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AbstrAct

The statistics of edge-localised plasma instabilities (ELMs) in toroidal magnetically confined fusion 
plasmas are considered. From first principles, standard experimentally motivated assumptions are 
shown to determine a specific probability distribution for the waiting times between ELMs: the 
Weibull distribution. This is confirmed empirically by a statistically rigorous comparison with a 
large data set from the Joint European Torus (JET). The successful characterisation of ELM waiting 
times enables future work to progress in various ways. Here we present a quantitative classification 
of ELM types, complementary to phenomenological approaches. It also informs us about the nature 
of ELMing processes, such as whether they are random or deterministic.

1. IntroductIon

Edge localised plasma instabilities (ELMs) [1–4] are almost ubiquitous in high performance 
magnetically confined fusion (MCF) plasmas. Their phenomenological properties are correlated with 
the quality of global energy confinement, and the peak energy fluxes onto material surfaces [3–6]. 
Key challenges are to statistically characterise these processes sufficiently well that a quantitative 
distinction between different observed classes of ELMs becomes possible, and to relate this 
classification to the physical processes responsible for them. This will provide a test for theoretical 
models, and is an important step towards improved estimates for the distribution of ELM waiting 
times and sizes, both of which must be controlled in reactor-scale MCF plasma experiments.
 ELMs offer a rich and diverse experimental phenomenology [1–8]. There is intense theoretical 
research on the instabilities that may be responsible for triggering them [9], but few unifying 
principles have been identified. We will show that widely held experimentally motivated assumptions 
about ELMing require particular statistical characteristics. Specifically, if one assumes that the 
likelihood of ELM occurrence increases monotonically with time elapsed since the most recent 
ELM, then the measured distribution of waiting times between ELMs should belong to a broad 
class of probability density functions (pdfs) of which the Weibull distribution [10] is a special case. 
This physical approach contrasts with a trial and error search for a function that best fits the data 
[11].
 To test this conjecture requires the identification and selection of a large representative data set, 
the development and use of a reliable ELM detection algorithm, and a method to find and compare 
the best possible fits between data and any proposed pdf. This will provide a rigorous basis for 
present and future studies. As an application of our analysis, we distinguish between type I and 
type III ELMs in a set of plasmas from the Joint European Torus (JET) tokamak[12], on the basis 
of ELM waiting time statistics alone. Whereas type III ELMs are usually smaller than type I ELMs, 
typically they are more frequent and the plasma’s energy confinement is lower. The ELM type is 
presently determined by the ELM frequency’s response to heating[2–4]. The physically motivated 
derivation for our pdf allows a clear physical interpretation of our statistical classification.
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2. theoretIcAl bAckground

Consider the sequence and distribution of time intervals (waiting times) between ELMs. After an 
ELM, at t = 0, we discuss the statistical properties of the time of the next ELM in terms of two 
linked functions. We define p(t)dt to be the probability that the next ELM is in the time interval (t, t 
+ dt), given that it has not yet occurred at time t. This differs crucially from the pdf of time intervals 
between ELMs, which we denote by P(t), and gives the fraction of inter-ELM time intervals that are 
between t and (t + dt) as P(t)dt. Clearly p(t)dt is a conditional probability which, multiplied by the 
probability that no ELM occurs between t = 0 and t, yields the probability P(t)dt of an inter-ELM 
time interval between t and t + dt. This gives the identity:

 (1)

which allows p(t) to be expressed in terms of P(t). Alternately, Eq. 1 can be used to show that,

 (2)

giving P(t) as a function of p(t), with ∫0  P(t)dt = 1. The equivalence of Eqs. 1 and 2 can be confirmed 
by substituting Eq.2 into Eq. 1, or by writing Eq.1 as, p(t) = −(d/dt) ln (1 − ∫0   P(y)dy), and substituting 
into Eq.2.
 We adopt the experimentally motivated ansatz that for a short time period tm immediately after 
an ELM, p(t) = 0, beyond which it starts to increase. The simplest dimensionless representation of 
this hypothesis is,

(3)

where t0 sets the time scale. Using Eq.2, this gives,

(4)

This is a Weibull distribution [10]. It is specified by two dimensionless parameters b and a = tm/t0,
the time scale being set by t0. From a theoretical perspective, the values b = 1 and b = 2 deserve 
special mention. Beyond a possible time delay tm, for b = 1, p(t) is constant, corresponding to a 
“memoryless” process in which events occur with equal probability independent of time. The 
transition between p(t) being a concave (decreasing derivative) and convex (increasing derivative) 
function is at b = 2. As b increases, events appear increasingly regular. The preceding derivation 
assumes that events are independent and that the process causing them is stationary.
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3. dAtA sets

