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Abstract

A pedestal database was built using data from type-I ELMy H-modes of ASDEX Upgrade,
DIII-D and JET. ELM synchronized pedestal data was analysedwith the two-line method.
The two-line method is a bilinear fit which shows better reproducibility of pedestal parame-
ters than a modified hyperbolic tangent fit. This was tested with simulated and experimental
data. The influence of the equilibrium reconstruction on pedestal parameters was investigated
with sophisticated reconstructions from CLISTE and EFIT including edge kinetic profiles. No
systematic deviation between the codes could be observed. The flux coordinate system is in-
fluenced by machine size, poloidal field and plasma shape. This will change the representation
of the width in different coordinates, in particular, the two normalized coordinatesΨN andr/a
show a very different dependence on the plasma shape.
The scalings derived for the pedestal width,∆, of all machines suggest a different scaling for
the electron temperature and the electron density. Both cases show similar dependence with
machine size, poloidal magnetic field and pedestal electrontemperature and density. The in-
fluence of ion temperature and toroidal magnetic field is different on each of∆Te and∆ne. In
dimensionless form the density pedestal width inΨN scales withρ0.6i⋆ , the temperature pedestal
width withβ0.5

p,ped. Both widths also show a strong correlation with the plasma shape. The shape
dependence originates from the coordinate transformationand is not visible in real space. The
presented scalings predict that in ITER the temperature pedestal will be appreciably wider than
the density pedestal.
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1. INTRODUCTION

The H-Mode regime in a fusion plasma was first observed in the ASDEX tokamak [1]. It is
characterised by increased energy confinement and a remarkable edge region. At the plasma
edge a pedestal in temperature and density is present. Over afew percent of the plasma radius,
or several mm to a few cm, temperature and density gradients which are typically an order of
magnitude higher than those elsewhere in the plasma can be sustained. Because of stiff core
temperature profiles [2] a significant fraction of the plasmastored energy is sustained by the
edge pedestal.
Investigations of the pedestal are challenging, not only because of the small spatial scales but
also because of fast recurring edge localized modes (ELMs).Therefore, time resolutions on
the millisecond scale are necessary. Diagnostics are constantly improved in order to resolve
the pedestal in more detail. However, the uncertainties inherent in measuring the gradient and
width of the pedestal remain relatively high, especially when considering the variation of gra-
dients and widths which can be achieved in a single machine. The limitations in machine oper-
ation seldom allow variations of key quantities (poloidal and toroidal magnetic field, pedestal
temperature and density) over more than a factor of two and allow no variation in machine
size. However, a large variation in parameters is required to verify trends predicted by theory
or to empirically scale to future fusion devices.
Analysis techniques and multi-machine comparisons are therefore important. The analysis
must be optimised to minimise additional uncertainties aside from diagnostic limits. Com-
parisons between different machines allow broadening of the available parameter space. The
present paper focuses on a comparison between the three tokamaks ASDEX Upgrade (AUG),
DIII-D and JET. The three machines have a different size and cover a wide range of plasma
current, magnetic field, plasma pressure and shape. The range in these parameters and those
used in the paper is listed Tab. 1. All analyses are performedwith this set of data if not stated
otherwise. The same analysis code was applied to data of eachdevice. This minimizes sys-
tematical uncertainties which may arise from different data treatment.
In the recent years a lot of effort was put into precise measurements of the pedestal width with
the goal to understand the mechanism setting the width [3, 4,5, 6, 7, 8]. Main mechanisms in
the discussion are turbulence suppression due to differentflow shear mechanisms [9, 10], the
atomic physics of neutral penetration in the pedestal [11, 12] and MHD effects like the kinetic-
ballooning modes [13]. Besides their different dependencies on plasma parameters also the
radial coordinates are important for the pedestal width. For example, do MHD physics act in
normalized flux while real space coordinates are relevant for neutral penetration. Therefore,
it is important to understand the differences in the coordinate systems and how the coordinate
transformations are influenced by the parameters relevant for pedestal physics.
The paper is structured in four sections. In the first sectionthe diagnostics and temporal and
spatial data selection is introduced, then 3 different methods to characterise the pedestal are
presented and benchmarked against a set of randomly generated data. The second section fo-
cuses on the different coordinate systems and how they depend on various plasma parameters.
This is combined with a crosscheck between the equilibrium codes CLISTE and EFIT. The
third section is concerned with the identification of the separatrix position with only the use of
profiles of temperature and density. In the fourth section measurements of the pedestal width
on the three devices are described in two different ways, first with dimensionless physics quan-
tities and second with engineering parameters. The paper closes with a summary and outlook.
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2. METHODS

The profile analysis is done with composite ELM synchronizedprofiles. Data is accumulated
and ELM synchronized over an interval of 0.1-1.0 s in a globally stationary plasma. Only
measurements immediately before the onset of an ELM are selected and compiled into a sin-
gle pseudo profile.
During ELMs the current flowing onto the divertor is stronglyincreased. In AUG this current
is measured with shunts and indicates the onset of an ELM [14]. The relevant period for profile
synchronisation is defined from -3.5 ms to -1.5 ms relative tothe ELM onset time, but at least
4 ms after the previous ELM. In this interval the pedestal pressure is not influenced by the
ELM instability any more [15]. In DIII-D and JETDα radiation peaking in the divertor region
is used to determine the ELM onset. ELM synchronized profilesare composed of the last20%
of the ELM cycle. Further improvement of the spatial coverage is achieved by a radial sweep
of 1.5-4 cm of the whole plasma column. This shift creates virtual lines of sight. The higher
spatial coverage is especially important to determine gradients with high accuracy.
At AUG the diagnostics for the electron temperature pedestal are the electron cyclotron emis-
sion (ECE) [16] and the vertical Thomson scattering (VTS) [17]. The electron density pedestal
is measured with Interferometry [18], Li-Beam [19, 20, 21] and VTS. The combination of mul-
tiple diagnostics is necessary because the VTS generally measures only inwards to about 2/3
of the pedestal top. The ECE is also often not able to measure the whole pedestal. In type-I
ELMy H-mode the plasma is optically thin in the whole SOL and about 1/3 of the pedestal.
In this case the assumption of black body radiation used in the evaluation of the temperature
is not correct. This effect is generally referred to as shinethrough [22]. The uncertainty of
the electron density at the pedestal top is reduced by combining Li-Beam measurement with
results from interferometry [23]. The Thomson scattering measuresTe andne at the same
position in the plasma and allows for the correction of mapping errors. This correction is es-
sential to determine the electron pressure. This is discussed in more detail in Sections 3 and
4. At DIII-D and JET the Thomson scattering diagnostics [24,25] are set up differently than
in AUG and it is possible to analyse the whole pedestal. Therefore, no uncertainties can be
introduced by the alignment of different diagnostics. However, the temporal resolution is gen-
erally lower and the time interval for the composite profilesnecessarily increases. In the case
of JET the large size of the scattering volumes was taken intoaccount. This was done with a
Richardson-Lucy-Deconvolution [26] using the approximation found in [27].
The composite pedestal profiles are characterised by their top value, bottom or separatrix value,
width and gradient. For comparison with theory it is essential to determine the pedestal pa-
rameters consistently for a large variety of global plasma parameters. Considering the finite
resolution of the diagnostics it is convenient to characterize the pedestal with a functional
form. The most common functional form is a modified hyperbolic tangent function (mtanh).
The mtanh consists of a hyperbolic tangent in the pedestal and is supplemented with two poly-
nomials, one for the core and one for the SOL (see e.g. [28]). Two other approaches, the
two-line method and low pass filtering, are introduced in thenext sections. The advantages
and disadvantages of these methods are discussed.

