
D. Dodt, N. Cook, D. McDonald, D. Harting, S. Pamela
and JET EFDA contributors

EFDA–JET–PR(12)08

Improved Framework for the 
Maintenance of the JET

Intershot Analysis Chain



“This document is intended for publication in the open literature. It is made available on the 
understanding that it may not be further circulated and extracts or references may not be published 
prior to publication of the original when applicable, or without the consent of the Publications Officer, 
EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”

 
“Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA, 
Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”

The contents of this preprint and all other JET EFDA Preprints and Conference Papers are available 
to view online free at www.iop.org/Jet. This site has full search facilities and e-mail alert options. The 
diagrams contained within the PDFs on this site are hyperlinked from the year 1996 onwards.



Improved Framework for the Maintenance 
of the JET Intershot Analysis Chain

D. Dodt1,2, N. Cook1,3, D. McDonald4, D. Harting1,5, S. Pamela1,6

and JET EFDA contributors*

1JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK
2Max Planck Institut fürPlasmaphysik, EURATOM Association, D-85748 Garching, Germany.

3Tessela plc, 26 The Quadrant, Abingdon Science Park, Abingdon, Oxon OX14 3YS, UK
4EURATOM-CCFE Fusion Association, Culham Science Centre, OX14 3DB, Abingdon, OXON, UK

5Institut für Energieforschung Plasmaphysik, Forschungszentrum Jülich, TEC,
Association EURATOM -FZJ, D-52425 Jülich, Germany

6Association EURATOM-CEA, CEA/DSM/IRFM, Cadarache 13108 Saint Paul Lez Durance, France
* See annex of F. Romanelli et al, “Overview of JET Results”,

(23rd IAEA Fusion Energy Conference, Daejon, Republic of Korea (2010)).

Preprint of Paper to be submitted for publication in
Fusion Engineering and Design

JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK



.



1

Abstract

At the JET experiment data from routine diagnostics is analysed automatically by a suite of codes 
within minutes after operation. The maintenance of these interdependent codes and the provision 
of a consistent state of the physics database over many experimental campaigns against a backdrop 
of continuous hardware and software updates, requires well defined maintenance and validation 
procedures. In this paper, the development of a new generation of maintenance tools using distributed 
version control and a work-flow following the principle of continuous integration [1] is described.

2.	 INTRODUCTION

The operation and facilitation of the JET experiment relies on the automatic processing of diagnostic
and plant data after each pulse. Upgrades to these systems are often provided within projects carried 
out by the participating associations, before they are handed over as finished products to the operator.

2.1. PUBLIC DATA PHILOSOPHY
In order to guarantee transparency and availability of physics data to all members of the collaboration,
high value is set on the provision of automatic analysis codes that produce public data. Accordingly, 
after every JET pulse a suite (Chain1) of around 90 analysis programs is run to provide data from 
the routinely available diagnostics. These analysis codes (called steps) are used to process raw data 
collected from around 60 different systems in diagnostics and plant. The raw data arrives at variable 
times after the pulse depending on importance and volume. A task scheduler program monitors 
the availability of raw and processed data as well as computing resources in order to optimise the 
Chain1 performance. See also [2, 3] for a more detailed description of the Chain1 infrastructure 
and its historical development.

2.2. AVAILABILITY OF THE INTERSHOT ANALYSIS
The operation of the JET experiment relies on the timely availability of diagnostic data and physics 
results to facilitate the planing of ongoing experimental sessions. Although the intershot analysis 
is not strictly operations critical, the execution of all but the most straight forward experiments 
benefits greatly from the results of the intershot analysis. Therefore, the availability of the analysis 
chain during experimental campaigns needs to be assured at all times.

2.3. INTERDEPENDENCE OF INTERSHOT ANALYSIS CODES
Reliance of analysis codes on data produced by other codes leads to complex interdependencies. 
In Figure 1, the dependencies of 13 important Chain1 codes are shown as an example. These 
dependencies have to be taken into account not only in determining the correct running sequence 
of the analysis chain, but also to maintain the consistency of data produced by Chain1 when codes
need to be modified, e.g. to update calibrations. Therefore, Chain1 steps may have to be rerun 
frequently, in post-pulse reprocessing. The necessity of reprocessing leads to strict requirements 



2

on the robustness of the codes, as any failure during reprocessing has to be investigated manually, 
to avoid an inconsistent state of the diagnostic database.

