jBG% is a fixed percentage of the peak heat flux value. All that 
parameters are supposed known. Fig.(4) shows a representative example of heat flux shape present 
in the JET tokamak. p(t) is then the peak heat load (in W.m−2) on the strike line position whose value 
is determined at each time. in that ’finite dimensionnal’ case, the only change in the methodology 
for solving the inverse problem is the computation of the gradient defined by Eq.(16). When p is 
given by Eq.(17) the gradient and the sensitivity function is computed as follows:

               (19)

                         (20)

3.7. stoPPinG criterion
The conjugate gradient method is also called as an iterative regularization method, in this kind of 
method the regularization is provided by the choice of the stopping criterion. If the measurements 
have no errors, the traditional stopping criterion is written as following:

                 (21)

where ∈ is a small specified number. In fact, temperature data contain measurement errors, then 
the stopping criterion to use is given by the discrepancy principle [24, 25]. By assuming that the 
estimation is optimal when measurements and model differ only by the noise measurement (of 
standard deviation σnoise), the discrepancy principle establishes the threshold value of the cost 
function with the Eq.(5) by:

 (22)

3.8. Summary of computational procedure
The computational procedure for the resolution of this inverse problem is:

• STEP 1: Choose an initial guess p0 (usually p0
 = 0) set n = 0.

• STEP 2: Solve the direct problem given by Eqs.(1).
• STEP 3: Calculate the cost function by Eq.(3) and compare to the stopping criterion Eq.(22), 

continue if not satisfied.
• STEP 4: Calculate the vector errors by Eq.(15), solve the adjoint problem given by Eqs.(14).
• STEP 5: Calculate the gradient of the cost function ∇J(pn) from Eq.(16).

ϕ(x ) =
1
2
exp

x
2λ q fx

2

−
x̄
λ q f x

erfc
x

2λ q fx
−
x̄
x

+ ϕBG% and x̄ = x − x0

∇J (x, t ) = ∇J (t)ϕ(x )

δT (x, t ) = δT (t)ϕ(x )

J (pn +1 ) ≤

J threshold =
1
2

t f

0
(σnoise)

2 dt
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• STEP 6: Calculate the conjugate coefficient βn and the direction of descent dn from Eqs.(5)-
(6).

• STEP 7: Set δp = dn, and solve the sensitivity problem given by Eqs.(8).
• STEP 8: Calculate the step size γn from Eq.(11).
• STEP 9: Calculate the new iterate pn+1 from Eq.(4) and return to STEP 2.

4. numerIcAl study

4.1. numerical valiDation anD choice of the tunGsten (W) DePosit 
moDellinG

JET is currently running experiments with the ITER-like wall (ILW), beryllium in the main chamber 
and tungsten for the divertor target plates (including a bulk tungsten divertor row for the central 
horizontal target and W-coated CFC for the vertical tiles). Surface temperature measurements remains 
an essential issue to guarantee plasma operation in acceptable temperature range for each material, 
typically [200oC-1300oC] for tungsten (between brittleness and recrystallisation domains). The tiles 
3 and 7 (see Fig.(1)) are made of carbon Dunlop whose thermal properties are describbed on Fig.
(3). In the new ITERLike Wall configuration, these tiles have been coated with a 14μm tungsten 
layer. In this part we study the influence of this thin layer on the measurementstaken by the upper 
thermocouple located approximately 1 cm below the surface. The method described above is applied 
on the geometry of the tile 7 with and without the tungsten coating modelling. Three models of the 
tile are presented:

• pure CFC: the tile 7 made of CFC with a radiative exchange on all boundaries with emissivity 
equal to εcfc = 0.83

• CFC with simplified W coating: the tile 7 made of CFC with a radiative exchange on G1 on 
G2 with emissivities respectively equal to εcfc and εW = 0.4

• CFC with W coating: the tile 7 made of CFC with a radiative exchange on G1 with εcfc and 
the true layer with εW = 0.4 on G2 (reference case)

This three models have been tested in a virtual experiment, in which a known heat flux is imposed 
to simulate noisy measurement. The simulated time is 25s with a time step of dt = 2.10−2s, then the 
estimation is performed on 1251 values. The time evolution of the heat flux used is shown in Fig.
(5) by (—) and the shape heat flux is shown in Fig.(4). This heat flux input on the front face G2 of 
the tile 7, the direct calculation provides the temperature at the TC location Yexact. Then the noisy 
simulated measurements Y are calculated by:

 (23)

σnoise is the standard deviation of the measurement (σnoise = 0.5K in our virtual experiment), and ω 
is a random variable with a Gaussian distribution, zero mean and a standard deviation equal to 1. 
This noisy simulated measurement (shown in Fig.(6) by (—)) are used as input in the CGM method. 
Even if this can be qualified of ’inverse crime’, this step is mandatory to qualify the feasibility of the 

Y = Yexact + ωσnoise
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chosen method. After that, sensitivity of the method to supposed known parameters (like emissivity 
ans Strike Point position) will also be presented, still using noisy simulated measurements. The 
initial guess for the three cases is the same and equal to 0. The stopping criterion, computed with 
Eq.(22), is reached at the iteration 44 for the first modelling, 45 for the second one and 52 for the 
reference case (the computational time of a single iteration is about 10 min with a CPU performance 
of 2.5GHz with 8Mo cache and 20Go of RAM).
 To quantify the deviation between the estimated and exact values of p(t) function we introduce 
the Root-Mean-Square (RMS) error, eRMS defined by :

(24)

where Nm denotes the number of unsteady measurements used in the estimation in 0 ≤ t ≤ tf, and 
the subscripts ’est’ and ’exa’ refer respectively to the estimated and exact heat flux.
 Table (1) and Figure (5) present the results of the estimations done with the three modelling 
previously cited. Tab.(1) shows that the values of the RMS errors is quite the same for each modelling. 
Fig.(5) presents the time evolution of the estimated heat flux, the three modelling cases, and the 
exact heat flux. Fig.(5) shows that the estimated heat flux of each modelling are equivalent. Then 
for the rest of the paper the second modelling corresponding to the real geometry made of CFC, 
with a radiative exchange treated with εcfc on G1 and εw on G2, will be used. This model is the 
nearest from the reference case and is the faster one. Furthermore, these results enable to validate 
numerically the feasibility of solving our inverse problem. Magnitude and time behavior of the 
surface heat flux are well recovered despite the use of one embedded TC, thanks to the ’a priori’ 
on the spatial distribution of heat flux [11]. Noise on the measurements (with a realistic standard 
deviation) induces some oscillations around the exact values of the heat flux. The estimation is 
independent of the initial guess (in our case 0). Even if there are the time of occurrence of the step 
variations (t = 3s, 10s and 15s) are well recovered, oscillations close to these times that are induced 
by the estimation of this very high temporal frequencies. We have checked that lower frequencies 
as the triangle or the ramp (not presented here) are better recovered.
 Figure (6) presents the noisy measurements of the TC and the temperature computed with the 
estimated heat flux. The two evolutions coincide, and the residuals between this two evolutions 
have the same statistical properties as the noise used to synthetise the measurements, except at t = 
10s and 15s corresponding to the step variations which are not exactly recovered.

4.2. uncertainties on the estimateD functions
4.2.1 Uncertainties in strike point location
The strike line position on target, used to calculate the heat flux shape for the inner and outer side, 
is given by the magnetic equilibrium with typical uncertainties of ±0.5cm [31] on the vertical tiles. 
This uncertainty affects the heat flux estimation by changing his shape. To evaluate the errors due 

eRMS =
1
Nm

N m

i=1
(φest (x s , t i ;p) − φexa (x s , t i )) 2
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to the uncertainty on the strike point location, the estimation has been done with three positions of 
the strike point:

• the exact position used to simulate the measurement
• an error of +0.5cm
• an error of −0.5cm

Table (2) and Fig.(7) present the results of the estimations done with the three positions previously 
cited. Tab.(1) shows that the smallest value of the RMS errors is obviously for the exact position. 
On the other hand we note that an error of 0.5cm around the exact position increases the RMS error 
depending on the direction of that error, maximum RMS errors being for an error of −0.5cm on the 
strike point position. Fig.(7) shows the estimated heat flux for each position. As before it is shown 
that the exact position provides the best estimation of the exact heat flux. We can notice in Fig.(7) that 
an error of −0.5cm on the strike point position, leads to an overestimation of the heat flux magnitude 
about 17%, and a negative heat flux in the cooling phase (t ≥ 15s) about 0.8MW.m−2. This negative 
heat flux is estimated to compensate the overestimated heat flux input during the loading phase. 
Conversely an error of +0.5cm on the strike point position leads to an underestimation of the heat
flux magnitude about 16%, and a positive heat flux in the cooling phase about 0.4MW.m−2. To 
understand these results we have to compare the strike point and the TC position. In the numerical 
test case presented here, the exact position of the strike point is set approximatively 1.5cm under 
the position of the TC. Thus an error of +0.5cm or −0.5cm gets the strike point respectively closer
or distant from the TC position. This explains the over and underestimation of the heat flux magnitude. 
Another important result is that the dynamics of the heat flux is well recovered for each position.

