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AbstrAct

The pedestal profile measurements in high triangularity JET plasmas show that with low fuelling 
the pedestal width decreases during the ELM cycle and with high fuelling it stays constant. In the 
low fuelling case the pedestal pressure gradient keeps increasing until the ELM crash and in the 
low fuelling case it reaches a saturation during the ELM cycle.
 An edge stability analysis using MHD and gyro-kinetic codes finds that at the end of the ELM 
cycle both JET plasmas become limited by finite-n peeling-ballooning modes and during the ELM 
cycle the steep pressure gradient region of the pedestal is both n = 1 ideal MHD ballooning mode 
and kinetic ballooning mode stable due to high bootstrap current. This indicates that during the 
ELM cycle the pedestal pressure gradient is not limited by kinetic ballooning modes. Any pedestal 
model based on pressure gradient being limited by kinetic ballooning modes needs to amended 
when predicting pedestals with high bootstrap current.
 Unstable micro-tearing modes are found at the JET pedestal top, but they are sub-dominant to 
ion temperature gradient modes. They are insensitive to collisionality and stabilised by increasing 
density gradient.

1. IntroductIon

The global plasma confinement in a tokamak operating in high confinement or H-mode is largely 
determined by the edge pedestal pressure due to core turbulence restricting ∇T/T near the marginal 
stability limit[1]. Therefore, being able to predict the edge pedestal behaviour allows prediction of 
the achievable core pressure and the fusion power. There is strong evidence from various devices 
that in Type I ELMy H-mode the pedestal pressure is constrained by ideal MHD peeling-ballooning 
modes. When the stability limit is exceeded, the peeling-ballooning mode is thought to trigger an 
instability causing an ELM crash that reduces the pedestal top pressure. The stability calculations 
of JET [2], DIII-D [3], JT-60U [4] and ASDEX Upgrade [3] have all found plasma to be within 
error margin of the peeling-ballooning stability limit prior to a Type I ELM crash.
 However, the peeling-ballooning constraint does not solely determine the pedestal pressure. By 
increasing the width of the pedestal it is possible to maintain peelingballooning stability at higher 
pedestal top pressure with a reduced pressure gradient. In order to uniquely predict the maximum 
achievable pedestal, the pedestal width also has to be constrained. One way is to find an empirical 
scaling for the width using dimensionless parameters from the experiments e.g. Dped ~

 bp,ped [5]. This 
constraint is used in the EPED1 model, which combines the scaling law prediction for the width to 
a peeling-ballooning stability calculation for the height of the pedestal[6]. A more advanced version 
of EPED, EPED1.6, replaces the scaling law constraint with an ideal MHD calculation for n = 1 
ballooning modes, which is used as a proxy for the stability of kinetic ballooning modes (KBM) 
[7]. Both the linear growth rate and the nonlinear heat flux from KBMs increase very rapidly after 
the stability limit is exceeded, constraining the pedestal pressure gradient below this limit [8].
 In recent gyrokinetic studies of MAST plasmas, in addition to KBMs, micro-tearing modes 
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(MTM) were found unstable near the top of the pedestal [9, 10]. This suggests a model where the 
widening of the pedestal is due to MTMs in the shallow gradient region at the top of the pedestal 
becoming stabilised by increasing density and pressure gradients at the “knee” of the pedestal top, 
allowing the steep pressure gradient to increase until the KBM stability limit is reached [10].
 Whilst the EPED model has been able to predict a large number of JET pedestal pressures at a 
20-30% accuracy [11], some of the trends are not correctly predicted. In this paper we investigate 
the linear stability limit in the pedestal region of well-diagnosed ELM cycles in JET. The selected 
plasmas are from a density scan that show discrepancy from the EPED predictions [12]. The pedestal 
width dependency of Dped ~