2.4. COLLABORATIVE CODE DEVELOPMENT MODEL
The maintenance and development of the analysis codes together with the infrastructure of the 
intershot chain involve a number of individuals.
	 Most analysis steps are maintained by a Responsible Officer (RO) who is typically also taking
care of the hardware of the respective diagnostic. The ROs of Chain1 steps are responsible for 
the correctness of the produced data. They provide codes that can be used during operation, as 
well as for post-pulse reprocessing. A team of physicists and software engineers is responsible for 
the infrastructure and the consistency of the data produced by Chain1. The Chain1 support team 
helps step ROs with advice regarding development of best practices for specific problems such as 
performance optimisation and data volumes. In Figure 2 a work flow diagram illustrates a typical 
example of an intervention required for the maintenance of a Chain1 step. If the RO of a step is 
not available the support team provide basic maintainance for the analysis codes, where possible.

2.5. TRACEABILITY OF PHYSICS DATA
In order to ensure the reproducibility and traceability of the scientific conclusions drawn using JET 
derived data, it is necessary to record the versions of all codes and all input data that was used during 
a particular processing run. All processed physics data at JET is written to a global experiment 
database allowing universal access to all data by everyone. It is policy that for each public entry in 
this physics database, the means to produce it have to be identifiable. This additional requirement 
adds to the complexity of the maintenance procedures. The use of automated tools for procedures 
such as releasing codes and testing allows the generation of detailed logs, which are more complete 
and less prone to error than manually updated log files.

2.6. STRUCTURE OF THE INTERSHOT ANALYSIS CHAIN BEFORE THE UPDATE
The aforementioned requirements led to the current implementation of Chain1 which was used 
since the late 1990s without major design modifications. The analysis codes are wrapped by so 
called control scripts written in Perl [4] which set up the environment required by the code and are 
called by the task scheduler using a standardized syntax. Copies of the code binaries, input files 
and control scripts used intershot were kept in specific directories, constituting the so called live 
chain. Updates to Chain1 codes were tested manually for correctness and archived partly in CVS 
repositories and partly using scripts before they were manually released to the live Chain1 directories 
and entries added to log files. A configuration file was used to specify the interdependencies between 
the intershot codes for the task scheduler. The same file was used to manually determine the run 
assemblage during data reprocessing.



3

2.7. GROWING DIVERSIFICATION OF THE INTERSHOT ANALYSIS
With time, the growing number of available diagnostics and increasing demand for more complex
data analysis lead to an increase of the number of codes that are part of Chain1. Similarly, the 
number of utilized programming languages has increased, especially in analysis packages delivered
to the JET collaboration as part of upgrade projects carried out by the EFDA associations. Often, 
the ROs of these codes have strong preferences for the programming environment they use in their 
home association. Therefore, in some cases the provision of codes has been accepted as black box, 
because a reimplementation in a language more established at JET would have required significant 
resources. For these codes the Chain1 support team can only provide limited support. Altogether, 
these developments have lead to a rising complexity of the code base which sometimes lead to issues 
during the maintenance procedures, because the analysis codes do not correspond to the program 
structure envisaged during the original design of the Chain1 system.

3. IMPLEMENTED MODIFICATIONS

In order to account for the changed requirements and to reduce the amount of manual intervention
required by the Chain1 support team, a number of modifications have been implemented. The new
development of the Chain1 framework, as described below, allows the automation of a number 
of activities in the maintenance procedure for the individual steps as well as the infrastructure of 
Chain1 (e.g. the task scheduler). At the same time, improved traceability and an increased possibility 
of performing formalized tests on the modified software is achieved. In particular, the Chain1 
infrastructure is made aware of the modification history of the interdependencies between Chain1 
steps allowing the creation of powerful tools for the reprocessing of data which are not restricted 
to the current configuration. In the following sections, the modifications applied to the Chain1 
framework are described.

