
M. Maslov, M.N.A.Beurskens, J. Flanagan, M. Kempenaars
and JET EFDA contributors

EFDA–JET–PR(12)12

Statistical Error Bars Estimation for 
Thomson Scattering Diagnostics



“This document is intended for publication in the open literature. It is made available on the 
understanding that it may not be further circulated and extracts or references may not be published 
prior to publication of the original when applicable, or without the consent of the Publications Officer, 
EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”

 
“Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA, 
Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”

The contents of this preprint and all other JET EFDA Preprints and Conference Papers are available 
to view online free at www.iop.org/Jet. This site has full search facilities and e-mail alert options. The 
diagrams contained within the PDFs on this site are hyperlinked from the year 1996 onwards.



Statistical Error Bars Estimation for 
Thomson Scattering Diagnostics

M. Maslov1, M.N.A.Beurskens1, J. Flanagan1, M. Kempenaars1

and JET EFDA contributors*

1EURATOM-CCFE Fusion Association, Culham Science Centre, OX14 3DB, Abingdon, OXON, UK
* See annex of F. Romanelli et al, “Overview of JET Results”,

(23rd IAEA Fusion Energy Conference, Daejon, Republic of Korea (2010)).

JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK

Preprint of Paper to be submitted for publication in
Review of Scientific Instruments



.



1

AbstrAct.
Thomson scattering is a routine diagnostic for measuring electron temperature and density on almost 
every magnetic confinement fusion plasma device. Due to very low cross section of the scattering, 
the measured signal to noise ratio is generally relatively low and statistical error bars of a single 
measurement often dominate over systematic uncertainties caused for example by imprecise cali-
bration. In this work an analytical expression is introduced to determine statistical error bars for 
temperature, density and pressure measurements.

1. IntroductIon
Various Thomson Scattering diagnostics were built at many fusion devices around the world. While 
methods of data analysis, i.e. derivation of temperature and density from measured scattered light 
spectrum is not changing much from case to case, estimation of measurement uncertainties (so 
called error bars) can be quite different. The simplest estimate for density error bars is for example 
s(n) = (1/NPE)1/2, where NPE is the total number of photoelectron events detected in all spectral 
channels. Another methods take into account χ2 values of the least mean square, or min (χ2) fit used 
for determination of temperature, i.e. using the information how well the measured spectrum fits 
into a theoretical Thomson Scattering spectrum. This method works reasonably well in cases where 
scattered light spectrum is fitted with multiple points, for example when the light detector is a CCD 
camera with hundreds of pixels [3]. The most complex and probably the most accurate method is 
Monte-Carlo simulation, i.e addition of a noise to measured signals and performing the fit multiple 
times to derive standard deviation of the output Te and ne values [3,4]. 
 The purpose of this work is to derive an analytical expression for calculating statistical uncer-
tainties of measured Te and ne, based only on signal-to-noise ratios in individual spectral channels 
and the spectrometer calibration data. This would allow to acquire accurate statistical error bars for 
arbitrary Te, ne, signal level and background noise without involving time-consuming Monte-Carlo 
calculations.

2. derIvAtIon of the error bArs
A generic Thomson Scattering diagnostic is measuring scattered light amplitude in several spectral 
channels. During a calibration process, the amount of light expected in each channel for every Te value 
for a given density is determined, therefore the temperature and density measurement is basically a 
finding of the best match between measured and expected signals in all channels. Mathematically 
it means finding the minimum of the following value:

                                         (1)

Here n is the number of spectral channels, Si is the signal measured in each of the channels, Fi is 
the expected signal in each channel for unit density as a function of temperature, Fi

 = Fi(T), N is 
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the plasma electron density, wi is a weighting factor for each channel measurement. Weighting is 
usually defined as wi = 1/s2 (Si), where s (Si) is the uncertainty of signal measured in a particular 
channel, but for the purpose of this work we can consider it as an arbitrary non-negative number.
Function Fi(T) is a product of a spectral function of a particular channel and the scattered light spec-
trum (can be calculated using formulas of [1] for example), integrated over the whole wavelength 
range. Spectral functions are determined via calibration of the diagnostic and the functions Fi(T) then 
calculated numerically for any given temperature value. Spectral calibration and the expected signals 
Fi for JET LIDAR Thomson scattering diagnostics [2] are shown on figures 1 and 2 as an example.
χ2 in expression (1) is a 2nd order polynomial function of N therefore for every given T value it has 
only one minimum at 

                                                   (2)

So for every temperature value, there is only one density which satisfies the χ2 = min requirement, 
therefore N can be considered not as an independent variable but as a function of temperature,
N = N(T), so χ2 becomes a function of only one variable T.
Finding the minimum of χ2 is equivalent to solving the equation:

                                                   (3)

To simplify (3) and other expressions used here, we define the following values:

                                                   (4)

 

                                                (5) 

As it was already mentioned, whichever data processing routine is used to analyse a particular 

, , , ,

Then ,  and the expression (3) transforms to

, or finally
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Thomson Scattering data, it will end up finding the minimum of χ
2 or equivalently solving the θ = 0 

equation. The resulting error bars on temperature, density and pressure will be equal to:

                                                   (6)

                                                   (7)

                                                   (8)

 Here σ (Si) is the standard deviation of the measured signal in each spectral channel. It is usually a 
combination of detector intrinsic noise, quantum noise of plasma background and of the Thomson 
signal, but may be calculated differently for different system. In this work we assume that σ(Si) is 
a known value or can be reasonably estimated by the diagnostic operator. 
 dT/dSi, dN/dSi and dP/dSi are the responses of the output temperature, density and pressure 
values produced by the data processing routine to deviation of the measured signals Si. We will 
look at these values one by one.