 bp,ped is not seen in the scan. Also the prediction for the pedestal pressure 
shows a decreasing trend for increasing density while the opposite is observed experimentally.
 We try to understand the underlying causes for the discrepancies by using linear ideal MHD 
and gyrokinetic stability analyses. First in section 2, we construct the plasma equilibrium using the 
HELENA code [13] including the bootstrap current that is dominant in the edge region. HELENA 
also calculates the local n = ∞ ballooning stability for each flux surface. Then we use the HELENA 
equilibria to study the peelingballooning stability with a finite-n MHD stability code MISHKA-1 in 
section 3. Finally, the gyrokinetic code GS2 [14] is used to investigate the micro-stability in section 
4. We determine the KBM unstable region during the ELM cycle and how well this corresponds 
to the region that is unstable to the ideal MHD n = ∞ ballooning modes. We will also investigate, 
whether unstable MTMs are found near the pedestal top.

2. ExpErImEnt And EquIlIbrIum rEconstructIon

2.1. Equilibrium rEconstruction ProcEdurE
In order to study the MHD and gyrokinetic stability of the JET pedestal, we first need to accurately 
reconstruct the equilibrium. The electron density and temperature are obtained using the high 
resolution Thomson scattering diagnostics [15, 16]. The profiles are measured in R,Z coordinates, 
mapped to equilibrium poloidal flux by using the EFIT equilibrium, binned according to their timing 
in the ELM cycle and then the combined profiles are fitted with a mtanh-function [17] using a 
deconvolution technique described in [16]. Since the EFIT separatrix position is not very accurate, 
we adjust the radial position of the profiles so that the separatrix temperature matches with two-point
power balance model [18]:

(1)

where Tdiv is the temperature at the divertor (in eV), Pheat is the total heating power (in MW), Prad 
is the total radiative power from the core (in MW), L|| = pR0q95 is the parallel connection length (in 
m), lq is the radial power decay length (in m), ROMP is the major radius of the outer midplane (in 
m) and k0 is the heat conduction. The values used in this paper are either taken from the experiment 
(R0, Pheat, Prad, q95,ROMP) or assumed (lq

 = 0.005, k0 =
 2000).
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For ion temperature, we have assumed that in the core Ti = Te and used two different assumptions for 
the pedestal, either Ti = Te or dTi,ped/dy = dTi,core/dy. It turns out that the choice of the assumption 
of ion temperature has little effect on the equilibrium and stability. For the Zeff, which affects the 
bootstrap current through collisionality as well as ion density through dilution, we have used a 
line-integrated measurement and assumed constant value in the plasma.
 The current profile is assumed to be a combination of inductively driven and bootstrap current. 
The bootstrap current is calculated from density and temperature profiles using formulas in [19, 
20]. The inductively driven current is assumed to be fully relaxed to the neo-classical conductivity 
profile, which slightly overestimates the core current but has little effect on the equilibrium near 
the edge where the bootstrap current dominates. The plasma boundary shape is taken from EFIT. 
Using this information, we calculate a fixed boundary equilibrium that has a self-consistent bootstrap 
current with the HELENA code using the method described in [21].
 To improve further the quality of the equilibrium, we redo the mapping of the profiles from 
real space into the flux space using the HELENA equilibrium. It turns out that the effect of this 
remapping on the profiles is small and the edge pressure gradient changes by less than 5%.

2.2. invEstigatEd Plasmas
For this study, we have chosen two high triangularity (d = 0.41) JET discharges with Ip