4.2.2 Uncertainties due to error in the measurement
Noise in experimental data induces error in the heat flux estimation. We introduce a method to 
evaluate the dispersion of estimations induced by the noise on the data, by the determination of 
the covariance matrix of the estimated function. The study of the confidence in estimated function 
takes place when the estimation by the CGM is completed. The CGM, contrary to some other 
gradient techniques (Gauss Newton, Quasi Newton ...), does not calculate the inverse of Hessian 
matrix (or even an approximation) at each iteration. This is an advantage for the estimation of a 
large number of values (1251 in our case), because calculations are easier and the estimation can 
take few iterations. But the method provides no information on the Hessian, and thus the covariance 
matrix cannot be directly calculated. Then we introduce the Monte Carlo error propagation method, 
which uses stochastic simulations, to calculate the confidence associated to the estimated functions 
[32]. The idea is to simulate l virtual noisy data vectors (l > 500) for each pixel and then examine 
the statistics of the corresponding estimated functions, to finally obtain an approximation of the 
covariance matrix.
 Let p be the mean of the l estimated vectors pi (i = 1, ..., l), let A be a (l × m) matrix where the ˆ
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ith row contains the difference between the ith estimated function pi and p.

(25)

Then the approximation of the covariance matrix C (m×m) associated to ¯p is given by:

(26)

The use of other approach based on the statistical properties of the ordinary least square estimator, 
using the sensitivity matrix, is impossible in our case due to the strong correlation of the values of 
the function p.
 Figure (8) shows the results of the Monte Carlo method for the estimation of the confidence 
intervals in the estimated heat flux with noisy numerical data (σnoise = 0.5K). The 68% confidence 
intervals are represented by error bars (1 plotted over 30). Each error bar is affected to the average 
of all estimations (> 500) of the heat flux done by the Monte Carlo method. The comparison between 
the exact evolution of the heat flux and the average of all estimations done by the Monte Carlo, 
shows the possible bias in the estimation. In this numerical case the 68% confidence interval is quite 
constant and equal to 2%, a maximum of 4% is observed for the estimation of the step variation 
at the time close to the step with a bias. The bias and the increase of the confidence interval at this 
time, is explained by the fact that the step variation is a very high frequency much higher than the 
Conjugate Gradient Method can estimate.

5. experImentAl results on the pulse no: 82641

The inverse heat flux calculation has been applied to 2.2T, 2MA in H-mode Pulse No: 82641 
performed with Neutral Beam Injector (NBI) heating (10MW during 4s) and with the strike lines 
positions on the vertical tiles 3 and 7 (low triangularity vertical tile configuration, see Fig.(1)). 
The diagnostic set-up is made of four embedded type-K thermocouples (TC) 10mm below the tile 
surface to measure the bulk temperatures of the inner and outer vertical target plates. For Pulse No: 
82641 the Inner and Outer Strike Point (ISP/OSP) positions are given by the magnetic equilibrium: 
1.3cm below the upper thermocouple on the inner side and 1.8 cm below upper thermocouple on 
the outer side. Only the upper thermocouple is used for the heat flux computation on each tile. The 
thermocouple measurements for the 2 upper thermocouples on tiles 3 and 7 are presented on Fig.
(9). For this shot the characteristic parameters of the heat flux shape (Eq.(18)) are: λq =

 2.5mm, S = 

1mm, fx =
 8, jBG%

 = 3% (attributed to plasma radiation). With these parameters and the strike lines 
positions, the heat flux shape in the poloïdal direction on the two tiles are computed and presented on 
Fig.(10). The initial guess of the functions is set equal to zero and the stopping criterion, calculated 
with the noise measurements of the upper thermocouples, is reached at the iteration 62 for the inner 
tile and 57 for the outer tile (the computational time of a single iteration is about 10 min with a CPU 