2.1. TWO-LINE METHOD

In type-I ELMy H-mode the edge profile (last 20% of the radius in ΨN) exhibits two pro-
nounced changes in the gradient. This divides the edge into three regions: the edge of the core
plasma, the pedestal and the SOL. In the SOL parallel transport is dominating and inside of the
separatrix a transport barrier forms due to reduced transport [29]. When the SOL is excluded
from the analysis, the pedestal top separates the two remaining regions. The pedestal and the
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edge of the core plasma have distinct gradients. These gradients can be approximated with
constants within the experimental uncertainties. Considering this shape of the pedestal it is
convenient to define the function

f(x) =

{

a2(a0 − x) + a1 for x ≤ a0

a3(x− a0) + a1 for x > a0
(1)

wherean are free parameters. A fit of the plasma edge fromρp ∼ 0.88 up to the separatrix
immediately yields the pedestal top positiona0, the pedestal top valuea1 and the mean gradient
over the pedestala3. The width of the pedestal∆ is thenxsep− a0. The determination of the
separatrix positionxsep is discussed in Section 4 and is a source of uncertainties like the fit
parameters. A typical application of Eq. (1) is illustratedin Figure 1. This method is similar
to the one used at JT-60U [30] but with a different definition for the width. At JT-60U the
pedestal width was defined asa1/a3.

2.2. LOW-PASS FILTER

All methods to determine the pedestal parameters use specific features in the profile shape.
Extrema in curvature are the most pronounced features of thepedestal profile. However, the
scatter in the experimental data prevents direct determination of the profile curvature. Fitting
the data with various functional forms helps to determine the profile shape. A different ap-
proach is to smooth the scattered data.
One possibility to smooth the data is to apply a low-pass filter. If the radial coordinate is in-
terpreted as temporal coordinate the radially distributeddata becomes a frequency signal. The
scatter in the data corresponds to a high frequency component. The relevant low frequency
component can be extracted in frequency space with a low-pass filter. An example with a
Butterworth frequency filter is shown in Fig. 2. Topmost in Fig. 2.1 density data from the
Li-Beam diagnostic is shown with a smoothed curve for the pedestal region in AUG. Below
the density profile the gradient and curvature are illustrated as derived from the smoothed den-
sity pedestal, the vertical lines indicate pronounced features in the pedestal structure. Fig. 2.2
shows the smoothing kernel for this example, the FWHM of the central maximum is about 1.4
cm. The correct choice of this width is essential for useful curvature values. The curvature is
declared as useful when it defines a clear pedestal top and pedestal bottom. The advantage of
frequency filtering is an optimal balance between a smooth curve and preserving the pedestal
structure. In comparison, smoothing with a Gaussian kernelwould not satisfy both needs. The
information about gradients would be lost when optimising the kernel width for well defined
curvature values. The pedestal top is defined as the point of extremal curvature which is
located inside of the maximal gradient. The pedestal bottomalso has extremal curvature but
lies outside of the maximal gradient.
The low-pass filter method does not include uncertainties ofindividual data points. The scat-
ter in the data must represent the uncertainties. Therefore, the low-pass filter method is more
sensitive to outliers than least squares fitting which accounts for larger uncertainties of single
data points. Without special treatment for outliers the resulting pedestal parameters will be
wrong. For a Thomson Scattering measurement with individual uncertainties this means to set
an upper threshold for the uncertainty which reduces the number of outliers. The filter method
inherits no shape restriction like the mtanh or two-line method. On the one hand, this will
lead to large uncertainties when the data has a low spatial resolution. On the other hand, local
parameters like the maximal gradient will be more accurate as separated regions in the edge do
not influence each other. However, this is only true if the kernel width was chosen correctly.
Therefore, the filter method is not adequate as a stand alone technique to analyse the pedestal.
But in combination with the kernel width provided by mtanh ortwo-line method it can provide
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supplementary information about the pedestal structure. Using the advantages of more than
one method improves the results of the analysis.

2.3. BENCHMARKING OF METHODS

For the discussion of the results it is important to documentthe properties of the different
methods to characterize the edge pedestal. Two tests were performed to assess these proper-
ties. First, the methods were applied to simulated data withknown pedestal parameters and
asymmetric profile shape. Second, real data was analysed forsimilar discharges where the
pedestal parameters are expected to be unchanged.
The simulated pedestals consist of three regions with different gradients and continuous transi-
tions between them. The artificial data points are distributed normally around this curve. The
standard deviation of the data points is 7% in vertical and 2 mm in radial direction. These
values are chosen to resemble optimal measurements at AUG. An examplary artificial pedestal
profile is illustrated in Fig. 3. A simulation consists of 500profiles with the same properties
but randomly scattered data points. The different simulations are selected to test and document
the influences of assymetries in the pedestal. The parameters of each pedestal - top, width, gra-
dient - are determined with the different methods. This gives a single mean value with a certain
standard deviation for each simulation, method and pedestal parameter. In Fig. 4 the results of
three tests are shown for the three methods. For each pedestal parameter the relative deviation
from the set value is illustrated. The set value is of no real importance since it was arbitrarily
chosen to match the definition of the two-line method. Therefore, a constant offset only illus-
trates the differences with the two-line method. Of interest are the variations of one method
within a group of simulations where one or more of the set values are fixed. In the first col-
umn the pedestal itself is unchanged, only the core gradientis varied. A temperature profile is
generally more peaked than the density profile. Therefore, acore gradient in arbitrary units of
1−5would correspond to a density like profile and6−12 to a temperature or pressure like pro-
file. The filter and two-line method are not influenced by the change of the core gradient. The
mtanh method reproduces the pedestal width accurately. However, it shows a clear change of
about 20% in pedestal top and gradient, although, these parameters were the same in all cases.
This is likely a result of the point symmetry of the hyperbolic tangent function. Because of
its symmetry the mtanh’s ability to fit asymmetric profiles isdiminished. Although, the addi-
tional polynomials in the mtanh should cope with assymetries, they do not resolve the problem
completely. A second test is shown in the middle column of Fig. 4. Again the pedestal width
is kept constant but the pedestal top value and consequentlythe pedestal gradient is varied.
Filter and two-line method yield constant width and can follow the variation in the pedestal
top. The mtanh method reproduces the pedestal parameters well unless the ratio of pedestal
gradient and core gradients becomes small. This is visible when the low pedestal top values
(small pedestal gradients) are compared to the large pedestal top values. The mtanh gives a
25% difference for the width, although, the width was not varied in the parameter scan. In
the third column pedestal width and gradient were varied. Pedestal top and core gradient were
set to values where all three methods showed good results before. The pedestal parameters
determined with two-line and mtanh are in good agreement with each other for widths larger
than 1.5 cm. The large relative deviation for the case with 1.0 cm pedestal width is due to the
finite radial resolution in the simulation. The simulation covered a variety of different possible
pedestal shapes and the two-line and mtanh methods were found to agree within 10% for most
cases. The radial scatter of the data points in the simulation was normally distributed with a
standard deviation of 2 mm. This scatter is represented by the error bars of pedestal width and
gradient in Fig. 4. In this case the pedestal width cannot be determined to better than±3 mm.
In real measurements the conditions are not so predefined as in a simulation. In order to get
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useful statistics an AUG standard scenario with plasma current 1 MA, toroidal field 2.5 T,
heating power 6 MW and gas puffing1.2 · 1022s−1 was chosen to compare the two-line and
the mtanh method. The pedestal width determined with the two-line method depends on the
pedestal top and the separatrix position. The separatrix position has to be determined sepa-
rately as described in Section 4. The mtanh method directly gives the pedestal width as width
of the modified hyperbolic tangent function. For this seriesof over 50 independent time slices
in different discharges reproducible pedestal parametersare expected. These profiles were
analysed with both methods. The mtanh model yielded a mean width ∆ne = 1.8 cm with a
standard deviation of 0.8 cm, a pedestal top densityne,ped= 7.6±0.9·1019 m−3, a temperature
pedestal width∆Te = 1.9± 0.5 cm andTe,ped= 0.38±0.09 keV. The results for the two-line
method were∆ne = 1.7 ± 0.2 cm, ne,ped = 6.9 ± 0.5 · 1019 m−3, ∆Te = 1.7± 0.3 cm and
Te,ped= 0.43 ± 0.03 keV. Within the uncertainties both methods result in the same pedestal
parameters. However, the two-line method shows significantly reduced scatter.
To summarize, in a simulation data points were statistically distributed around a known curve.
The distribution was normal and inherited no systematic effects. The mtanh method was reli-
able over a wide range of parameters. However, the mtanh was also subject to its symmetry
and yielded systematic deviations. This was visible when the pedestal parameters were con-
stant and only the symmetry of the profile was varied. The two-line method was not influenced
by the symmetry as expected. Although, the uncertainty compared to the mtanh is increased
due to the additional need to determine the separatrix position, a large set of identical AUG
discharges showed reduced scatter in the pedestal parameters of the two-line method compared
to the mtanh method. This suggests abandoning a physical shape allows the two-line method
to determine the basic characteristics of the pedestal withreduced scatter. This is beneficial for
the analysis of large data sets. The mtanh method has clear advantages as experimental input
for modelling or when additional information of the SOL is ofinterest. In the present work
only the general characteristics of the pedestal are relevant. Therefore, the two-line method was
used for the analysis in Section 5. The filter method is reliable only with a priori knowledge
about the size of the pedestal. Therefore, it is not useful asstandalone technique. However,
it can be used supplementary to the other methods since it hasno symmetry constraint as the
mtanh and gives more information about gradients and curvature than the two-line method.
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3. INFLUENCE OF THE EQUILIBRIUM RECONSTRUCTION