3.1. DATABASE FOR TIME DEPENDENT STEP CONFIGURATION INFORMATION
Analysis steps often use some quantities for the analysis of diagnostic and plant data that vary with
time and accordingly need to be specified as a function of pulse number. Furthermore, sometimes
the interdependencies between Chain1 codes change, e.g. because the diagnostic of choice for certain 
plasma parameters has been replaced. It has proven to be advantageous to use a mechanism for the 
specification of pulse dependent configuration data that is transparent to the Chain1 framework and to 
use the same mechanism for the configuration of step interdependencies. This way, implementation 
duplication can be avoided and the integration of the configuration of an analysis step and the 
surrounding framework reduces the risk of inconsistencies.
	 A database has been implemented, allowing Chain1 ROs to specify configuration information. 
In view of the storage of step interdependencies, the top level module is called DependendcyDB. It 
uses ASCII files in different conveniently human readable formats as a back end. These are stored 
together with other data input files used by a step. The database allows the storage of key-value pairs 



4

as well as the specification of versions of input files containing larger datasets such as calibrations
that vary with time. Certain configuration variable keys are interpreted by the wider Chain1 
framework. Currently, the complete deactivation (keyword disabled), and the exclusion from 
intershot running (not intershot) or automatic reprocessing (not reprocess) are recognized by the tools 
for the release and reprocess procedure. In addition, the database stores all configuration information 
that is passed to the task scheduler via the so called dependencies file, e.g. the dependencies of a 
step on raw data sources and other Chain1 codes as well as some additional options. Using this, 
the correct pulse dependent versions of the dependencies file can be generated, as required for live 
intershot running as well as in post-pulse reprocessing. This means, depending on what is required, 
an assemblage for the historical configuration, a maintained contemporary configuration or the 
current configuration of Chain1 can be automatically generated.

3.2. STEP PACKAGE INFORMATION AND CONTROL SCRIPTS
The control scripts wrapping each binary of the analysis steps serve a number of functions. The
control scripts. . .

•	 accept a standardized syntax used to pass basic information like the pulse number and the 
,userid used to write the JET diagnostic database.

•	 create a run directory, in which links are used to point to input files needed by the analysis step 
and where files are created to which the output (stdout and stderr) of the analysis programs 
is forwarded.

•	 prepare the shell environment (e.g. the LD LIBRARY PATH) for the analysis program and 
may pass command line options depending on pulse number and other conditions.

 •	 finally create the rc-file summarizing the environment that was set up, as well as containing 
the time spent to run to the step and its return code indicating the success or failure of the 
analysis.

Before the current update to the Chain1 framework, the control scripts did not use a dedicated 
configuration database but the information, e.g. names of binaries and input files, was hard coded 
into the scripts. As part of the described development effort, the functionality of the control scripts 
has been reimplemented using Perl modules, greatly improving maintainability by avoiding a 
large amount of code duplications. The configuration information formerly contained within the 
control scripts has been stored into a database which is provided by a set of Perl modules called 
RepositoryDB using an xml file as the back end. In contrast to the DependendcyDB, here information 
is stored that generally does not change over time. The term repository refers to a set of source 
and input files that are stored in a git repository (see section 3.4) and provide parts of, one, or even 
several steps. A step in this narrower sense, is a piece of software that is called using a control script 
and that produces specified entries to the experiment database. The RepositoryDB is also used by 
tools facilitating the maintenance of Chain1, by e.g. allowing automatic cloning and building from 



5

the git repository. Both Perl packages are provided with automatic units tests and Perl POD [5] 
documentation to ensure good maintainability.

3.3. NEW DEPLOYMENT MODEL
The Deployment model of Chain1 was modified in several aspects, primarily to allow the use of 
parallel versions of the analysis chain for testing, development and reprocessing. To enable this, 
all instances of absolute path names addressing components (input files, libraries, executables) had 
to be replaced by relative paths. Where necessary, the build scripts were supplemented to provide 
all compilations ’ready to run’.
	 To enable the automated cloning and building of Chain1 assemblages for development and 
reprocessing, build dependencies which are stored in the RepositoryDB. are used to ensure the correct 
sequence of the builds e.g. in cases, in which libraries are used across different git repositories, see 
Figure 3 for an example.