 = 2.5MA 
and Bt

 = 2.7T. The Pulse No: 79503 has high fuelling (2.6 × 1022e/s) and the Pulse No: 79498 
has low fuelling (0.2 × 1022e/s). The density, temperature and pressure profiles of the two plasmas 
during the ELM cycle are shown in Fig.1. The period right after the ELM crash (0–10% of the 
ELM cycle) is ignored because the data in the period is dominated by the ELM crash and not very 
useful for analysis. Excluding it does not change any of the conclusions presented in the paper. A 
more detailed discussion about the data and fitting is given in [12]. Zeff is 2.0 for the low fuelling 
case and 1.7 for the high fuelling case.
 As described in detail in [12], the pedestal behaviour between ELMs is different in these two 
cases. In the low fuelling plasma, both the temperature and density pedestal height increases and 
the width decreases during the ELM cycle resulting in an increasing pressure gradient until the 
ELM crash collapses the pedestal.
 In the high fuelling case; the density pedestal height increases slightly while the temperature 
profile stays unchanged after the quick recovery following the ELM crash; initially (up to midway 
through the ELM cycle) the maximum pressure gradient in the pedestal increases, but then saturates 
and does not change for a large part of the ELM cycle. The width of the pressure profile increases 
very slightly during the ELM cycle. The time evolution of the pressure gradient and the pedestal 
width for both discharges are shown in Fig.2.
 In the equilibrium reconstruction the self-consistent bootstrap current is assumed to follow the 
pressure profile without a delay. It has been shown that this is a good approximation for current 
diffusion in similar plasmas in ASDEX Upgrade [28]. The resulting toroidal current and q-profiles 
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are shown in Fig.3. As can be seen, the q-profile develops a flat part in the location of the maximum 
bootstrap current.

3. mHd stAbIlIty AnAlysIs

3.1. FinitE-n mHd stability analysis
The finite-n MHD peeling-ballooning instabilities have been found to limit the pedestal height in 
Type I ELMy H-mode plasmas in several devices [6]. In this paper, we use the MISHKA-1[23] ideal 
MHD code to investigate the finite-n stability of the plasma during the ELM cycle. We conduct two 
different types of scans around the experimental MHD and Gyro-kinetic Stability of JET Pedestals 
6 equilibrium. First we map the stability boundaries in a − < jf >max-space. Here the normalized 
pressure gradient, a, is defined as [24]

 (2)

where V is the plasma volume, R0 is the major radius and p is the pressure. < jf >max is the maximum 
of the flux surface averaged toroidal current density in the pedestal region. In the scan we vary the 
dp/dy and < jf > profiles from the experimental profile using the method described in detail in [27]. 
This method allows the profiles to be varied locally without introducing discontinuities.
 The finite-n stability diagrams of the two discharges are shown in Fig.4. In the diagrams the color 
represents the growth rate, g, of the most unstable mode and the stability boundaries are drawn for 
g = 0 and  g = w* /2, where w*  is half of the maximum diamagnetic frequency for a given mode 
number in the pedestal.
 In both cases the edge plasma starts the ELM cycle deep in the stable region. In the low fuelling 
case the pressure gradient and the current density keep increasing until the end of the ELM cycle, 
when the plasma has crossed into the unstable region. Since the pedestal width of the last time point 
is close to the width of the instrument function used in the fitting, the deconvolution technique used 
in the fitting procedure may in this particular case overestimate the gradient that would explain the 
last time point being relatively deep in the unstable region. In the high fuelling case the pressure 
gradient and the current density saturate long before the ELM crash with the edge plasma close to
marginal stability. As a conclusion of the finite-n stability analysis we can say that the result is 
consistent with the assumption in the EPED model that the peeling-ballooning modes are the 
ultimate limit for the pedestal height.

