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AbstrAct.
By imposing symmetry constraints on basic types of bifurcations, equations that properly reproduce 
the behaviour of the most important instabilities in magnetically confined plasmas are derived. The 
predictions of these equations are consistent with the results of Tokamak experiments, indicating 
excellent prospects for the use of equivariant bifurcation theory to interpret the physics of high 
temperature laboratory plasmas, to forecast and control their macroscopic behaviour and to process 
the signals of their diagnostics.

1. the symmetries of the tokAmAk configurAtion.
The best performing and most widely studied magnetic fusion configuration is the Tokamak 
[1]. Notwithstanding significant effort during the last decades, many aspects even of the large 
scale behaviour of the configuration are still poorly understood. Tokamak reactor relevant, high 
temperature plasmas are affected by a series of macroscopic and microscopic instabilities, which 
can have a significant impact on their performance. In addition to the often nonlinear interactions 
between these instabilities, the wide range of spatial and time scales involved render simulation 
of these plasmas a conceptually delicate and computationally demanding task. Moreover, very 
often both theories and simulations are developed in simplified geometries, assuming that the main 
macroscopic symmetries do not play a significant role in determining the final results. On the other 
hand, the Tokamak configuration is characterised by global symmetries, already presented using the 
formalism of group theory in [2]. A sufficiently realistic geometry for the present investigation of 
Tokamak plasmas is the periodic cylinder, which consists of a circular cylinder whose flat ends are 
identified with each other. This geometrical configuration is designed to approximate a large aspect 
ratio torus, i.e. a torus with the major radius much larger than the minor radius. The symmetries 
of this configuration consist first of all of two SO(2) subgroups, corresponding to rotations in the 
two angular coordinates q and f (see figure 1). The remaining symmetry is a reflection symmetry
(q,f) → (-q,-f), which can be understood considering that single fluid magnetohydrodynamics 
(MHD), the basic theory to model magnetised plasmas, is invariant under change of sign of the 
magnetic field. In this letter, the aforementioned symmetries are used to constrain the form of simple 
bifurcation equations to reproduce the behaviour of the most relevant macroscopic instabilities of 
the Tokamak configuration, sawteeth and Edge Localised Modes (ELMs).

2. equivAriAnt bifurcAtion theory And tokAmAk 
mAgnetohydrodynAmic modelling.

Bifurcation theory studies nonlinear systems in the regions of the parameter space in which their 
behaviour shows qualitative changes. The main idea is that, close to the bifurcation points, the 
system behaviour can be modelled by a small number of coupled Ordinary Differential Equations 
(ODEs), with the nonlinear interactions among the variables expressible by low order terms in 
Taylor expansions. Equivariant bifurcation theory [3] is the study of the effects of symmetry 
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constraints on the construction of such ODE systems. Equivariant bifurcation theory is therefore 
an appropriate framework for the investigation of the onset of nonlinear instabilities in complex 
systems such as Tokamaks. The main instabilities have been properly modelled by two nonlinear 
coupled equations, derived using equivariant bifurcation theory to impose the proper symmetry 
constraints as described in [2]. To quickly summarise the derivation of the two equations, one can 
start by writing a generic instability as 

                 (1)

In relation (1), n is the integer mode number, a the time dependent mode amplitude and the overbar 
denotes the complex conjugate. Assuming that the dynamics of the mode y(t) is Hamiltonian, upon 
imposing invariance under rotation to the axisymmetry breaking instability y(t), the governing 
equation for a to cubic accuracy is of the form:

                                     (2)

The interaction with an axisymmetric mode representing the tokamak equilibrium configuration 
will have to be via a term proportional to a2 in order to satisfy equivariance [2]. Provided the 
axisymmetric mode is governed by dissipative dynamics, the simplest bifurcation model is the fold, 
which, once the interaction term is added, reads:

                        (3) 

Relations (2) and (3) constitute the simplest set of coupled nonlinear equations, respecting the 
symmetries and which might fit the experimental signals. They are used in the rest of this letter to 
reproduce the sawteeth and ELM instabilities in data from JET (Joint European Torus) experiments 
(JET has major radius R ≈ 3m and minor radius a ≈ 1m). 