In tokamak geometry the reconstruction of the magnetic equilibrium plays an important role to
combine measurements from different locations in a tokamak. Different boundary conditions
in the equilibrium reconstruction influence the mapping of measurement locations. This can
lead to deviations in the pedestal width and pedestal gradients. In this section these effects are
investigated with CLISTE [31] and EFIT [32].
The measurements themselves are conducted in machine coordinatesR, z, φ with radial coor-
dinateR, vertical coordinatez and toroidal angleφ. These coordinates are determined for each
diagnostic during calibration and are assumed to be withoutany uncertainty in the remainder
of this section. Because of toroidal symmetryφ is dropped. In order to compare measurements
from different locations it is convenient to mapR, z to 1D normalized poloidal flux coordinates

ΨN =
Ψ−Ψax

Ψsep−Ψax
, (2)

with the 2D flux functionΨ, the flux at the plasma centerΨax and at the separatrixΨsep. This
can be done for all flux surfaces. In many cases it is helpful toconsider profiles again in real
space. Therefore, theΨN coordinates are mapped back toR, z. For a definite relation in the
inverse mapping,z is set to the value at the magnetic axiszmag. The resulting real space coor-
dinate is then calledRmaj. Analogous to theRmaj coordinate, also an un-normalized 1D flux
coordinate can be defined asΨmaj. At AUG another normalized coordinateρp = Ψ0.5

N is often
used. Analogous to poloidal flux coordinates, toroidal flux coordinates can also be defined,
however, these are not used in this work, since toroidal flux is only defined up to the separa-
trix.
The equilibrium reconstruction is generally done with codes like CLISTE or EFIT, which
mainly consist of a Grad-Shafranov solver and several constraints defined by theory and mea-
surement. The amount of experimental constraints applied in the equilibrium reconstruction
varies for different applications. The equilibria based only on magnetic measurements will be
called generic equilibria, these are always available and are normally used for profile analysis.
More sophisticated equilibria can also include kinetic profiles and fast particle simulations to
constrain the total pressure [33, 34] and are called kineticequilibria. Because their preparation
is normally time consuming, these equilibria are generallyonly used as input for further calcu-
lations such as stability analyses. In this section the influence on profile analysis is quantified
by applying generic and the more sophisticated kinetic equilibria.

3.1. DIFFERENCES DUE TO EXPERIMENTAL CONSTRAINTS

Generic and kinetic equilibria are compared for the same discharges in order to assess the
influence of the boundary conditions on the pedestal width and gradient. The flux surface
compression∂Ψ/∂z or ∂Ψ/∂R is used to quantify differences in the reconstructions. The
following analysis is based on nineteen pairs (generic and kinetic) of EFIT reconstructions
for DIII-D discharges involving an edge safety factorq95-scan from4− 7 at high triangularity
δ = 0.5 and global poloidal betaβp = 1−2. Assuming the kinetic equilibria best resemble the
reality, several uncertainties arise when using generic equilibria. The influence of normalizing
the flux coordinates is illustrated in Fig. 5 for the flux surface compression∂ΨN/∂z along the
Thomson Scattering chords of DIII-D. The combined∂ΨN/∂z is generated with the normal-
isation factor derived from the kinetic equilibrium and thegeneric flux compression∂Ψ/∂z.
The difference between generic and combined flux compression is up to 10%, mainly due to
different values ofΨax. Besides the deviation in normalization this example showsthe effect
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of a different current profile. This difference is expected since the bootstrap current is taken
into account only for the kinetic case. All EFIT reconstructions show a larger∂ΨN/∂z for the
generic case. In regions where the bootstrap contribution is negligible∂ΨN/∂z deviates by
5-20%. In regions of significant bootstrap current the deviation increases to 10-30%. How-
ever, the difference in the reconstruction cannot be explained with deviations in normalization
and current profiles alone. Also differences in Shafranov-Shift βp − li/2, safety factorq95 and
plasma shape (δ, κ,Rsep) contribute to the deviation in∂ΨN/∂z. Equilibrium reconstructions
by CLISTE at AUG show similar behaviour as those done with EFIT at DIII-D. With CLISTE
a power scan6.5 − 13.5 MW at constantq95 was analysed. The flux surface compression
increases with heating power similarly for generic and kinetic reconstructions. However, the
higher heating power results in larger edge pressure gradient and increased bootstrap contri-
bution. This causes localised deviations in∂ΨN/∂R for generic and kinetic reconstructions
which scale with the heating power. In Figure 6 the relative deviation in flux compression is
plotted over the plasma edge. At low heating power deviations below5% are observed while
this increases to over10% at higher heating power.
The equilibria for the analyses are all based on experimental measurements and cover a wide
range of plasma parameters. However, the range was not sufficient to draw final conclu-
sions about the mechanisms behind the observations. Therefore, a more sophisticated analysis
should be conducted, with the goal to improve generic equilibrium reconstructions.
Concerning pedestal profile analysis the significance of theerror introduced by the equilibrium
reconstruction is assessed in the following. The error doesnot seem to depend systematically
on global values like e.g. the Shafranov-Shift, but on the constraints in the equilibrium recon-
structions. Especially, neglecting the bootstrap currentleads to systematic deviations in the
flux surface compression. The bootstrap current is also dependent on edge gradients [35]. The
gradients themselves are determined with knowledge of the flux surface compression. This
results in a systematic increase of the flux surface compression for generic equilibria, which
influences the mapping of measurements fromR, z to ΨN, Ψmaj or Rmaj. With an overesti-
mated flux surface compression a pedestal profile appears to be broader inΨN coordinates
and shows smaller gradients. This is illustrated in Figure 7where an arbitrary edge parameter
is plotted againstΨN. Both profiles are identical inR, z coordinates, but they deviate after
mapping toΨN coordinates. The profile obtained with the generic reconstruction appears to
be broader. Initially broader profiles experience a larger relative broadening. This is because
the largest deviation in∂ΨN/∂z or ∂ΨN/∂R extends farther inwards than a typical pedestal
(see Figures 5, 6). The results for the equilibrium reconstruction with EFIT are summarized
in Table 2. The deviations in the flux surface compression arecomparable at different plasma
positions - here the position of the DIII-D Thomson Scattering system and the outer midplane.
Therefore, these errors cancel each other after the transformation toRmaj coordinates.
In summary, uncertainties due to equilibrium reconstruction are avoided when the analysis is
performed in the real space coordinate system of the measurement. However, normalized flux
coordinates might be important for the underlying physics (e.g. [13]) and therefore necessary
for the analysis. The comparison between generic and magnetic equilibrium reconstructions
showed that deviations of up to 30% in∂ΨN/∂z are possible for single measurements. On
average the deviation of derived quantities like pedestal width and gradient remain 10% or
lower. However, this deviation is dependent on the edge bootstrap current and the initial width
of the profile.