A i = p̂i − p̄

C = cov(p̄) = A t A
l

ˆ
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performance of 2.5GHz with 8Mb cache and 20Go of RAM).
 Figure (11) shows the estimated heat flux with their 68% confidence intervals. Peak heat loads are 
found to be φISP ≈ 3.2MW.m−2 and φOSP ≈ 5MW.m−2, with respectively ±5% and ±4% uncertainties 
due to noise measurement at the inner (ISP) and outer strike point (OSP) during the peak heat loads. 
The 68% confidence intervals plotted in Fig.(11) evolve with time due to the evolution of the noise 
measurement during the shot, this time evolution can be seen on Fig.(12). The assymetry observed 
on the estimated heat flux, between the inner and the outer sides of the divertor is a normal assymetry 
in this plasma configuration. The shot begins at t = 50s with an ohmic heating until t = 59s. The 
maximum heat fluxes estimated with the thermocouples between t = 59s and t = 64s correspond to 
the shooting of Neutral Beam Injector (NBI).
 In a previous work, a linear approach was used on a simplified geometry for this shot [12], the 
results of this method are shown in Fig.(13) and are comparedto the present CGM results. Some 
differences are observed on the dynamic and the magnitude of the estimated heat fluxes. The 
maximum deviation on the time behavior for the two estimation methods is 0.5s and 1s respectively 
for the tiles 7 and 3. Deviations between the linear and non linear approach for the estimation of the 
peak heat loads are about 5% and 10% respectively for the tile 7 and 3. These differences are induced 
by the variation of the thermal properties with the temperature during the shot and the simplified 
geometry used in the linear approach. Even if those differences are relatively small in that example, 
they demonstrate the capability of the present method to take into account a complex geometry and 
thermophysical properties varying with temperature. These effects will increase significantly for 
shots involving higher temperature rises and for estimation on other PFC with complex geometry 
(ITER, DEMO).

conclusIon

In this paper, nonlinear unsteady calculations are used with the Conjugate Gradient Method and 
the adjoint state, for the heat flux estimation on the divertor tiles of the JET tokamak. The inverse 
approach is applied on the divertor tiles, in the ITER-Like Wall configuration (Carbon tile coated 
with about 14μm of tungsten). The combination of the heuristic target heat load profiles [11] (mainly 
constructed with IR thermography during Carbon-wall operation period) with an inverse heat flux 
calculation using embedded TC data, provides a new way to estimate heat flux on divertor tiles. It 
should be noted that no a priori information on the time evolution of the heat flux is needed for the
estimation. The method is robust in terms of initial guess, typically the initial guess is set to 0 with 
no influence on the computational time of the estimation.
 The numerical feasibility of the inverse problem has been firstly introduced with a modelling 
study of the divertor tiles in the ITER like wall configuration. The modelling study demonstrated 
that the tungsten layer on CFC tiles can be modeled by simply modifing the surface emissivity, the 
tungsten layer has no conductive influence. Uncertainties on the estimated heat flux due to error
in the location of the strike point have been estimated with numerical data. We have introduced 
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the Monte Carlo error propagation method to evaluate the dispersion of estimations induced by 
the noise measurement, this method determines an approximation of the covariance matrix of the 
estimated heat flux. Finally the CGM method with the adjoint state is applied on experimental data
from the Pulse No: 82641. The first application to JET data with the ITER like wall configuration 
shows satisfactory results.
 The next step could be the improvement of this method to take into account the potential movement 
of the strike line position during the shot. Moreover, with another direct computation using the heat 
flux shape and the estimated heat flux, the surface temperatures can be estimated and compared to 
the other diagnostics in the machine (several IR cameras).
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Nomenclature

slobmyskeerGsrettelnamoR
C approximation of the covariance

matrix
λ thermal conductivity,

W.m −1 .K−1

Cp specific heat capacity,
J.kg − 1 .K − 1

λ q power decay lenght, m

dn direction of descent at iteration
n

ρ density, kg.m−3

dt time step, s φ surface heat flux, W.m − 2

Dδp directional derivative of J at δp Ω space domain
E error term, K Γ boundary surface
f x magnetix flux expansion ε emissivity
J (p) cost function, K 2 σ Stefan-Boltzmann constant,

W.m −2 .K − 4

L Lagrangian ψ Lagrange multiplier
n number of current iteration γ step size
n i outward drawn normal to the

boundary surface Γi

ϕ function of space

p unknown function β conjugation coefficient
p̂ estimated function ω random variable
p̄ mean of the estimated function σnoise standard deviation of the

measurement, K
t time, s gradient operator
t f final time, s ∆

∆

Laplace operator
T temperature, K

AbbreviationδT sensitivity function, K BG Background
CFC CarbonFiberComposite
CGM ConjugateGradientMethod
ILW ITERLikeWall
ISP InnerStrikePoint
NBI NeutralBeamInjector
OSP OuterStrikePoint
RMS RootMeanSquare
W Tungsten

x 0 strike line position, m
x s poloidal thermocouple position
x poloidal direction, m
y toroidal direction, m
Y measurements, K
zs radial thermocouple position, m
z radial direction, m

Table 1: RMS errors of the estimated heat flux for the three tiles modelling

Table 2: RMS errors on the estimated values depending on the strike point location.