3. reproduction of sAwteeth behAviour
One of the main macroscopic modes in a Tokamak is the sawtooth instability [4, 1], which is present 
over a wide range of operating conditions. This is observed as a relaxation oscillation in the centre 
of the plasma, which appears most clearly in the time evolution of the electron temperature and 
density but also of other quantities. In the case of the temperature, the clear signature is sawtooth-like 
behaviour of the time series waveform in the central region of the plasma, with inverted behaviour 
in the outer region. The abrupt collapse of the temperature is attributed to an m = 1, n = 1 instability 
in the centre (m is the poloidal mode number and n the toroidal mode number), which causes the 
expulsions of particles and energy detected as a heat pulse propagating in the outer region.  
 Figure 2 shows how this behaviour can be accounted for by the coupled equations (2) and (3). The 

y = aexp (inφ) + a exp (-inφ)

ä = γa + 2 a3

•
b = α-β b2 - (δb+1) a2
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analysis has been made at three different radii: the centre of the plasma, where the dynamics consists 
of a slow rise followed by a sudden crash, and two more external radii, which are characterised by 
a quick rise, due to the heat pulse, followed by a slower decay.  The main parameter governing the 
form of the individual spikes, sawtooth type bursts or propagating heat pulses, is d. For d < -0.04 
the sawtooth type behaviour of the green curve in figure 2 is obtained; for d > -0.04 one gets the 
propagating pulse shape of the red and blue curves in figure 2. 
 The time evolution of b does not only reproduce the behaviour of the sawteeth qualitatively but 
can also fit the experimental dynamic quantities quantitatively. This is shown in figure 3, in which 
the electron temperature evolution, derived from the Electron Cyclotron Emission on JET, is well 
reproduced by b. A few comments are in order. First of all, the evolution of b reproduces very well 
the electron temperature at all the radii for which the signal-to- noise ratio of the measurements is 
acceptable. The main reason behind the choice of the discharge shown is exactly the large amplitude 
of the sawteeth in the centre, which produces a significant heat pulse, whose propagation can be 
followed to the periphery of the plasma. In any case, it has been checked that the proposed set of 
two coupled equations can properly model also smaller and more regular sawteeth without any 
difficulty (in a certain sense the example shown is extreme  compared to more usual sawteeth). 
The fact that the discharge reported does not reach a completely steady state, as can be seen by the 
fact that the sawteeth frequency is not constant, means that one is obliged to adjust the parameters 
of the equations for each time interval, shown in figure 3 using different colours. Even though this 
has required some effort, the result proves the flexibility and wide applicability of equations (2) 
and (3). 
 Moreover, the fitting of frequency can be justified by noticing that tiny perturbations of 
equation (2) may make a large change to the timescale of oscillations. This may be demonstrated 
by integrating (2) with respect to time once, giving 

                            (4)

where H is a constant of integration which is determined by the values of a and a at time t0, 

                      (5)

It can be shown that (2) is soluble in terms of elliptic functions that have amplitude C and period P, 
where C2 = g[1+(1+8h)1/2]/ (-2m), h = (-m)H/g2 and 

 (6)

provided μ < 0 and H > 0. Hence, thanks to the logarithm in Eq. (6), a tiny change to a small value of H 
may change the period of nonlinear oscillation drastically without greatly affecting the amplitude. 

.

a2 = 2H + γa2 + a4•

•H = (a2 - γa2 - a4)t = t0
1
2

1
2√γP~ 1n as h → 0( )8

h
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The model economically explains, in terms of small perturbations at critical times, why the periods 
of both sawteeth and ELMs can vary significantly during a discharge,
 A more problematic issue is the identification of the experimental quantity corresponding to 
a. It is remarked that  the evolution of b can be made to fit the experimental value of the electron 
temperature or equivalent dynamic quantities, such as the SXR, with a theoretical a, obtained by 
setting the parameters of equation (2) to give the experimental period of the oscillations. There is 
quite possibly no single, experimentally measured quantity corresponding to the oscillation about the 
equilibrium represented by equation (2). Nonetheless, it has been verified that, in the magnetic signals, 
there are components oscillating at the same frequency of the sawteeth and that they can be properly 
fitted using equation (2). An example is shown in figure 4 for the same shot as in figure 3. 