3.2. TRENDS DUE TO EXPERIMENTAL CONDITIONS

A change in the plasma conditions will influence the result ofequilibrium reconstructions.
This section documents the influence of plasma parameters oncoordinate system transforma-
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tions. It is illustrated how different coordinate systems impact the multi machine comparison
between ASDEX Upgrade, DIII-D and JET.
Within a single device the flux surface compression can be manipulated with different heat-
ing levels. Figure 8 illustrates how∂ΨN/∂R increases with heating power in AUG. This is
observed for kinetic and generic equilibrium reconstructions alike. The agreement suggests
that generic reconstructions are suitable for analysing general dependencies. However, some
effects might be lost when using less constraints in the equilibrium calculations. The analysis
in the remainder of this section is performed with generic equilibria.
At the midplane the poloidal flux surface compression becomes ∂Ψmaj/∂R = −RBp. How-
ever, the local poloidal field is not easily accessible experimentally. At the pedestal∂Ψmaj/∂R
is fairly constant as shown in Figure 8.1 and can be regressedfrom AUG, DIII-D and JET

∂Ψmaj

∂R
≃ 12.0R1.08±0.14

mag 〈Bp〉
1.01±0.05β0.14±0.04

p,ped , (3)

with ∂Ψmaj/∂R measured in Vs/m, the normalized pedestal top pressureβp,ped= pped/(〈Bp〉
2/2µ0),

the radius of the magnetic axisRmag, the flux surface averaged poloidal field〈Bp〉 = µ0Ip/l
andl ∝ a the plasma circumference at the last closed flux surface where a is the minor radius
of the plasma. In Figure 9.1∂Ψmaj/∂R is averaged over the last 10% of the plasma radius (ΨN)
and plotted against the approximation of Eq. (3). The regression is in quite good agreement
with the data. This result is strong evidence that there are no systematic deviations between
the equilibrium reconstructions for the individual machines. This also illustrates the difference
between the flux surface averaged poloidal field and its localvalue at the outer midplane. It
becomesBp ∝ 〈Bp〉β

0.14
p,ped and thereforeβp,ped = β0.72

p,ped,local. This means the local poloidal
field is roughly 25% larger than the flux surface averaged field.
The compression of normalized flux in real space can be divided into two components by using
the definition of the normalized flux in Equation (2)

∂ΨN

∂R
=

1

Ψsep−Ψax

∂Ψ

∂R
, (4)

whereΨsep−Ψax is the normalization factor. For a cylindrical plasma the normalisation factor
becomesΨsep− Ψax ∝ µ0Ipa with the total plasma currentIp. If we neglect the pressure and
approximateBp ∼ 〈Bp〉 the dependence on the plasma current drops and only a machinesize
dependence remains

∂ΨN

∂R
∝

1

a

1 + ǫ

ǫ
, (5)

whereǫ = a/R0 is the inverse aspect ratio. The estimations which led to Eq.(5) neglect
the real shape of the plasma and the local poloidal field. Still, for the machine comparison
with AUG, DIII-D and JET a very similar scaling arises when including a shape factor. The
machine size dependence is also found to be inverse but slightly less than linear.

∂ΨN

∂R
≃ 1.65a−0.70±0.05

(

q95
qcyl

)1.07±0.10

, (6)

whereqcyl = (2πa2Bt0)/(RIpµ0)(1 + κ2)/2 is the cylindrical approximation of the safety
factor,κ the plasma elongation andq95 the value of the safety factor atΨN = 0.95. The aspect
ratio dependence in Eq. (5) could not be reproduced since there is no variation inǫ for the
available database. The quality of the approximation Eq. (6) is illustrated in Figure 9.2 and
shows reasonable agreement for all three machines. In this representation the shaping factor
fq = q95/qcyl was introduced instead ofβp,pedbecause it is the better to describe the problem.
With the regression parametersa andβp,ped the RMSE increases by 50%. When applying the
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regression to all three parametersa, fq andβp,ped Eq. (6) is not changed but the exponent of
βb

p,pedis found to beb < 0.03. This suggestsfq andβp,pedtogether hold more information than
a single quantity. This is not obvious because both quantities are strongly correlated in 0th
order. In Figure 10fq strongly increases withβp,ped. However, there are also distinct trends
visible for the different machines which could explain thatfq andβp,ped are not interchange-
able.
Applying a coordinate transformation - e.g. from real spaceto normalized flux space (∂ΨN/∂R)
- will influence all comparisons of widths and gradients. This coordinate transformation is de-
pendent on machine size, aspect ratio, magnetic field, shaping and plasma pressure. All these
parameters are also possible candidates in determining thepedestal width. In particular, fol-
lowing Eq. (6),the two dimensionless descriptions of the width flux space∆ΨN and in real
space∆m/a are not equivalent and will result in different scalings with q95/qcyl or βp,ped. For
multi-machine comparisons it is important to use the correct coordinate system which is set
by the underlying physics. For example normalized flux coordinates for MHD related physics
and real space coordinates when atomic processes dominate the plasma edge.
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4. SEPARATRIX POSITION

Measuring profiles of a single plasma parameter with different diagnostics may result in pro-
files which are misaligned with respect to each other after mapping in a 3D machine to 1D flux
coordinates. Assuming the toroidal symmetry is unbroken this cannot be real and therefore
must be an artifact of the spatial calibration or the mappingprocedure. For different plasma
parameters a radial misalignment between diagnostics is not as easily detected. However,
proper alignment of different measurements is prerequisite for calculating dependent quanti-
ties. For pedestal studies positions based on the equilibrium reconstruction are not reliable
enough. However, the separatrix as a prominent feature at the pedestal edge can be used to
align different diagnostics. The separatrix position is also essential to determine the pedestal
width with the two-line method.
Strategies to determine the separatrix position individually for temperature and density profiles
use theoretical predictions forTe andne at the separatrix based on divertor measurements and
transport parallel to the field lines [36, 37]. A temperatureof around100 ± 20 eV at the sep-
aratrix is predicted for devices like AUG or DIII-D and135 ± 30eV for JET. The temperature
at the separatrix is only very weakly dependent on plasma parameters like heating power. The
density can also be determined with this method, however, the uncertainty is larger and the
value is not independent of gas fuelling. Fuelling has threemajor contributions: the regularly
used gas puffing, neutral beam heating and recycling from thewalls. Recycling strongly de-
pends on the machine condition and previous discharges. Therefore, the exact gas fuelling rate
cannot be determined precisely.
Another possibility to determine the separatrix position is a variation in the profile shape. Out-
side of the separatrix the field lines are not closed anymore and the large parallel transport
becomes important [29]. When the particle transport is dominated by diffusion the gradients
should have a discontinuity at the separatrix [36]. A similar discontinuity in the density gradi-
ent is predicted by a semi-analytical neutral penetration model for the plasma edge when the
transport changes at the transition from closed to open fieldlines and should be independent of
the gas fuelling [12]. In this section the position where thegradients change most is compared
with the separatrix determined with the temperature measurement. The largest change of the
gradients is associated with a maximum in the curvature.
The Thomson scattering (TS) system is used to evaluate the accuracy of a definition for the
separatrix using only thene profile shape. TS is able to measureTe andne simultaneously at
the same location. Therefore, a comparison ofTe andne profiles with TS is not influenced by
mapping uncertainties. The radial location of the 100eV-line is compared to unique features
of thene profile. The instrument kernel of the TS system is around 6 mm at DIII-D and 3 mm
for AUG. Therefore, a sharp kink in the gradient as expected from theory cannot be resolved
experimentally. Consequently the point of maximal curvature in the densitymax(∇2ne) is
determined. This position is compared to the point of maximal gradientmax(∇ne) which
should lie inside of the separatrix. These profile features are determined with the low-pass
filter method described in Section 2.2. In the case of AUG the effective uncertainty increases
a bit due to the mapping procedure. The uncertainty arising in determining the gradients
is assumed to be normally distributed. The distributionsRmaj(100eV) − Rmaj(max(∇ne))
andRmaj(100eV) − Rmaj(max(∇2ne)) then give information about the relative position of
density profile features with respect to the separatrix determined via the temperature profile.
In Figure 11 this is illustrated in a histogram. The relativefrequency of discharges lying
in a 3 mm bin is plotted. For DIII-D the distribution of the maximal curvature is peaked
around -1 mm indicating a good match with the 100 eV position from Te. The distribution
of Rmaj(100eV) − Rmaj(max(∇ne)) is peaked around 5 mm showing that the point of max-
imal gradient is well inside the separatrix. In the case of AUG the TS is never available for
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the whole pedestal. Therefore, the profiles consist largelyof ECE and Li-Beam measure-
ments. Due to their different locations these diagnostics are influenced by systematic mis-
alignment due to the mapping. This becomes visible in Figure11.2 where the distribution
of Rmaj(100eV) − Rmaj(max(∇2ne)) peaks at -4.5 mm. With additional information of the
TS system the average misalignment of ECE and Li-Beam was measured to be around 3 mm.
When including this diagnostic shift the distribution of the maximal curvature of the density
profile also peaks around -1 mm relative to the separatrix.
For the present data set of AUG and DIII-D discharges the position of maximal curvature
of thene profile lies 1 mm outside of the separatrix determined via the100 eV position of
Te. Regarding the FWHM of the distribution the uncertainty of this positioning is±3 mm.
The absolute position ofTe = 100 eV can also not be determined more accurately than 3
mm. Therefore, the positioning of the separatrix is comparably accurate for the two presented
methods, namely the 100 eV (135 eV for JET) position forTe and themax(∇2ne). These
are convenient methods to determine the pedestal width inTe andne without including uncer-
tainties in the separatrix position from equilibrium reconstruction (several mm to few cm) and
uncertainties by mapping different diagnostics to the same1D coordinates (few mm).
In the investigated data set no systematic dependencies of the positions on gas fuelling, heating
power, shaping or collisionality were found within the spread of 6 mm. However, such depen-
dencies cannot be excluded completely. Because a variety ofdifferent discharges was included
in the analysis some effects might cancel each other. In a similarity experiment a dependence
between the relative positionRmaj(max(∇Te)) − Rmaj(max(∇ne)) and the pedestal density
was observed [8]. Especially, the plasma shape and normalized pressureβp,pedwere kept fairly
constant. This is different to the data set applied here, which was selected to maximise the
variation in shape andβp,ped.
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5. PEDESTAL WIDTH