Equation 4 will provide a good fit to a measured sequence of waiting times when the hypothesis 
represented by Eq.3 holds. Such distributions have a single maximum, and require a macroscopic 
plasma equilibrium with a quasi-stationary ELMing process. Pdfs with additional maxima that are 
unlikely to have arisen from noise were discarded, as were data whose ELM type was uncertain. 
A search of carbon-wall JET data yielded a selection of 70 type I and 15 type III ELM data sets. 
The data sets each have a steady period of ELMy H-mode lasting between 3 and 6 seconds, and 
plasmas with an energy confinement time typically between 0.25 and 0.4 seconds. The data sets 
are listed in the supplementary material (SM) [13]. The need for quasi-stationary ELM statistics is 
met by the pulse length and quality of the JET plasmas studied, which is much improved on the 4 
data sets studied in [11].

4. elM detectIon

ELM detection algorithms typically examine the radiation associated with ELMs, using a threshold 
in amplitude to signal the start of an ELM, and a similar threshold or combination of thresholds to 
determine when an ELM has finished [11]. In those respects, our detection algorithm is the same. 
The advance of the algorithm described here is that the thresholds are determined from the data in 
a precise and statistically invariant way, so that we do not need to reset thresholds for different sets 
of data. This allows statistically robust comparisons between different data sets, and enables the 
technique to be used for non-steady-state and real-time situations if desired. Our algorithm examines
the signal intensity of the Lyman-alpha radiation from Deuterium (Da) at JET’s inner divertor, and 
proceeds in two steps. First a scan is made of the data, obtaining for each time point the box-average 
and standard deviation of the signal intensity for a time interval T immediately prior to that point. 
The average and standard deviation determine a Gaussian distribution, that is subsequently used to 
distinguish ELMs automatically. For this study the (Da) signal threshold for ELM-detection was 
for signal intensities that would only occur one time in twenty, based on the Gaussian distribution 
obtained from the data preceding the measurement in question. Once the signal has fallen below 
the average again, the ELM is considered to have finished. We use a time interval T = 0.41s that 
is much longer than the time between ELMs, but is reasonably short compared with changes to 
the plasma equilibrium. For stationary pulses such as those here, with ELM waiting times t << T, 
results are unchanged by increasing T to the time duration of the entire dataset. For cases such as 
these, T is independent of the data. Because we are interested in classifying ELMs by their statistical 
properties, here we chose the same threshold for both the type I and III data. The threshold of 
one in twenty was sufficiently sensitive for type III data, but kept noise tolerable in type I data. A 
systematic exploration of these thresholds will be presented elsewhere.
 The method just described provides a non-subjective method to determine when the Da signal 
intensity indicates an ELM. Because the study involves the detection and study of many thousands 
of ELMs, “incorrect” detection or omission of one or more ELMs becomes part of the experimental 
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noise. The detection settings require only one value to be set in advance of an analysis, and because 
it does not need to be changed or optimised for any given set of data, it is easy and quick to analyse 
very large data sets. Also because thresholds are set independently of the data, it is possible to 
systematically mine noisy data by varying the noise and time-scale parameters to search for patterns 
in data that would otherwise be obscured.

5. best fIt & goodness of fIt

Both the Weibull and Gaussian distributions have free parameters that must be chosen to fit the 
data. A simple fit is provided by using the moments of the data, e.g. average, standard deviation, 
and skewness, to fit the parameters. More rigorously, we can consider the likelihood function for 
the probability of the data given the model being considered [14] (e.g. the Weibull model, W), and 
parameters l, with,

 (5)

where P({ti}|W, l) is the probability of observing the set of waiting times {ti}, given the assumption 
of a Weibull distribution (W), with fitting parameters l. The free parameters that maximise L(l) 
are their maximum likelihood (ML) estimate [14], for which the likelihood of the data (given the 
distribution being considered), is a maximum. In practice the ML estimates are found by starting 
from the moment-fitted estimates and iterating to find l that maximises L(l). Given the best fits for 
two distributions PA and PB, we can compare their goodness of fit by calculating their likelihood 
ratio [14],

(6)