3.2. n = ∞ mHd stability analysis
It has been shown that the local n = ∞ ballooning stability, which can be calculated very quickly 
for an equilibrium, matches with the kinetic ballooning mode (KBM) stability calculated by a local 
gyrokinetic code [9]. In the analysis presented in [9] for the MAST plasma, the edge plasma is 
relatively cold (Te,ped < 200 eV) resulting in a relatively collisional plasma with a small bootstrap 
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current peak. However, in the JET discharges analyzed in this paper the pedestal temperature is 
much higher (Te,ped ≈ 1keV) and the resulting bootstrap current peak is large. As was shown in Fig.3 
the bootstrap current peak flattens the q-profile in the steepest pressure gradient region. The low 
magnetic shear allows the pedestal to access the so-called 2nd stability region. Figure 5 shows the
n = ∞ ballooning mode stability evolution during the ELM cycle in the two analyzed JET discharges. 
In the graph F = acrit/a, where acrit is the marginally ballooning stable value of a. The flux surfaces 
where F > 1 are stable and those with F < 1 are unstable. As can be seen, there is a narrow band of 
unstable plasma between the steepest gradient and the edge. The steepest pressure gradient region is 
stable through the ELM cycle due to being in the 2nd stable region. This 2nd stability access of the 
steep pedestal region in Type-I ELMy plasmas is typical of what has been found earlier in DIII-D 
and JET [22, 25, 26] and is due to the strong bootstrap current peak in the pedestal. The“knee” or 
the top of the pedestal is also stable, but closer to the stability limit than the steepest gradient region.
 We demonstrate that the n = ∞ stability in the steepest pressure gradient region is due to the 
bootstrap current peak by conducting a scan in which we vary the amount of bootstrap current 
included in the equilibrium reconstruction. The result shown in Fig.6 are from the equilibria at 
the end of the ELM cycle, but similar results are found for other time points. As can be seen the 
pedestal region indeed becomes unstable as the bootstrap current is reduced from the value given 
by the formulas in Ref. [19]. As can also be noted, the “knee” region becomes unstable with less 
reduction of current than is required to destabilize the steepest pressure region.
 It is possible that while the steepest part of the experimental profile (after being fitted with an 
mtanh-function) is in the 2nd stable region due to the high bootstrap current, it has passed through 
the unstable region during the increase of temperature pedestal. Consequently, KBMs would have 
been triggered and they would have limited the local increase of the pressure gradient. The gradients 
would still increase in other parts of the pedestal until they become clamped by KBMs throughout 
the pedestal. This is the idea behind the ballooning critical pedestal (BCP) method used in the 
EPED 1.6 model [7]. Another possibility is that the experimental 2nd stable region move from the 
1st to the 2nd stable region as the pressure gradient increases without crossing through the unstable 
region. In this case these regions would never become limited by the kinetic ballooning modes.
 We already saw in Fig.5 that the steep pressure gradient regions of the JET pedestals do not 
become n = ∞ ballooning unstable at any point during the ELM cycle. However, during the ELM 
cycle, both the width of the pedestal and the location of the steepest part changes. In order to study 
just the effect of pedestal steepening, we conduct an artificial scan by taking the profiles of the last 
point of the ELM cycle and varying the height of the temperature pedestal, solving the equilibrium 
self-consistently with bootstrap current and recording which flux surfaces are n = ∞ ballooning 
unstable. The unstable flux surfaces for a given pedestal height are plotted in Fig.7. In the scan no 
unstable flux surfaces were found for pedestal pressure values lower than the values shown in the 
plot. This means that for both high and low fuelling plasmas the steepest pressure gradient never 
becomes n = ∞ ballooning unstable as the gradient increases, i.e. it never crosses the stability 
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boundary as it moves from the first to the second stable region. Only the very narrow (especially 
in the case of low fuelling plasma) outer region can be considered to be limited by the ballooning 
instability.

4. Gyro-kInEtIc AnAlysIs

Finite-n MHD stability of the plasma edge stability provides hard limits that plasma cannot cross 
without leading to the loss of a considerable part of the plasma as happens MHD and Gyro-kinetic 
Stability of JET Pedestals 8 during an ELM. However, more benign turbulence driven by local 
micro-instabilities can also limit the edge gradients through transport. In order to be relevant for 
limiting the pressure gradient, the micro-instability has to have a critical value for the gradient after
which its growth rate increases rapidly driving turbulence and reducing the gradient. A mode that 
does not have this property but is found to be unstable in the pedestal can still affect the dynamics 
of the pedestal evolution by slowing down the recovery of the pedestal, but does not determine the 
maximum achievable pressure gradient.
 To study the micro-instabilities in the pedestal region during the ELM cycle in more detail, we 
use local gyro-kinetic analysis, and we consider modes with size of the order of ion Larmor radius, 
which is generally small compared to the equilibrium scale lengths. At the top of the pedestal this 
requirement is easily met (LT /ri ≈ 80 and Ln/ri ≈ 800), but in the steep gradient region the gyrokinetic 
expansion parameter is larger (both Ln/ri and LT /ri ≈ 10−20). We will now look at local gyrokinetic 
stability in both of these regions.