The pedestal width in AUG and DIII-D was reported as being correlated with the square root
of the poloidal pedestal betaβ0.5

p,ped ∝ p0.5ped〈Bp〉
−1.0. This was observed in DIII-D for the

electron pressure pedestal width for real space coordinates [3]. The mean pedestal width
(∆ne + ∆Te)/2 was also found to scale withβ0.5

p,ped in normalized poloidal flux coordinates
ΨN [13, 6]. For AUG theβ0.5

p,pedcorrelation could be reproduced for the electron and ion tem-
perature but no dependence in the density pedestal width wasfound in ρp coordinates [7].
The mean pedestal width for AUG showed again a linear correlation with β0.5

p,ped in ΨN but no
correlation in real space [8]. The theory of kinetic ballooning modes predicts aβ0.5

p,peddepen-
dence of the pedestal width inΨN [38]. Besides theβp,ped dependence of the pedestal width
a ρ⋆ ∝ T 0.5

i M0.5a−1B−1
t dependence was also often discussed [3, 5, 6, 8], whereM is the

atomic mass number. However, both quantities have a similardependency on the temperature
and are difficult to distinguish. In [3] the temperature was varied while the total pressure was
kept constant. The electron pressure width was found unchanged and therefore supports a
βp,peddependence of the pressure width instead of aρ⋆ dependence. In JT-60U also the mass
number of the plasma’s main ions was varied, the dependence of the ion temperature width on
ρξ⋆ was found to be less thanξ = 0.2 [5]. In DIII-D the variation of mass number was repeated
to test aρ⋆ dependence of the mean pedestal width in flux coordinates andno mass number de-
pendence was found [6]. More recently aρ⋆ test was performed with variation of machine size
between DIII-D and JET [8]. The electron temperature and electron density pedestal width
in real spacer/a showed different correlations withρ⋆. While ∆Te/a was uncorrelated with
ρ⋆, ∆ne/a increased withρ⋆. In theory of turbulence suppression via different mechanisms
the pedestal width should scale withρ⋆ to powers of 0.5-2.0 [10, 9, 39]. The density pedestal
width in real space was found to scale with1/ne for DIII-D [8] this is evidence for a role of
neutral penetration in the pedestal [12].
The present study tries to pursue the progress in understanding the pedestal width physics.
This is done by identifying the main parameters responsiblefor changes in the pedestal width
of AUG, DIII-D and JET. The pedestal width is determined for all devices with the two-line
method as described in Section 2.1. This study includes discharges from other studies [6, 7, 8]
which are extended with new experiments from AUG including acurrent and triangularity
scan. The main difference between this and previous studiesis the database approach. In the
studies listed above dedicated experiments were performedin order to study the influence of a
single parameter on the pedestal. This was generally done incarefully designed similarity ex-
periments or parameter scans. As a result precise information of one parameter was obtained.
In consequence the information about other parameters and their correlation is not easily ex-
plored in these experiments. Especially, this is true for the plasma shaping which is generally
matched in comparison experiments. It was shown in Section 3.2 that for the present data set
the shaping factorq95/qcyl plays an important role and cannot simply be expressed in terms
of normalized pressure. The database approach for analysing experiments might come at the
expense of obscuring dependencies which do not appear statistically significant in the data set.
Another uncertainty is included by influences on the plasma which are difficult to quantify like
e.g. gas fuelling patterns, impurity content or radiation characteristics. Those influences can
be reduced in dedicated experiments but not in a database approach.
This section searches for main contributors to the pedestalwidth in the given database. The
consequences for theory are discussed in the conclusion. A special focus is put on the three in-
dependent plasma physics parameters normalized poloidal pedestal pressureβp,ped, normalized
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toroidal gyroradiusρi⋆ and the normalized ion collisionalityνi⋆

βp,ped= 5.0265 · 10−3 pe,ped[kPa] + 1.602 · Ti,ped[keV]ne,ped[10
19 m−3]

〈Bp〉2[T]
(7)

ρi⋆ = 6.46 · 10−3
T 0.5

i,ped[keV]

a[m]Bt,ped[T]
(8)

νi⋆ = 4.90 · 10−5 q95R0[m] ln Λne,ped[10
19 m−3]

ǫ3/2(Ti,ped[keV])2
. (9)

These equations are valid for a pure deuterium plasma and thevalues are calculated at the
pedestal top in the electron temperature. The coulomb logarithm ln Λ is defined asln Λ =
17.3− 0.5 ln(ne[10

20m−3]) + 1.5 ln(Ti [keV]). The assumption of a pure deuterium plasma is
not the best in most cases. However, at AUG measurements of the average charge numberZeff

have a very large uncertainty at the plasma edge. This can be up to a factor of 2 and would
obscure other influences in the database. Therefore,Zeff is excluded from the analysis. For
consistency the value ofZeff = 1 is used for all machines. For low collisionalityν⋆ < 0.5
the ratio ofTe/Ti varied over a factor of 3 in DIII-D. At higher collisionalityTe/Ti was rather
constant, for AUGTe ≃ 0.9Ti and for JETTe ≃ 1.0Ti . This assumption is used for Figure 12
when noTi measurements are available from the edge CXRS, in the regression analysis only
discharges withTi measurements are included from AUG.
In Figure 12 the pedestal width of electron temperature and density is plotted against the single
parametersβ0.5

p,ped (a),(b) andρi⋆ (c),(d). In certain regimes both parameters show correlations
with the pedestal widths. However, they alone cannot explain the pedestal width. Although, the
pedestal width is best described withβp,pedwhen using a single parameter, there is a system-
atic separation visible in (a),(b) towards largerβp,ped. This is not only true for the comparison
between AUG and DIII-D data but also visible in the DIII-D data alone for0.5 < β0.5

p,ped< 0.7.
A linear fit through the origin yields the coefficients0.11± 0.02 (∆Te) and0.11± 0.01 (∆ne)
for β0.5

p,ped for the AUG data alone. The uncertainty in the fit to density pedestal width is only
small because of the boundary condition in the origin. For the temperature an offset linear fit
with a slope of 0.13 would fit the data better. For DIII-D they become0.088 ± 0.014 (∆Te)
and0.080± 0.015 (∆ne). The coefficients for DIII-D agree within the uncertainties with other
studies which used the mtanh analysis method [40]. The differences between the machines
cannot be explained by different analysis methods because the two-line method was applied in
both cases. A linear fit for all machines would yield∆Te ≃ (0.10±0.02)β0.5