Under the assumption of independent {ti}, the likelihood function and likelihood ratio can be 
expanded, with for example, P ({ti}|PA, lA) = Pi=1P (ti|PA, lA). Whether PA or PB is a better fit to 
the data is determined by whether Λ  is greater, or less, than 1.
 Equation 4 has one more free parameter than a Gaussian. Thus although Eq.4 might provide a 
best fit to the data, the model might not be better, because the fit used an extra parameter. A Bayesian 
analysis would introduce an extra factor [14] in Eq.6 to account for this. However its influence will 
reduce as the number of ELM time intervals increases. Unless the factor is of order 1/Λ� it will not 
affect the decision for which is the best fit. For the classification of data, the most important issue 
is that the pdf (not the model), is a good fit. From that perspective the issue is not relevant. Eq.6 
rigorously indicates which pdf is the best fit, and for the large number of ELMs in our analyses, 
Eq.6 is sufficient to determine whether the model is significantly better or worse than a Gaussian.
 An absolute measure of goodness of fit, is provided by dividing the ELM waiting time axis into 
intervals, calculating the fraction Pi of observed ELMs in each interval i, and calculating the co-

L λ̄ = P {t i}|W, λ

Λ (PA , PB ) =
P {t i}|PA , λA

P {t i}|PB , λB

n
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efficient of variation cW = 〈(Pi − PW(ti))
2〉/〈PW(ti)〉

2 between the observed (Pi) and the theoretical 
(PW(ti)) values at the midpoint ti of the interval. This gives a normalised measure of the difference 
between the observed and theoretical pdfs, and provides an absolute measure for goodness of fit. It 
has the disadvantage of being dependent upon the number of data points used to generate the Pi. Small 
numbers of points will make cW susceptible to noise, increasing its value. The choice of time intervals 
will also affect cW, and consequently affect a fit that minimises cW. With enough data this would no 
longer be the case, but in practice it prevents cW from determining a unique best fit. For these reasons 
we use a maximum likelihood best fit, which is unique. Similarly if cW is used to determine which 
pdf gives the best fit, the decision is in practice influenced by the choice of time intervals.

6. elM clAssIfIcAtIon

A full listing of the datasets studied, the time intervals over which they were analysed, and the 
results from their analysis are presented in the SM [13]. For a dataset with n ELMs, we substitute 
Eq.4 for PA and a Gaussian for PB in Eq.6, then calculate the geometric mean Λ�1/n which will be of 
order 1. If Λ�1/n is greater (less) than 1.0 then Λ will be much larger (smaller) for n >> 1, indicating 
whether the Weibull is a better (worse) fit than a Gaussian. For the type I datasets 〈 Λ�1/n〉 = 1.01 ± 
0.04, where the error of ±0.04 is the standard deviation, and n ~ 100. Using time intervals of 2.5 

× 10−3s, the coefficient of variation between the fitted and observed pdfs is 〈cW〉 = 0.63 ± 0.22 for 
the Weibull best fits, and 〈cG〉 = 0.63±0.20 for the Gaussian best fits. For the type III datasets 〈 Λ�1/n〉  

= 1.51 ± 0.15, with n ~ 300 or larger, 〈cW〉 = 0.70 ± 0.23, and 〈cG〉 = 1.25 ± 0.24. Typical examples 
are in Figs.1 and 2. Whereas the fits are similarly good for type I ELMs, the Weibull distribution 
is the clear best fit for type III ELMs. Substantially improved fits are likely if outliers are removed 
by improved data, improved ELM detection techniques, or with some algorithm. The values of cW 
and cG can be reduced if the best fit minimises them instead of the likelihood L(l).
 Figure 3 plots a and b for the type I and type III ELM datasets. There is a clear clustering of 
type III data for b = 1 and a < 0.5. As noted earlier, b = 1 has special significance because beyond 
an initial time delay tm, it corresponds to a “memoryless” process in which the probability of an 
ELM is independent of time. The type I data has a wide spread in a and b, but notably  remains 
of order 2 or larger. As b increases, ELMs will appear increasingly regular. Therefore the type I 
ELMs studied here are consistent with a process whereby the probability of an ELM increases 
with time since the previous ELM, possibly due to the build-up of some physical quantity with 
time. The similarly good agreement between the Gaussian and Weibull fits allows the alternative 
interpretation that type I ELMs have a specific frequency that is broadened by noise, and that the 
good fit to type III ELM data is coincidental. This is possible, although our original hypothesis is 
consistent with present ELM models, and explains the good fit to both the type I and type III data. 
To avoid disagreement about the classification of ELM types, our dataset excludes ELMs whose 
type is uncertain. Therefore it is possible that there is a continuum between the classifications that 
would not be observed in our data set of typical type I and type III ELMs.
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As an example we analysed JET plasmas 66105-66109, whose ELM frequency is typical of type 
III ELMs [2–4, 6], but whose Da signal is visually similar to that of type I ELMs. Based on Fig.3, 
they are not type III ELMs.