Modelling eRMS (MW/m 2 ) Iteration
pure CFC 0.2633 44

CFC with simplified W coating 0.2636 45
CFC with W layer 0.2640 52

Position eRMS (MW.m − 2 ) Iteration
Exact 0.26 45

+0.5cm 0.46 47
−0.5cm 0.60 52
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Figure 1: a) Visible picture of the JET chamber with the Iter like wall; b) Poloidal crosssection of the divertor with the 
magnetic equilibrium of the low triangularity vertical tile configuration. Position of the TC’s in the inner (tile 3) and 
outer (tile 7) target are shown; c) View of the outer vertical tile with upper and lower embedded TC.

Figure 2: Geometry and dimension of the inner (tile 3) and outer (tile 7) tiles.
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Figure 3: Evolution the thermal properties of the CFC 
dunlop. (−   −) z thermal conductivity in the direction z 
(depth) (W.m−1.K−1). (−    −) x thermal conductivity in the 
direction x (poloidal) (W.m−1.K−1). (−    −) specific heat 
capacity(×10−1 (J.kg−1.K−1)). (−*−) thermal diffusivity 
(×106 (m2.s−1)) in the direction z (depth). (−    −) thermal 
diffusivity ×106 (m2.s−1)) in the direction x (poloidal).

Figure 4: Normalized ’a priori’ shape function ‘(x) of the 
spatial heat flux distribution.

Figure 5: Evolution of the maximal heat flux (t) versus 
time with noisy data noise = 0.5K. (—) exact evolution 
of (t). Estimated evolution of (t) with different modelling: 
(− −) radiative exchange equal to “cfc on all boundaries, 
(− −) radiative exchange equal to “cfc on G1 and “w on 
G2, (− −) radiative exchange and W coating modelling.
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Figure 6: Evolution of the temperature at the TC location 
versus time. (—) noisy data with noise = 0.5K. (—) 
recovered temperature with estimated f (x, t). The insert 
shows the residuals between noisy data and recovered 
temperature.
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Figure 7: Evolution of the maximal heat flux f(t) versus 
time. (—) exact evolution of f(t). Estimated evolution of 
(t) with noisy data snoise = 0.5K and different location of 
the strike point: (−    −) exact position, (−    −) error of 
−0.5cm, (−    −) error of +0.5cm.

Figure 8: Evolution of the maximal heat flux f(t) versus 
time. (- - -) exact evolution of f(t). (—) average of all 
Monte Carlo estimation of f(t) with the 68% confidence 
interval for noise = 0.5K.

Figure 9: Upper thermocouples measurements for the 
Pulse No: 82641: (- - -) tile 3, (- - -) tile 7. Recovered 
temperature with estimated f(x, t): (−    −) tile 3, (−    −) 
tile 7.

Figure 10: Normalized ’a priori’ shape function of the 
spatial heat flux distribution. (—) tile 3 (inner). (—) tile 
7 (outer).
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Figure 11: Evolution of the estimated maximal heat flux
f(t) versus time with upper thermocouples measurements 
on tiles 3 and 7. (—) estimated evolution of f(t) on tile 
3 with the 68% confidence interval for the measurement 
noise. (—) estimated evolution of f(t) on tile 7 with the 68% 
confidence interval for the measurement noise.

Figure 12: Residuals between upper thermocouples 
measurements and recovered temperature: (—) tile 3, 
(—) tile 7.

Figure 13: Evolution of the estimated maximal heat flux 
(t) versus time with upper thermocouples measurements 
on tiles 3 and 7 for the Pulse No:82641. (—) estimated 
evolution of (t) on tile 3 with the CGM. (—) estimated 
evolution of (t) on tile 7 with the CGM. (- - -) estimated 
evolution of (t) on tile 3 with linear approach. (- - -) 
estimated evolution of (t) on tile 7 with linear approach.
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