3.4. COLLABORATIVE DEVELOPMENT USING DISTRIBUTED VERSION CONTROL
The development history of all Chain1 steps has been migrated from CVS [6] to the distributed 
version control system git [7]. In contrast to CVS, the distributed approach allows fine grained 
well documented commits to be performed directly by the developer, improving traceability and 
avoiding the manual application of patches by the Chain1 support team. This is especially useful 
for codes which are delivered as finished products and not usually modified by members of the 
chain1 support team. Although the distributed approach provides the capability for the step ROs to 
use version control for their private development, the experience was made that some encouraging 
and training is needed before the provision of updates via git is widely accepted and preferred to 
manual patches. In any case, the manual provision of code updates is still possible in a similar way 
as before.

4. IMPROVED TOOLS RATIONALISING THE MAINTENANCE OF CHAIN1

The provision of transparent configuration information, as well as the modified deployment model
enables the rationalisation of existing maintenance procedures, as well as the provision of new 
procedures, which aim at improving the reliability of the Chain1 operation.

4.1. TEST AND RELEASE PROCEDURE
Before modifications of steps provided by the ROs are released to the live intershot chain, their 
correct integration and execution needs to be tested. The use of an independent clone of the 
processing chain greatly simplifies this procedure and removes several historical failure causes 
from the test procedure. Modifications affecting more than a single step can be tested in a straight 
forward and consistent way. The key point is the usage of identical mechanisms to obtain and build 
the codes from the central code repository during testing, development and deployment. The use of 



6

an automated tool for testing allows us to rationalise further steps in the release procedure, log files 
about the testing are created automatically, and additional cross checks like the validation of the 
consistency between git repository and local code versions have been added to the automatic tool. 
By making the code release procedure resource efficient a continous integration [1] of changes is
enabled.

4.2. REPROCESSING AND VALIDATION
When an analysis code needs to be modified the first JET pulse number from which the new code
version is to be applied needs to be determined. Frequently, this means reprocessing existing data 
produced using the now outdated version of the code. Because of the interdependencies between 
analysis codes, this may in turn require the reprocessing of other codes, which are reading the output 
of the modified code. Traditionally, the affected codes and their dependency state was obtained 
using the current dependency configuration of the intershot analysis chain, but because this also 
changes over time, error prone manual intervention was needed to obtain historical or contemporary 
assemblages. The new system allows to automatically generate an instance of the intershot chain 
using the correct run configuration for old pulses.

4.3. LIMITATIONS OF THE CURRENT SYSTEM AND IDEAS FOR FUTURE DEVELOPMENT
Chain1 operated very successfully without major disruptions for more than ten years in its old form. 
The described updates were incorporated at the beginning of the 2011 campaign and havebeen used 
successfully, ever since. Nevertheless there are some limitations, partly caused by the gradual nature 
in which modifications to the highly available and traceable system need to be restricted. Ultimately, 
a Chain1 infra structure that allows diagnosticians to upload code updates and new calibrations 
using an automatic procedure would be desirable. In the following sections, a list of ideas about 
how the current framework could be further developed are given.

4.3.1. Interchangeability of Physics Data from different Diagnostics
Some analysis codes need plasma parameters as input which can be provided by different diagnostics. 
Usually these codes fall back to an alternative measurement in case of problems with the preferred 
diagnostic. Currently, this is not transparent to the Chain1 framework but is implemented within 
each analysis code and may therefore be inconsistent across different codes. This could be addressed 
by introducing analysis steps providing recommended physics parameters using a well defined 
algorithm to combine or select information from different diagnostics. By this, the processing of 
derived quantities would be more independent from individual diagnostics. In addition, the creation 
of recommended physics profiles would allow to combine and cross calibrate information from 
different diagnostics in a well defined way.
4.3.2. Storage of Configuration Information
Step and interdependency configuration information is currently stored in two places: static 