conclusIons

We have shown how simple experimentally motivated assumptions require a Weibull pdf for 
inter-ELM waiting times. The model applies to stationary processes. A search of JET data yielded 
85 sufficiently long and steady plasmas to test the model, details of which are in the SM [13]. 
A statistically rigorous ELM detection technique was developed to compare the data sets from 
experiments many years apart. The method uses a single dimensionless threshold that is set 
independently of the data, and a single time-period, allowing rapid objective comparisons between 
different data sets. The dataset was analysed, and a maximum likelihood best fit calculated, finding 
a good Weibull fit to both type I and type III data. Therefore we explored whether the dimensionless 
fitting co-efficients a and b could be used to classify the data, concluding that they can. The 
classification has a clear interpretation – type III ELMs are consistent with a memoryless process, 
but type I ELMs are consistent with the build-up of a quantity with time, leading to instability. In 
contrast, present ELM classification requires either a subjective judgment, or experimental time to 
determine how ELM frequency responds to heating [2–4].
 To summarise, we have shown that a rigorous statistical analysis of ELM waiting times is possible, 
that it can provide a quantitative classification of ELM types, and physical insight into the processes 
responsible for them. The methods have numerous potential future applications, especially for the 
longer plasma pulses planned for ITER[15]. These include data mining, use in real-time and for other 
signals, and a quantitative characterisation of the response of ELM sequences to external parameters.
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Figure 1: Weibull (red) and experimental pdfs (black bar 
chart), for JET Pulse No: 57861 (type I ELMs).

Figure 2: Weibull (red) and experimental pdfs (black bar 
chart), for JET Pulse No: 74417 (type III ELMs).

100

50

0

150
JET Pulse No: 57861

α = 0.0

β = 8.4

0.01 0.02 0.03 0.040 0.05

P
 (

t)

Time (s)

J
G

1
2

.3
6

3
-4

c

α = 0.1

β = 1.0
100

75

50

25

0

125
JET Pulse No: 74417

0.01 0.02 0.03 0.040 0.05

P
 (

t)

Time (s)

J
G

1
2

.3
6

3
-5

c

4

2

0

10

8

6

1 20 3

β

α

J
G

1
2
.3

6
3
-6

c

Figure 3: Maximum-likelihood best fits to Eq.4: type I ELM database (black diamonds), type III database (blue squares), 
and some high frequency ELMs (red triangles). Type III data is characterised by b ~ 1, whereas all other data has b > 2.~
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generAl reMArks

An objective of this paper was to determine whether a good fit to a large variety of data is possible 
by Eq.4. Nonetheless, it was regarded essential that the sets have approximately constant NBI 
heating and gas fuelling, and that they have approximately constant central density, and energy 
confinement. As discussed in the main text, datasets whose ELM waiting time pdf have two or 
more clear maxima of comparable sizes are not included. Some plasmas also have (approximately 
constant) ICRH heating during the time period analysed.
 In the following tables of data, the first column is the JET pulse number, t1 and t2 give the time 
at which the time series analysis of Da data started and ended respectively, BT is the toroidal field 
in Tesla, IP is the toroidal plasma current in Mega Amps, the other parameters are defined in the 
main text.
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Type I (continued overpage)