4.1. gyrokinEtic stability in tHE stEEP gradiEnt rEgion
In the previous section we found that the JET pedestals are in the 2nd stable region for n = ∞ ideal 
MHD ballooning modes. It is well known for long that the ideal MHD ballooning modes and kinetic 
ballooning modes have very similar drive mechanisms [29]. In MAST pedestal the ideal MHD
n = ∞ stability has been found to be a good proxy for kinetic ballooning mode (KBM) stability 
calculated by a local gyro-kinetic code when the plasma is in the 1st stable region [9]. We will now 
test if this is true also for the JET pedestal that is in the 2nd stable region for ideal MHD ballooning 
modes. For this analysis we use the local electro-magnetic GS2 code [14]. Both the ions and electrons 
are treated kinetically and the collisions are taken into account. The effect of sheared flow, while 
important for modes with growth rates similar to the shearing rate, may be less important for KBMs 
because once the plasmas crosses the stability boundary for KBMs, the growth rate increases very 
rapidly [8, 30] resulting only in a small increase in the critical pressure gradient. Therefore, the flow 
shear is neglected in this analysis. Future studies are planned to include the effect of the flow shear.
 The linear gyro-kinetic stability analysis at kqri <0.2 (kq is the poloidal wave number and ri is the 
ion Larmor radius) finds no kinetic ballooning modes (KBM) in the JET pedestals. This agrees with 
the ideal MHD n = ∞ stability described earlier. At higher kq (0.2 < kqri < 2) we find ion temperature 
gradient (ITG) modes and at even higher kq (kq > 5) electron temperature gradient (ETG) modes. 
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Both of these are electro-static and their growth rate depends very weakly on the plasma  (the 
ratio of plasma pressure to magnetic energy). Also they are not destabilized by increasing density 
gradient making them unlikely candidates for limiting the pedestal density gradient. Therefore, while 
it is possible that these modes play a role in the limiting of the pedestal temperature gradient and 
slowing down the pedestal recovery, in this paper we concentrate on KBMs that are destabilized by 
increasing pressure gradient and have very high growth rates producing a lot of turbulent transport 
once the stability limit is exceeded [31].
 We scan the plasma b in GS2 (i.e. not solving for a new self-consistent equilibrium using 
HELENA) to find the stability limit for KBMs in JET pedestals. As can be seen in Fig.8, the 
amount by which b must be increased in order to destabilize KBMs matches very well with the F 
parameter in the n = ∞ ideal MHD analysis throughout the pedestal region. So, while the validity 
of the gyrokinetic theory in the pedestal region is marginal due to small Ln/ri and LT /ri values, the 
numerical results for KBMs still agree very well with the ideal MHD results. We can also see that 
the regions closest to the stability limit are the bottom of the pedestal (y ≈ 0.99) and the “knee” 
of the pedestal (y ≈ 0.94 in high fuelling case and y ≈ 0.96 in the low fuelling case). The steepest 
part of the pedestal is very stable for KBMs.
 The reason for the good stability for KBMs in the pedestal is the large bootstrap current that lowers 
the flux-surface averaged magnetic shear in the steep pressure gradient region. As was shown in 
the previous section, reducing the bootstrap current that included in the equilibrium reconstruction 
destabilizes the local n = ∞ ballooning modes. Exactly the same happens with the KBMs in a gyro-
kinetic simulation. Figure 9 shows the KBM growth rate in the pedestal region when no bootstrap 
current has been taken into account. In the low fuelling case, the KBM growth rate has two peaks: 
one between the edge and the maximum pressure gradient and the other between the top of the 
pedestal and the maximum pressure gradient. These peaks match very well with the ideal MHD 
n = ∞ ballooning unstable regions, i.e. the most n = ∞ ballooning unstable regions have also the 
highest growth rates for KBMs. In the high fuelling case, the KBM growth rate peaks just outside 
the steepest gradient region. Also in this case the KBM unstable region match very well with the 
region unstable to ideal MHD ballooning modes.