p,pedwith an RMSE
of 21.0% and∆ne ≃ (0.09 ± 0.02)β0.5

p,ped with an RMSE of 22.5%. The plots withρi⋆ Figure
12 (c),(d) show correlations betweenρi⋆ and the pedestal width for certain regimes. However,
ρi⋆ as single parameter is clearly not sufficient to describe thepedestal width. It has to be noted
thatTe 6= Ti for most DIII-D discharges and the gradients ofTi are smaller in the pedestal than
those inTe. For AUG at higher collisionality the gradients ofTe andTi are typically similar.
For DIII-D this suggests∆T i should be larger than∆Te while both widths are similar for the
AUG discharges.
As this data is not from a single parameter scan also other influences can play a role. The
most prominent influences were determined with a log-linearregression analysis. With special
focus on the dimensionless parameters normalized pressureβp,ped, normalized gyroradiusρ⋆,
collisionality ν⋆, plasma elongationκ, q95/qcyl andTe/Ti . In Figure 13 the pedestal width is
plotted against a regression with all these parameters and with a subset of significant ones. Pa-
rameters are regarded as significant when their exponent is larger than2σ. This criterion leads
to two very different parameter sets. For the temperature pedestal width only pressureβp,ped

and plasma elongationκ appear significant. In the case of the density the normalizedgyrora-
dius ρi⋆, collisionality νi⋆, q95/qcyl andκ show significant exponents. The temperature ratio
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Te/Ti does not play an explicit role, however, it is implicitly included in the other quantities.
With the significant parameters the scalings become

∆Te[ΨN] ≃ 0.42 · κ−2.59±0.85β0.51±0.09
p,ped (10)

∆ne[ΨN] ≃ 2.90 · κ−1.78±0.75ρ0.65±0.12
i⋆ ν0.18±0.05

i⋆ (q95/qcyl)
1.45±0.29. (11)

The scaling to∆Te gives the same exponent forβp,pedas it was used in the linear fits to the data.
Adding the elongation improves the RMSE of the fit by 15% whichis quite large considering
the rather small available range1.59 < κ < 1.88. However, small width∆Te < 0.05 are
systematically overestimated by the scaling (Figure 13.3). For the density pedestal width the
shape of the plasma influences the goodness significantly. Withoutκ the RMSE would increase
by 15% and withoutq95/qcyl it would increase by 40%. This suggests an important role of the
plasma shape in the pedestal formation. The triangularityδ is often used to describe effects of
shaping. In the present database no correlation of the pedestal width with δ could be found.
This suggests the triangularity might not be the best quantity to describe the shape in a multi
machine comparison. The exponents ofρ⋆i andβp,pedappear very similar in Eq. (11) and Eq.
(10). Also in Figure 12 these parameters show similarities.Therefore, both parameters were
exchanged for one another in the regression with the result that in all cases the quality of the
fit was deteriorated. This would suggest that there are real differences in the pedestal width
of Te andne. This is further investigated with scalings to the factors of the dimensionless
parameters. The factors are the four independent parameters machine size, magnetic field,
temperature and density and they are extended with the elongationκ. The resulting regressions
for the temperature and density width show already differences in the temperature dependence

∆Te[ΨN] = 0.025 · a−0.56±0.28〈Bp〉
−0.93±0.20T 0.62±0.11

e,ped n0.54±0.15
e,ped κ−2.30±1.16 (12)

∆ne[ΨN] = 0.011 · a−0.67±0.19〈Bp〉
−1.01±0.22T 0.37±0.09

e,ped n0.51±0.15
e,ped κ−1.43±0.81. (13)

The fit quality can be improved by more than 10% with inclusionof the temperature ratio
Te/Ti and the ratio between poloidal and toroidal fieldqcyl which is significantly above the
improvement expected for uncorrelated parameters. It is found that the temperature width is
depending on the ion temperature and has no correlation withthe toroidal field orqcyl. The
density width shows little correlation with the temperature ratio but depends on the magnetic
field ratio orBt

∆Te[ΨN] = 0.047 · a−0.59±0.28〈Bp〉
−0.73±0.23T 0.72±0.12

e,ped n0.41±0.17
e,ped κ−2.62±1.17

(

Te,ped

Ti,ped

)−0.46±0.23

(14)

∆ne[ΨN] = 0.011 · a−0.73±0.20〈Bp〉
−1.30±0.25T 0.45±0.10

e,ped n0.65±0.16
e,ped κ−1.49±0.81q−0.42±0.17

cyl .

(15)

In Figure 14 all four regressions are illustrated. The measured pedestal widths show a uniform
distribution around the two extended scalings Eq. (14) and (15). The density pedestal width
in Figure 14.4 shows an improvement in the description of theAUG data compared to Figure
13.4. The temperature pedestal width in Figure 14.3 shows anoverall improvement compared
to the dimensionless case which is also visible in the reduction in the RMSE of over 20%.
The reason for this difference is the broken coupling between temperature and magnetic field
in Eq. (14) contrary toβp,ped in Eq. (10). This can be illustrated with a an extension of
the dimensionless case which then gives the same improved RMSE and alignment with the
measurements as does the dimensional description

∆Te[ΨN] ∝ β0.35±0.11
p,ped κ−2.80±1.04T 0.36±0.14

i,ped a−0.56±0.28. (16)
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This is essentially the same form as Eq. (14) and illustratesa reduced dependence on poloidal
field and pedestal density compared to the dimensionless description in Eq. (10).

When comparing Eq. (10)-(15) with Eq. 6 in Section 3.2 it becomes evident that a sig-
nificant fraction of the pedestal width variation observed in ΨN coordinates will vanish when
going to real space coordinates. InΨN coordinates the pedestal width varies more than a factor
of 4. In real space coordinates this variation is reduced to roughly a factor of 2.5. This reduc-
tion in variation hampers the possibility to apply a regression analysis to this data set. Because
the influences of different parameters are too small to be significantly above the uncertainties.
A significant fraction of the difference in total variation can be explained with the influence of
the shaping factorq95/qcyl on the coordinate transformation Eq. 6. In Figure 15 all discharges
with β0.5

p,ped< 0.7 of AUG, DIII-D and JET align nicely for the temperature width(a) and the
density width (b). This suggests the shaping factor caused the separation of the pedestal width
for the machines in Figure 12. Figure 15 also illustrates theinfluence of the machine size. In
real space coordinates there is no machine size dependence visible, 95% of the measurements
from AUG, DIII-D and JET fall within a 1.0 cm band with a medianof 1.7 cm. A correlation
of the width in real space withβp,ped is not expected from the theory since theβp,ped depen-
dence is relevant only inΨN coordinates. For example the neutral penetration model [12]
would set the pedestal width in real space coordinates. The measurements show no correlation
of the density pedestal width with the pedestal top density (Figure 16). However, the neutral
penetration is strongly dependent on the parameters in the SOL which vary significantly over
the database and were not documented in the database. Therefore, it is not surprising to see
a difference compared to experiments which had similar conditions in the SOL and showed a
correlation with∆ne andne,ped[8].
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6. SUMMARY AND DISCUSSION