2.1. TemperaTure
Remember that fitting routine is solving the θ = 0 (3) equation for the input Si values. Therefore for 
any variation ∂Si, the output temperature T will change to T + ∂T in a way that the θ = 0 condition 
will be preserved. Therefore

                                                   (9)

From the expression (5) and from definition of the supplementary variables A,B,C,D (4) we can 
derive:

                                                   (10)

The denominator of (9) can be calculated in a similar way from (5) taking into account that
dA/dT = C. dB/dT = 2D,   and that the θ=0 condition must be fulfilled, i.e.. 

                                                   (11)

Calculating ∂q/∂T as the expression (11) suggests can be done but probably excessive. In a real 
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application it is suggested to calculate it numerically as ∂q/∂T = q (T + DT)/DT for a small temperature 
increment DT.
 The final expression for s(T) is:

               (12)

2.2. DensiTy
To calculate dN/dSi  we will use definition N = A/B and remember that Fi is a function of tem-
perature and therefore is a function of measured signals Si as well, i.e. we need to calculate full 
derivatives accurately.

  (13)

and the final expression for density errors is:

or using expressions (6) and (9):

   (14)

2.3. pressure
Since P = N × T, its derivative is equal to dP/dSi = N × dT/dSi + T × dN/dSi therefore:

using (9) and (13) we derive the final expression:

                                    (15)

Note that if N and T were independently measured values, we would have the following expression 
for the pressure errors: 

, so

2

2 2

2 2

2 2
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                                    (16)

The last two terms under square root in (15) represent the covariance of N and T, i.e. the fact that 
they are derived from the same Thomson Scattering measurements and are not independent values.

3. Monte-cArlo sIMulAtIons
To validate the formulas derived here, a set of Monte-Carlo simulations was performed. Spectral 
calibration and Fi(T) functions were taken from JET LIDAR Thomson Scattering as a model. 
Standard deviation of measured signal was estimated as s(Si) =    s(el)2 + Bck + Si, where σ(el) is 
a typical detector noise, Bck is plasma background light signal in photoelectrons, Si is measured 
signal in photoelectrons. Weighting coefficients are set to wi = 1/s2 (Si). 
 Simulation was done for 100 temperature values in the range 0.2-11.0keV. Plasma density 
was fixed at 1019m-3 which provided 400-550 photoelectron events over all 6 spectral channels, 
depending on Te. Plasma background together with detector noise was fixed at 20 photoelectron 
events per channel.
 For each initial Te value, expected signal Si was reconstructed and then a random normally 
distributed noise with standard deviation of σ(Si) was added. The result signals were then sent 
to the LIDAR data processing code which performed the fit and derived temperature and density 
values in the same way as it does for the genuine measurement signals. This was performed 5000 
times for every initial Te value and standard deviation of the fit results was compared with error 
bars estimate done with formulas (12), (14) and (15). Results can be found on figures 3, 4, 5. We 
can see that the formulas derived here are in very good agreement with the simulation results. 
 On figure 4 a simple estimation of density error bar, dN/N = 1/   Nphot where Nphot is the total 
number of photoelectrons in all channels, is also plotted. This simple estimate is below the accurately 
calculated error bars, and the difference is bigger for lower temperatures.
 On figure 5 a simple estimation for pressure errors (16) is also plotted. Remarkably, if one 
assumes that Ne and Te are measured independently, thus use (16) instead of (15), it would lead in 
this case to underestimated accuracy of the measurements for the most of Te range 0-8keV

conclusIon
Analytical expressions for statistical error bars estimation of Te, Ne and Pe measured by Thomson 
Scattering diagnostic was derived in this work. Validity of these expressions were tested using 
Monte-Carlo simulations for the JET Core LIDAR system parameters and it was shown that as long 
as noise level of individual measurement channels is evaluated correctly, the formulas are accurate. 
Output error bars are calculated as the standard deviation of the measured values, i.e. they outline 
interval with 66% probability to find the real value within it. 
 This method of error bars estimation is used for public JET Core LIDAR data since 2011. Formulas 
are applicable to any Thomson Scattering diagnostic or any other measurement instrument which 
is using similar to (1) data processing routine. 
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As a final note, we should pay attention to the fact that in calculations we assumed that the weighting 
coefficients wi are constants, while in the fitting process they are adjusted according to signal to 
noise ratio of a particular channel. Thus they are effectively functions of measured signals Si and 
strictly speaking it must be taken into account when calculating d/dSi derivatives. In a general case 
when σ(Si)<<Si this can be ignored  (and as we’ve seen, results are in agreement with Monte Carlo 
simulation), but when dealing with exceptionally low signals as few photoelectrons per channel, 
more accurate treatment may be required.
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Figure 1: Spectral calibration of JET LIDAR Thomson 
scattering diagnostic.

Figure 2: Fi(T) or expected signal in different spectral 
channels as a function of Te, as calculated for JET LIDAR 
diagnostic.
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Figure 3: Comparison of relative Te error bars, calculated 
using formula (12), with the standard deviation of 5000 
min(χ2) fits.

Figure 4: Comparison of relative Ne error bars, calculated 
using formula (14), with the standard deviation of 5000 
min(χ2) fits and with simplified estimate.

Figure 5: Comparison of relative Pe error bars, calculated 
using formula (15), with the standard deviation of 5000 
min(χ2) fits and with simple estimate done with (16).
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Monte-Carlo simulation results, density
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Monte-Carlo simulation results, pressure
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