Shot t1 t2 α=tm/t0 β cW µ σ/µ cG n Λ1/n BT Ip

50564 62.0 67.0 0.00E+00 5.76 0.74 0.50E-01 0.19 0.69 100 0.98 1.9 1.9

52149 59.0 62.0 0.14E+01 4.07 0.70 0.45E-01 0.10 0.65 66 0.99 2.68 2.5

52508 59.5 63.0 0.21E-02 1.87 0.93 0.60E-01 0.55 0.95 57 1.05 2.6 2.4

52511 59.8 62.8 0.00E+00 6.97 0.29 0.31E-01 0.18 0.42 97 1.05 2.6 2.4

52513 59.5 62.8 0.63E+00 3.20 0.23 0.23E-01 0.20 0.24 142 1.01 2.6 2.4

52516 59.8 62.8 0.20E+00 3.40 0.36 0.24E-01 0.25 0.30 124 0.98 2.4 2.3

52517 59.8 62.8 0.10E+01 2.25 0.55 0.46E-01 0.22 0.59 64 1.03 2.4 2.3

52518 59.8 62.8 0.10E+01 2.51 0.95 0.68E-01 0.20 0.95 43 1.02 2.4 2.3

52519 60.7 63.7 0.00E+00 3.55 0.78 0.50E-01 0.32 0.76 59 0.95 2.4 2.3

52521 60.7 63.7 0.00E+00 4.25 0.71 0.50E-01 0.26 0.69 58 0.98 2.4 2.3

53142 59.0 63.8 0.11E+01 1.84 0.35 0.27E-01 0.25 0.53 176 1.09 2.4 2.3

56128 59.0 62.5 0.00E+00 6.44 0.70 0.39E-01 0.18 0.65 90 1.01 2.7 2.5

56143 59.0 62.0 0.15E+01 2.30 0.81 0.43E-01 0.17 0.80 68 1.03 2.7 2.5

56144 59.5 63.3 0.15E+01 2.12 0.61 0.35E-01 0.19 0.56 105 1.04 2.7 2.5

56739 62.5 67.0 0.65E+00 4.55 0.64 0.57E-01 0.14 0.59 78 0.99 1.4 1.4

56740 63.5 67.0 0.14E+01 1.92 0.62 0.19E-01 0.22 0.74 185 1.09 1.4 1.4

57861 59.0 63.3 0.00E+00 8.35 0.29 0.28E-01 0.15 0.49 150 1.06 2.7 2.5

57863 59.0 63.3 0.00E+00 3.45 0.84 0.41E-01 0.32 0.80 105 0.96 2.7 2.5

57865 59.0 63.3 0.00E+00 3.09 0.81 0.41E-01 0.35 0.77 104 0.96 2.7 2.5

57866 59.0 63.3 0.11E+01 1.83 0.43 0.35E-01 0.26 0.51 123 1.07 2.7 2.5

57870 59.0 63.3 0.26E+00 3.96 0.75 0.29E-01 0.23 0.78 146 1.02 2.7 2.5

57871 59.0 63.3 0.00E+00 5.04 0.82 0.30E-01 0.25 0.91 141 1.05 2.7 2.5

57872 59.0 63.3 0.32E+01 1.78 0.99 0.65E-01 0.13 1.01 65 1.09 2.7 2.5

57877 59.8 62.8 0.18E+01 2.65 0.49 0.56E-01 0.14 0.54 53 1.02 2.7 2.5

57885 59.0 62.8 0.40E-01 3.66 0.44 0.42E-01 0.28 0.41 89 0.98 2.7 2.5

57886 59.0 62.5 0.20E+01 2.20 0.60 0.48E-01 0.14 0.66 71 1.04 2.7 2.5

57888 59.0 62.8 0.29E-01 2.63 0.84 0.40E-01 0.35 0.68 95 0.97 2.7 2.5

57896 59.5 63.0 0.32E-01 3.58 0.64 0.33E-01 0.26 0.52 104 0.94 2.7 2.5

59354 60.0 63.5 0.73E+00 1.96 0.58 0.42E-01 0.29 0.62 83 1.08 2.7 2.5

60584 54.5 58.4 0.00E+00 3.48 0.67 0.54E-01 0.31 0.63 71 0.96 2.16 2.75

60709 60.0 63.8 0.00E+00 6.64 0.37 0.33E-01 0.18 0.41 113 1.02 2.7 2.5

61471 59.0 63.5 0.10E+01 3.18 0.65 0.23E-01 0.15 0.50 197 0.97 2.7 2.5

61472 59.0 63.5 0.16E+00 5.12 0.23 0.23E-01 0.18 0.16 195 0.98 2.7 2.5

3



11

Type I (continued)