In order to obtain reliable information about the width of the edge pedestal it is important to
rely not only on high resolution measurements but also on standardized analysis techniques.
For multi-machine comparisons in particular, a standardized analysis reduces unnecessary un-
certainties. Different methods to characterize the pedestal were benchmarked against each
other. The test included the commonly used modified hyperbolic tangent method, the two-line
method and a low pass filtering technique. For a series of over50 independent profiles obtained
from discharges with the same conditions the two-line method showed significantly less scatter
than the mtanh method. Although, the separatrix position asan additional source for uncer-
tainties is included only in the analysis with the two-line method. Within the uncertainties the
absolute values for the pedestal parameters were the same with both methods. In order to test
the influence of asymmetries in the profiles, synthetic measurements were constructed with
preset pedestal parameters (top, gradient and width). The two-line method is not influenced
by asymmetries. The mtanh, however, was also subject to its symmetry and showed changes
in the pedestal parameters for a set of simulations with constant pedestal parameters and only
varying profile asymmetry. The filter method is reliable onlywith a priori knowledge about
the size of the pedestal. Therefore, it is not useful as a standalone technique, but can, however,
be used to supplement other methods. This study found the two-line method best suited for
pedestal analysis.
Different boundary conditions in the equilibrium reconstruction can result in deviations of up
to 10% of the pedestal width in flux coordinates. Due to diagnostic limits, this is lower than the
measurement uncertainty. The deviation was found to dependsystematically on the current dis-
tribution. This means consistent kinetic equilibrium reconstruction, including measurements
of pressure profiles, would be beneficial for profile analysis. Currently the preparation of these
equilibria is very time consuming and generally not done iteratively.
In a power scan, the trends of the flux surface compression with global plasma parameters were
tested. It revealed that the trend of increasing flux compression with heating power obtained
with kinetic reconstructions is reproduced with generic equilibrium reconstructions. Including
profile measurements in the reconstruction gives a more detailed, but not entirely different,
picture of the equilibrium. The machine size dependence of the flux surface compression at
the pedestal, determined with CLISTE for AUG and EFIT for DIII-D and JET, is consistent
with a fundamental equilibrium equation. This result provides evidence that there are no sys-
tematic deviations between the equilibrium reconstructions for the individual machines. The
coordinate system used for examination of the pedestal width is crucial since the coordinate
system itself depends on parameters relevant for pedestal width physics, such as pedestal pres-
sure and poloidal magnetic field. In particular, the two dimensionless representations of the
pedestal width,∆ΨN and∆m/a, are not equivalent. They will scale differently dependingon
the plasma shape,q95/qcyl. In the presented database this can account for systematic differ-
ences between both coordinates of up to 70%.
The electron temperature and density pedestal width scale similarly with machine size, poloidal
field, temperature, density and plasma shape. They depend differently on the temperature ratio,
Te/Ti , and the magnetic field ratio,qcyl. The temperature ratio has an impact on the electron
temperature pedestal but no influence on the density pedestal width. The magnetic field ratio,
or the toroidal field, only has an impact on the density pedestal width and no influence on the
temperature width. Different trends for∆Te and∆ne are consistent with previous observations
at AUG and DIII-D [7, 8]. Both temperature and density show a strong correlation with the
plasma shape, namely the elongationκ for the temperature andκ andq95/qcyl for the density
width. A strong dependence of the density pedestal width with the plasma shape described by
the triangularityδ was reported for Alcator C-Mod [41], aδ dependence could not be identified
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within the data set examined in this paper.
The dimensionless fits to the database inΨN favor scalings with the plasma shape for temper-
ature and density width andβ0.51

p,ped for ∆Te andρ0.65i⋆ for ∆ne. When transformingΨN to r/a
coordinates a large part of the shape dependence will be removed from the scaling. This will
also result in a reduction of the exponent of theβp,ped dependence of∆Te[r/a] sinceβp,ped

andq95/qcyl are correlated to some extent. The exponent ofρi⋆ in ∆ne[r/a] will be relatively
unchanged sinceq95/qcyl appears explicitly in the density width scaling.
Theories in literature which give an explicit prediction for the pedestal width are quite rare.
The theory of kinetic ballooning modes predicts aβ0.5

p,ped dependence of the mean pedestal
width (∆Te +∆ne)/2 in [ΨN] [38], which is similar to the∆Te scaling found in the database.
The dependence of the normalized gyro radius on the pedestalwidth is often linked with the
theory of turbulence suppression via sheared flows. Depending on mechanisms for turbulence
and flow shear the exponent ofρ⋆ can vary from 0.5-2.0 [10].Er ×B flow shear stabilisation
would yield∆/a ∝ ρ0.5⋆ q0.5 [9]. This mechanism might explain theρ⋆ dependence of the
density pedestal width observed in this study. However, thedependence on the safety factor
is not reproduced in the measurement. Another theory proposes diamagnetic stabilization of
ideal ballooning modes as mechanism to set the pedestal width which would yield∆/a ∝ ρ

2/3
⋆

[39]. This is consistent with the measurements of the density pedestal width. Neutral pene-
tration [11, 12], which predicts a1/ne scaling for the pedestal width in real space, could not
be tested with the available database. Because the exact fuelling pattern was not known for all
discharges and SOL parameters were not included in the analysis. Both play an important role
for the process of neutral penetration into the plasma.
To test the capability to extrapolate towards machines of different size the results for an ex-
trapolation towards Alcator C-Mod are given in Table 3. The parameters used for C-Mod in
the scaling areIp = 0.9 MA, Bt = 5.5 T, R = 0.67 m, a = 0.22 m, κ = 1.54, q95 = 3.8,
pped = 35 kPa,Te,ped = 0.4 keV andne,ped = 27.5 · 1019 m−3 [4] assumingTi = Te. The
pedestal width, calculated with the dimensionless scalingEq. (10),(11), agrees with the mea-
surements within the uncertainties. The scalings Eq. (14),(15) do not agree with the mea-
surements. In C-Mod∆Te ≃ ∆ne which is reproduced for both scalings. The match of the
dimensionless scaling towards a machine two times smaller than the analysed ones is encour-
aging for its use for a machine two times larger. However, thescaling cannot be applied
directly since it contains physics parameters which are notknown prior to machine operation.
Therefore, these parameters (ρi⋆, νi⋆, βp,ped) have to be assumed. This means the following
values are not a self consistent prediction, but a check of whether a certain operational point is
consistent with the presented scaling or not. This is also the reason why no uncertainties are
given for the extrapolated values. For ITER the design values of the engineering parameters
areIp = 15 MA, Bt = 5.3 T, R = 6.21 m, a = 2.0 m, Pheat = 74 MW, q95 = 3.0 and
κ = 1.8. The pedestal structure is presumed to beTe,ped = 4.0 keV, ne,ped= 7 · 1019 m−3

andTi = Te. The results for these parameters are listed in Tab. 4. The dimensionless and
non dimensionless scalings yield similar results (within 20%) for the ITER pedestal width,
this is in contrast to C-Mod. This might suggest that the density dependence is not described
accurately in Eq. (14),(15) since this is the only parameterwhich strongly varies in the ex-
trapolation towards C-Mod, but not towards ITER. However, the impact on the ITER values
for the pedestal width should be small, because the density in ITER is very similar to those in
AUG, DIII-D and JET. The direction of this deviation could beunderstood if neutral penetra-
tion plays a role in setting the density pedestal width. The density in Alcator C-Mod is 4-10
times larger than those included in the database. Therefore, any effect of neutral penetration
would be more pronounced in C-Mod than in the presented data set. In the extrapolation to-
wards ITER the electron temperature pedestal width is aboutthree times larger than the density
pedestal width. This is due to the inverse toroidal field dependence and the weaker dependence
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on electron temperature in the density width scaling. The temperature pedestal width of∼0.04
in ΨN is consistent with results of the EPED1.6 code [40]. In orderto predict the pedestal top,
the width constraint can be combined with peeling-ballooning theory. From the interaction
of pressure gradient driven ballooning modes, with currentdensity driven peeling modes one
can deriveT ITER

e,ped ∼ 2.5 keV for ∆/a = 0.01 andT ITER
e,ped ∼ 6.0 keV for ∆/a = 0.04 [42].

Within this temperature range the pedestal widths from scalings Eq. (10)-(15) vary by at most
30% from the value forTe,ped= 4.0 keV. This means the standard ITER operational point at
Te,ped= 4.0 keV andne,ped= 7.0 · 1019 m−3 is consistent with the presented scalings for the
pedestal width and peeling-ballooning theory for the pedestal top.
The main results from the analysis of the pedestal width are strong indications of a separa-
tion of temperature and density pedestal widths and an important role of the plasma shape. A
separation of the width scalings for temperature and density would suggest that the pedestal
width is not dominated purely by MHD physics, where both should scale similarly. For mech-
anisms setting the pedestal width based on transport or atomic physics such a separation is
possible. Also, a combination of these processes may be possible. In future studies the impact
of different temperature and density edge profiles on the peeling-ballooning instability should
be investigated more closely. For example, the bootstrap current density depends differently
on the individual profiles ofTe andne [34]. In future machine comparisons a supplementary
range of toroidal field, aspect ratio and elongation would help to assess their influence on the
pedestal more precisely.
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AUG DIII-D JET
Nb. data 69 64 8 141
Ip [MA] 0.60-1.15 0.5-1.5 1.7-2.7 x5.4
B p [T] 0.18-0.34 0.12-0.37 0.27-0.40 x3.3
B t [T] 1.8-2.8 0.7-2.1 1.8-2.7 x4
Pe,ped [kPa] 1.8-9.7 0.8-11.8 3.2-12.7 x16
a [m] 0.47-0.51 0.52-0.61 0.89-0.91 x1.9
Rmag [m] 1.70-1.74 1.75-1.86 3.02-3.09 x1.8
q95 3.4-7.2 2.7-13.4 3.4-3.6 x5
q95/q cyl 1.23-1.45 1.11-1.89 1.16-1.22 x1.7 (8)
Te,ped [keV] 0.2-0.9 0.2-2.1 0.5-0.9 x10
Ti,ped [keV] 0.3-1.0 0.3-1.5 - x5
ne,ped [10−19m−3] 3.7-7.2 1.2-6.1 3.9-9.3 x8
κ 1.59-1.74 1.69-1.88 1.74-1.78 x1.2 (1.5)
δ 0.21-0.42 0.20-0.64 0.40-0.43 x3
ρ [10−3] 3.5-6.9 5.0-14.3 3.7-5.4 x4
ν 0.30-3.4 0.1-0.8 0.4-0.9 x34
βt,ped [10−3] 2.4-12.0 3.7-18.3 5.6-15.0 x8
βp,ped 0.15-0.54 0.21-1.4 0.23-0.37 x9