4.2. GyrokInEtIc stAbIlIty At tHE pEdEstAl top

In a gyro-kinetic analysis of the MAST tokamak, it was found that the plateau region at the top of 
the pedestal is unstable to micro-tearing modes (MTM) [32, 10, 33]. The identification of the micro-
tearing modes in the JET pedestal top is made more difficult by other unstable micro-instabilities. 
In the JET pedestal top, ITG modes are the dominant instability. In order to identify possible sub-
dominant micro-tearing modes, we make the equilibrium up-down symmetric and in GS2 suppress 
even parity modes such as the ITG. Changing the plasma shape to up-down symmetric has very 
little effect on the growth rates of the dominant mode. When the ITG modes are suppressed, we 
find sub-dominant odd parity micro-tearing modes. Figure 10 shows the growth rates of the ITG 
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(unsuppressed case) and MTM (when ITG is suppressed) at the “knee” of the pedestal for both cases 
at the end of the ELM cycle. The growth rate spectra for different time points is qualitatively similar.
Similar to what was found in MAST [10, 32] and unlike micro-tearing modes found in the core, the 
mode structure of the pedestal top micro-tearing mode is not very extended along the field lines as 
shown in Fig.11. We also find that this mode is relatively insensitive to the collisionality (growth rate 
increases slightly with decreasing collisionality) and is unstable even when collisions are ignored in 
the gyrokinetic simulation. The growth rate of the MTM at the pedestal top decreases with increasing 
density gradient and increases with increasing temperature gradient as in [10, 32, 33]. The MTM 
stabilization by the density gradient means that MTMs can contribute to the transport of the pedestal 
top region until they are suppressed by the increasing edge density gradient as described in [10].

conclusIons

The finite-n MHD and stability analyses presented in this paper suggest that the carefully 
reconstructed experimental pedestals of both high and low fuelling JET Type I ELMy plasmas are 
limited by peeling-ballooning modes within experimental uncertainty at the end of the ELM cycle. 
This confirms previous results from JET and various other devices and is consistent with the EPED 
model assumption the peeling-ballooning modes limit the pedestal. In the early part of the ELM 
cycle both cases are stable to peelingballooning modes. The pedestal in the high fuelling case is 
found to saturate near the stability boundary around half-way through the ELM cycle, while in the 
low fuelling case the pedestal pressure gradient keeps increasing until the ELM crash.
 In the pedestal region, the stability boundaries obtained using local ideal MHD n = ∞ ballooning 
mode analysis and local linear gyro-kinetic analysis for kinetic ballooning modes show very good 
correspondence. This is consistent with the MHD n = ∞ ballooning mode stability providing a 
reasonable proxy for the stability of kinetic ballooning modes. However, in the analyzed JET 
discharges most of the pedestal region is found to be stable to both of these modes due to reduced 
magnetic shear caused by high bootstrap current in the steep pressure gradient region giving access 
to 2nd stability. In a self-consistent pedestal height scan the steepest part of the pedestal moves 
from the 1st to the 2nd stable region without crossing the unstable region.
 The experimental observation of increasing pressure gradient in the case of the low fuelling 
plasma and the MHD and gyro-kinetic stability analyses suggest that the edge pedestal gradient in 
JET is not limited by kinetic ballooning modes during the ELM cycle. Further, the narrowing of the 
pedestal through the ELM cycle in the low fuelling case indicates a different type of ELM cycle to 
that seen in DIII-D and MAST where the pedestal widens with a constant maximum pressure gradient 
[34, 9]. The analysis also indicates KBMs do not limit the pressure gradient in pedestals with large 
edge bootstrap current peak and low magnetic shear as expected in ITER [35]. The sensitivity of 
the KBM stability to the amount of bootstrap current, however also points to the need for accurate 
measurement of the edge current profile to validate the neoclassical models for bootstrap current 
used in the calculations.
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The experiment was found to be consistent with the pedestal being ultimately limited by peeling-
ballooning modes. The width dependency of the peeling-ballooning mode limit for the pedestal 
top pressure is relatively weak [7, 35]. Therefore, it may not be necessary to get the width exactly 
right in order to have a reasonable prediction for the pedestal height.
 Gyro-kinetic analysis also found micro-tearing modes at the JET pedestal top with similar features 
to those found earlier in the MAST pedestal top. However, in JET the micro-tearing modes are 
sub-dominant to ITG modes, but could nevertheless play a role in the pedestal dynamics.
 The local gyrokinetic analysis has its limitations when the ion Larmor radius approaches the 
equilibrium scale lengths. It is possible that the equilibria with a high bootstrap current peak and 
low shear at the maximum pressure gradient are locally stable for KBMs but become unstable when 
finite radial width of the mode is taken into account limiting the pressure gradient. Such an analysis 
is beyond the scope of this paper and will be considered in future work.
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Figure 1: The density and temperature profile evolution during the ELM cycle in high (left) and low (right) fuelling 
JET discharges. The labels represent the normalized time in the ELM cycle.