Shot t1 t2 α=tm/t0 β cW µ σ/µ cG n Λ1/n BT Ip

61478 56.7 59.7 0.10E+00 2.20 0.45 0.25E-01 0.43 0.46 120 1.03 2.5 3.0

61479 59.5 63.5 0.00E+00 6.80 0.25 0.24E-01 0.18 0.38 166 1.04 2.75 2.5

61480 60.0 63.0 0.17E-02 1.75 0.79 0.31E-01 0.58 0.84 96 1.07 2.7 2.5

62216 60.0 63.0 0.24E-01 3.17 0.61 0.34E-01 0.34 0.62 86 1.01 2.4 2.0

62220 57.0 61.0 0.00E+00 3.46 0.86 0.61E-01 0.30 0.79 65 0.92 3.0 3.0

62221 57.0 61.0 0.00E+00 5.86 0.68 0.48E-01 0.19 0.63 84 0.98 3.0 3.0

62222 57.5 60.5 0.60E-01 1.90 0.77 0.34E-01 0.51 0.77 86 1.04 3.0 3.0

62224 57.5 61.0 0.00E+00 2.18 0.76 0.32E-01 0.48 0.75 110 1.02 3.0 3.0

66111 58.0 63.0 0.00E+00 5.99 0.62 0.32E-01 0.22 0.78 154 1.05 2.7 2.5

66115 58.0 63.0 0.00E+00 3.94 0.85 0.30E-01 0.31 0.88 168 0.97 2.7 2.5

66116 59.0 63.0 0.83E+00 6.84 0.10 0.22E-01 0.09 0.21 184 1.03 2.7 2.5

67761 59.5 63.0 0.12E+01 5.99 0.18 0.15E-01 0.09 0.16 234 1.01 2.7 2.5

69373 63.5 66.5 0.77E+00 2.44 0.54 0.38E-01 0.23 0.55 79 1.02 1.7 2.0

69900 55.5 59.3 0.62E-01 1.65 0.67 0.44E-01 0.57 0.68 86 1.09 2.8 3.0

70050 56.0 59.7 0.00E+00 2.47 0.56 0.32E-01 0.43 0.54 115 0.99 2.9 3.0

72339 59.0 63.0 0.11E+01 4.18 0.54 0.38E-01 0.12 0.49 103 0.99 2.7 2.5

72343 58.5 63.3 0.00E+00 9.20 0.43 0.31E-01 0.13 0.32 155 1.02 2.7 2.5

72345 60.0 63.0 0.17E+00 3.19 1.32 0.26E-01 0.23 1.02 113 0.90 2.7 2.5

73087 59.5 63.3 0.27E-01 5.59 0.92 0.32E-01 0.18 0.78 117 0.95 2.7 2.5

73335 59.0 63.0 0.44E+00 3.34 0.84 0.28E-01 0.20 0.72 144 0.96 2.7 2.5

73341 59.0 63.0 0.28E+01 1.87 0.65 0.35E-01 0.13 0.90 114 1.09 2.7 2.5

73345 59.5 63.0 0.70E+00 4.57 0.43 0.34E-01 0.14 0.44 103 1.01 2.7 2.5

73346 59.0 63.0 0.80E+00 4.45 0.43 0.31E-01 0.13 0.36 130 0.98 2.7 2.5

75722 65.0 69.5 0.51E+00 1.89 0.74 0.21E-01 0.36 0.84 216 1.13 1.6 1.5

75727 64.0 69.0 0.00E+00 4.52 0.91 0.58E-01 0.26 0.92 85 0.97 2.0 2.0

75731 64.5 67.5 0.41E+00 2.81 0.71 0.47E-01 0.27 0.73 62 1.02 2.0 2.0

75732 64.5 67.5 0.25E+00 2.93 0.59 0.43E-01 0.29 0.59 69 1.01 2.0 2.0

76473 58.5 61.5 0.18E+00 5.13 0.61 0.39E-01 0.18 0.55 76 0.99 2.0 2.0

76474 58.0 61.5 0.00E+00 6.14 0.72 0.40E-01 0.19 0.75 87 1.03 2.0 2.0

76475 58.5 61.5 0.00E+00 3.71 0.79 0.39E-01 0.32 0.80 76 0.99 2.0 2.0

76476 58.5 61.5 0.00E+00 2.81 0.97 0.39E-01 0.40 0.94 76 1.00 2.0 2.0

76478 58.5 61.5 0.00E+00 3.81 0.51 0.38E-01 0.31 0.52 78 1.00 2.0 2.0

76479 58.0 62.0 0.00E+00 2.50 0.58 0.32E-01 0.42 0.55 124 1.00 2.0 2.0

5
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Type I (continued)