7

information is stored in the RepositoryDB, while pulse dependent information is stored in a number of
step-specific DependendcyDBs. The implementation of the DependendcyDB is based on flat files 
stored with other input data of analysis steps. This implementation is grown with the needs of 
steps for flexibility and the need for transparency from the framework, but has its limitations, e.g. 
it requires the cloning of a a large number of repositories in order to work out the configuration of 
the intershot chain for a given pulse. A more stringent solution would be the use of a database and 
user friendly tools for the diagnosticians to provide this information.

4.3.3. Wider applicability
At JET, there are several other systems providing data for the collaboration. Notably, there is a suite 
of anlysis codes which are only run on request performing more resource intensive computation than 
usually done intershot, Chain2. It seems worth assessing whether parts of the Chain1 infrastructure
can be reused here efficiently, or if an integration of chain2 analysis within the intershot chain is 
feasible.

CONCLUSIONS

We present an update to the existing framework used for the JET intershot analysis allowing the 
rationalisation of maintenance procedures. A new deployment model making use of automatic tools 
achieves greater transparency and reliability while requiring less manual intervention. The new 
framework is geared to a continuous integration development model. It has been used successfully 
for the latest JET campaign using the new ITER like wall, which involved significant changes 
to the chain analysis codes and their interdependencies. Thanks to the update, it was possible to 
perform reprocessing of data from previous campaigns without major manual intervention. This 
way the efforts of the Chain1 support team could be focused on new developments and supporting 
the work of the step ROs.

ACKNOWLEDGEMENTS

This work was supported by EURATOM and carried out within the framework of the European 
Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect 
those of the European Commission.



8

REFERENCES

[1].	 M. Fowler, Continuous integration (2006).
	 URL http://martinfowler.com/articles/continuousIntegration.html
[2].	 R. Layne, N. Cook, D. Harting, D. C. McDonald, C. Tidy, The jet intershot analysis: Current
	 infrastructure and future plans, Fusion Engineering and Fesign 85 (3-4) (2010) 403–409.
	 doi:10.1016/j.fusengdes.2009.12.012. URL http://tinyurl.sfx.mpg.de/sus4
[3].	 J.P, Christiansen, Integrated analysis of data from jet, Journal of Computational Physics 75 

(1) (1987) 85 – 106. doi:10.1016/0021-9991(87)90107-0. URL http://www.sciencedirect.
com/science/article/pii/0021999187901070

[4].	 The perl programming language. URL http://www.perl.org/
[5].	 The plain old documentation format. URL http://perldoc.perl.org
[6].	 Cvs - open source version control. URL http://www.nongnu.org/cvs
[7].	 Git - fast version control system. URL http://git-scm.com/

Figure 1: Flow of information of the most important diagnostics of the JET intershot analysis as used in the 2008/2009 
experimental campaigns. In the top row of the diagram, diagnostic systems providing raw data are shown, the white 
boxes correspond to physics parameters obtained by the respective analysis codes. The arrows indicate the data that is 
taken into account. The use of shape information derived from the magnetics is shown by the dashed lines to aid the eye.

JG12.33-1c

http://figures.jet.efda.org/JG12.33-1c.eps


9

Figure 2: Flow diagram of a typical maintenance case within the Chain1. The member of the Chain1 support team that 
deals with the case is refered to as Chain1 RO.

Figure 3: Example of build dependencies of the Chain1 steps for the analysis of different X-ray diagnostics. The steps 
xcs, xmi0 and xmi1 depend on a number of libraries to share analysis routines, which need to be build before any of 
the depending steps.

JG12.33-2c

xcs:
Crystal
Spectrometer

xmil:
Impurity
Monitor 0

xmi0:
Impurity
Monitor 1

eofit

lxcl

JG12.33-3c

eofitlib

fsilib

xmilib

http://figures.jet.efda.org/JG12.33-2c.eps
http://figures.jet.efda.org/JG12.33-3c.eps


10