Figure 2: The time evolution of the maximum of the pedestal pressure gradient and the pedestal width during the ELM 
cycle in the high and low fuelling JET discharges.
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Figure 3. The flux surface averaged toroidal current and q- profile evolution during the ELM cycle in high (left) and 
low (right) fuelling JET discharges. The labels represent the normalized time in the ELM cycle.

Figure 4: The peeling-ballooning mode stability diagrams for the high fuelling (left) and low fuelling (right) plasmas 
during the ELM cycle. The color represents the growth rate of the fastest growing mode (blue is stable) and the numbers 
the toroidal mode number of the most unstable mode. The dashed lines shows the stability limit at g > w*/2 (black) and   
g > 0 (yellow). The stars show the position of the experimental equilibrium during the ELM cycle.
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Figure 5: The n = ∞ ballooning stability during the ELM cycle in the edge region for the high (left) and low (right) fuelling 
cases. The colors represent the increase of pressure gradient needed to make the corresponding flux surface unstable, 
i.e. regions below unity are unstable and above unity stable. The dashed line shows the region of marginal stability.

Figure 6: The n = ∞ ballooning stability as a function of bootstrap current taken into account in the equilibrium 
reconstruction for the pedestal region of high (left) and low (right) fuelling case at the end of the ELM cycle. The colors 
represent the stability (blue unstable, red stable) and the dashed black line shows the boundary of marginal stability. 
The vertical line represents the equilibrium with full bootstrap current given by the formula [19].
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Figure 7. The n = ∞ ballooning unstable region in high (left) and low fuelling (right) cases when the pedestal top 
temperature is varied self-consistently. The red dots show the ballooning unstable flux surfaces. The blue line represents 
the region of the pressure pedestal from 25% to 75% of the height and is placed at the value of the experimental pedestal 
height. The black dashed line shows the steepest gradient location.

Figure 8. The gyro-kinetic stability limit of KBMs (solid blue line) in high (left) and low (right) fuelling pedestals at the 
end of the ELM cycle as a function of poloidal flux. For comparison, the n = ∞ ideal MHD ballooning stability limit 
(dashed red line) and the experimental pressure gradient (dotted magenta line) are also shown. The stability limits 
represent the value the pressure gradient can be increased before becoming unstable.
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Figure 9: The growth rate of the kinetic ballooning mode (solid blue line, y-axis on the right) at the end of the ELM 
cycle in the edge region of high (left) and low (right) fuelling case with no bootstrap current used in the equilibrium 
reconstruction. Also shown is the n = ∞ ballooning stability limit (dashed red line, y-axis on the left) and the normalized 
pressure gradient (dash-dot magenta line, y-axis on the left).

Figure 10: The growth rate spectrum of MTM and ITG modes in high ( left) and low (right) fuelling case at the pedestal 
“knee” at the end of the ELM cycle.
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Figure 11: The eigenfunctions of electrostatic potential  and parallel magnetic vector potential A|| along the ballooning 
angle q for the kyri = 0.37 micro-tearing mode at the JET pedestal top.
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