Table 1: Range of key plasma parameters in the database of the three machines AUG, DIII-D and JET. The
parameters are defined when they first appear in the text. The last column indicates the range available the
parameter spans for the three machines.

Input width [cm] δΔ/Δ[Ψ δΔ/ΔN] [Rmaj]
1.0 +4 .3 ± 3.3% − 0.9 ± 1.9%
1.5 +7 .4 ± 3.8% +0 .4 ± 1.6%
2.5 +10 .1 ± 4.6% +1.5 ± 1.9%

Table 2: Mean relative broadening for different pedestal widths in ΨN and Rmaj due to use of generic instead
of kinetic equilibrium reconstructions. Evaluated for 19 EFIT pairs corresponding to DIII-D discharges.
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Figure 1: Typical temperature profile (AUG:24161:2.20-2.35s) fitted with Eq. (1) (red, solid).
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Δ Te [ΨN] Δ Te [cm] Δ ne [ΨN] Δ ne [cm]
dimensionless Eq. (10),(11) 0.036 2.8 0.012 1.0

non dimensionless Eq. (14),(15) 0.045 3.6 0.016 1.3

Table 4: Extrapolation of the pedestal width towards ITER based on scalings derived with AUG, DIII-D and
JET.

ΔTe [ΨN] ΔTe [cm] Δ ne [ΨN] Δ ne [cm]
dimensionless Eq. (10),(11) 0.053 0.76 0.046 0.66

non dimensionless Eq. (14),(15) 0.12 1.7 0.13 1.9

Table 3: Extrapolation of the pedestal width towards Alcator C-Mod based on scalings derived with AUG,
DIII-D and JET. The uncertainty of the extrapolation is about ± 50%. The measured pedestal width for a
typical C-Mod discharge is ∆ [ΨN] = 0.033 ± 0.014 or ∆ [cm] = 0.47 ± 0.20 [4].

http://figures.jet.efda.org/JG11.312-1c.eps
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Figure 2: Left: (top) electron density measurement and smoothed curve, (middle) gradient and (bottom) curvature 
derived from smoothed curve. The extremas in gradient and curvature are indicated with the dashed vertical lines. 
Right: Butterworth kernel in real space which was used to generate the smoothed curve.
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Figure 3: Example for an artificial pedestal profile. The preset pedestal profile is indicated with the solid black line. 
One set of corresponding random data is indicated with blue circles.

2.1. Examples of data smoothing 2.2. Smoothing kernal in real space

http://figures.jet.efda.org/JG11.312-3c.eps
http://figures.jet.efda.org/JG11.312-2c.eps
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Figure 4: In the top row a sketch illustrates how the pedestal is varied during each simulation. In the lower three rows 
the results of the pedestal simulation are shown. The relative deviation of mtanh (bottom), two-line (middle) and filter 
method (top) from preset properties is indicated for the pedestal width (blue, square), the pedestal top (red, circle) 
and the pedestal gradient (green, triangle). In the left column only the gradient inside of the pedestal top is varied, 
while the whole pedestal is unchanged. In the middle column pedestal top and gradient are varied, while the pedestal 
width is unchanged. In the right column pedestal width and gradient are varied, while the pedestal top is unchanged.
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Figure 5: Different results for ∂ΨN/∂R using a generic equilibrium (dotted,red), a kinetic equilibrium (solid,black) or a 
generic equilibrium combined with the normalization of the kinetic one (dashed,blue). The kinetic equilibrium includes 
the bootstrap current. The relative deviation is (∂ΨN/∂z)/(∂ΨN/∂z)kin − 1.

Figure 6: Relative deviation in flux surface compression ∂ΨN/∂R for generic and kinetic equilibrium reconstructions. The 
generic reconstruction has the larger flux compression. The difference is increasing with heating power. The absolute 
values are shown in Figure 8. (black: AUG#24167:4.225s, green: AUG#24168:4.225s, red: AUG#22898:4.625s, blue: 
AUG#23223:5.325s)
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Figure 7: The same profile measured in R, z appear differently in flux coordinates depending on the underlying 
equilibrium reconstruction. The pedestal width becomes larger, the gradient smaller and the profile might be shifted. 
For comparison the profiles were aligned at the separatrix.
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Figure 8: Flux surface compression at the outer midplane for different heating scenarios at ASDEX Upgrade (black: 
AUG#24167:4.225s, green: AUG#24168:4.225s, red: AUG#22898:4.625s, blue: AUG#23223:5.325s). The generic 
equilibrium reconstruction with CLISTE (left) shows increasing flux surface compression similar to the kinetic 
reconstruction (right). The influence of the increased current density due to edge currents becomes visible for the 
kinetic reconstruction at about ΨN ~ 0.95.

Figure 9: The flux compression averaged over the last 10% of the plasma radius at the outer midplane is plotted 
against a best-fit-model. Left for the poloidal flux and right for the normalized poloidal flux. The root mean squared 
error RMSE was calculated after [9] and is with 5% fairly low in both cases. The subcaptions show the used regression 
model. For an expression with uncertainties see Eq. (3) and (6).
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Figure 10: Correlation between the shaping factor fq = q95/qcyl of Eq. (6) and the poloidal pedestal beta bp,ped.
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Figure 11: Histograms of the difference of positions of Te =100eV and max(∇2ne) (blue/red) respectively max(∇ne) 
(green). The binsize is 3mm and the tics correspond to the middle of each bin. No deviation between positions is 
indicated with the dashed line. The normal distribution fitted to the histogram is indicated by the solid black line. For 
DIII-D (left) the position of Te =100eV matches the one of max(∇2ne) quite well. The AUG (right) data is influenced 
by a systematic shift of ECE and Li-Beam with respect to each other.
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Figure 12: The temperature (left) and density (right) pedestal width of AUG (circle, red), DIII-D (square, blue) and JET 
(triangle, green) plotted against the square root of the normalized poloidal pedestal pressure (top) and the normalized 
toroidal gyroradius (bottom).
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Figure 13: Log-linear regression applied to temperature (left) and density (right) pedestal width in ΨN for AUG (circle, 
red), DIII-D (square, blue) and JET (triangle, green). In Figure 13.1-13.2 a large number of dimensionless quantities 
is used in the regression. In Figure 13.3-13.4 the pedestal width is only regressed against the significant quantities.
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Figure 14: Log-linear regression applied to pedestal widths in “N for AUG (circle, red), DIII-D (square, blue) and JET 
(triangle, green). The temperature pedestal width (left) and density pedestal width (right) is plotted against different 
regression functions.
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Figure 15: Pedestal width in real space coordinates for the temperature (a) and the density (b) plotted against the 
normalized poloidal pedestal pressure for AUG (circle, red), DIII-D (square, blue) and JET (triangle, green). This is 
the equivalent to Figure 12 (a),(b) in real space.

Figure 16: Pedestal width in real space coordinates for the density plotted against the pedestal top density for AUG 
(circle, red), DIII-D (square, blue) and JET (triangle, green).
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