Shot t1 t2 α=tm/t0 β cW µ σ/µ cG n Λ1/n BT Ip

76480 58.0 61.3 0.00E+00 2.70 0.44 0.29E-01 0.40 0.42 110 1.01 2.0 2.0

76481 58.0 61.5 0.00E+00 4.26 0.88 0.47E-01 0.26 0.85 73 0.99 2.0 2.0

76483 58.0 61.5 0.33E-02 2.22 0.55 0.29E-01 0.47 0.52 120 1.03 2.0 2.0

Type III ELMs

Shot t1 t2 α = tm/t0 β cW µ σ/µ cG n Λ1/n BT Ip

68608 62.0 67.0 0.30E+00 1.17 0.26 0.82E-02 0.68 0.91 609 1.39 2.4 2.0

68610 60.5 66.0 0.17E+00 1.23 0.60 0.12E-01 0.77 1.23 475 1.44 2.4 2.0

68612 60.5 66.0 0.62E-01 1.30 0.98 0.14E-01 0.83 1.35 395 1.43 2.4 2.0

68613 60.5 66.0 0.17E+00 1.32 0.70 0.14E-01 0.71 1.10 385 1.36 2.4 2.0

68614 60.5 66.0 0.17E+00 1.17 0.98 0.14E-01 0.90 1.62 395 1.65 2.4 2.0

68615 60.5 66.0 0.19E+00 1.30 0.83 0.13E-01 0.71 1.27 421 1.39 2.4 2.0

68618 60.5 66.0 0.13E+00 1.37 0.61 0.12E-01 0.70 1.08 445 1.32 2.4 2.0

68619 60.5 66.0 0.24E+00 1.22 0.78 0.13E-01 0.75 1.45 438 1.48 2.4 2.0

74410 56.0 60.5 0.34E+00 1.04 0.57 0.18E-01 0.74 1.33 250 1.53 2.0 2.5

74411 56.0 60.5 0.12E+00 1.11 0.51 0.15E-01 0.90 1.27 297 1.55 2.0 2.5

74412 56.0 60.5 0.77E-01 1.00 0.88 0.17E-01 0.97 1.14 263 1.58 2.0 2.5

74415 56.0 60.5 0.68E-01 1.00 0.85 0.14E-01 1.00 1.29 315 1.61 2.0 2.5

74417 57.0 60.5 0.90E-01 1.00 0.52 0.10E-01 1.08 1.34 334 1.77 2.0 2.5

74427 56.0 60.5 0.93E-01 1.00 1.06 0.18E-01 1.12 1.65 249 1.83 2.0 2.5

74428 57.0 60.5 0.10E+00 1.22 0.32 0.11E-01 0.75 0.71 313 1.30 2.0 2.5

6

“High frequency” type I ELMs

Shot t1 t2 α = tm/t0 β cW µ σ/µ cG n Λ1/n BT Ip

66109 59.0 63.0 0.00E+00 3.39 0.62 0.92E-02 0.30 0.51 435 0.96 2.7 2.5

66108 59.0 62.5 0.00E+00 2.50 0.90 0.89E-02 0.40 0.80 390 0.99 2.7 2.5

66107 59.0 63.0 0.56E-01 3.73 0.48 0.83E-02 0.23 0.32 480 0.92 2.7 2.5

66106 59.0 63.0 0.41E+00 2.70 0.37 0.12E-01 0.26 0.43 328 1.01 2.7 2.5

66105 59.0 63.0 0.11E+00 3.63 0.48 0.83E-02 0.23 0.26 479 0.92 2.7 2.5

7
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Figure 1: Example Da time traces are shown for JET Pulse No’s: (from the top down): 61480 (a = 0.02,  = 1.8), 72343 
(b = 0.0,  = 9.2), 67761 (a = 1.2, b = 6.0), and 73341 (a = 2.8, b = 1.9).

For illustrative purposes, Figure 1 includes a selection of Da time traces. The examples are chosen 
from the four extremities of our a-b plot in Figure 3 of the main text, and are shown for the time 
period of 60s-63s. The 60s-63s time window was chosen because it is included in the analysis of 
all the four pulses shown. From top to bottom in Figure 1, or clockwise from bottom left in the 
Da plot of Figure 3 of the main text, the Pulse No’s are: 61480 (a = 0.02, b = 1.8), 72343 (a = 0.0,
b = 9.2), 67761 (a = 1.2, b = 6.0), and 73341 (a = 2.8, b = 1.9).
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