4. reproduction of edge locAlised modes
In the ASDEX device it was discovered in 1982 that, increasing sufficiently the input power, 
the plasmas tended to transit spontaneously to an enhanced confinement mode called the High 
confinement or H-mode [5]. The H-mode is characterized by the presence of a thin region of very 
low transport situated at the edge of the plasma. Steep gradients in the density and temperature 
profiles are observed across this region, called also the edge barrier.  The H-mode is characterised 
by short bursts of another major instability, the ELM [6]. Each burst results in a significant decrease 
in the density and temperature of the plasma edge, mainly reducing the gradients of the edge barrier. 
The signature of the ELMs is very clear in the magnetic signals, in the diagnostic measuring the 
parameters of the electron fluid at the edge and in the Da emission.  Figure 5 shows how the time 
evolution of a sequence of ELMs, as seen in the magnetic coils, can be properly fitted by the system 
of coupled equations (2) and (3). Even in this case, the coupled equations can be adjusted so that 
b(t) can closely reproduce the signal of the pick-up coils, which are considered the most direct 
measurements of the ELM instability. 

conclusions
The results reported in this letter show for the first time that the system of coupled nonlinear equations 
(2) and (3) can reproduce very well the behaviour of the two most important macroscopic instabilities 
affecting Tokamak plasmas: sawteeth and ELMs. This fact has been proven using data of the most 
advanced Tokamak in operation: JET. From a practical point of view, the availability of robust, 
simple equations, capable of reproducing the salient features of the major plasma instabilities, could 
be very valuable for real time control. Such systems of equations could be used in model based 
control strategies, for advanced forecasting, in signal processing and advanced data assimilation 
schemes (the Kalman filter for example).  
 The reported evidence indicates that the symmetries of the magnetic configurations can play 
a significant role in determining the dynamics of the plasma, and lends force to the idea that the 
technique should also be applied to the reversed field pinch and stellarator magnetic fusion devices.  
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In the particular case of the Tokamak, since the two equations (2) and (3) have been derived by 
imposing geometrical symmetries and ideal MHD constraints, there is now a clear expectation that 
MHD theory is the right framework to investigate the gross behaviour of the sawteeth and ELM 
instabilities [7]. Moreover, our results motivate future investigations, which will see the same 
approach applied to the study of the third major nonlinear phenomenon in Tokamaks: disruptions.  
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Figure 1: Tokamak toroidal geometry and its idealisation as a periodic cylinder. 
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Figure. 2: Behaviour of b at three different major radii: 
3.1m, 3.3m, 3.7 m. The parameters of equations (2) and 
(3) chosen to obtain these time evolutions are: Green 
curve d =-0.4 Red curve d =-0.1 Blue curve d = 0. For 
all the curves a = 1, g = 1, m = 0.5, b = 10-3. The further 
addition of noise at the 10% level makes the plots very 
suggestive of experimental data.

Figure 3: Fit of the time evolution of the electron 
temperature at three different major radii: 3.1m, 3.3m, 
3.7m for JET Pulse No: 78765. The red curves are the 
experimental measurements. The other colours indicate 
the fits obtained using equations (2) and (3) adjusted for 
the different frequencies of the sawteeth in the various 
intervals. For clarity, to avoid overlap of the curves, 
400keV have been subtracted from the absolute value of 
the temperature at radius 3.3m.

Figure 5. Fit of a series of ELMs in JET Pulse No: 73851. 
Top: Da signal as a reference. Bottom: signal of a pick-up 
coil and its fit using equations (2) and (3). Since the system 
is not stationary, slightly different parameters have been 
used for the various time intervals (identified by different 
colours). The red curve represents the experimental 
measurement and the other colours the fitting curve b(t).

Figure 4. Comparison of a2 and the square of the magnetic 
oscillations, measured by the pick-up coils for the same 
shot as figure 3. For clarity, the experimental signal, in 
blue, has been squared after removal of the offset and this 
explains the factor of 2 higher frequency with respect to 
figure 3.

 

800

1200

1600

400

0
1000 20000 3000

b  
(t)

Time (s)

JG
11

.0
3-

2c

4000

3000

2000

1000

0
20 22 24 2618

Te
m

pe
ra

tu
re

 (e
V)

Time (s)

JG
11

.0
3-

3c

3

2

1

0

4

19 2018 21

W
eb

er
2  (

x1
0-

10
)

Time (s)

JG
11

.0
3-

4c

0.01

0

0.02

-0.01
1615 17

5

10

0

(a
.u

.)
W

eb
er

Time (s)

Dα

Magnetic Signal

JG
11

.0
3-

5c

http://figures.jet.efda.org/JG11.03-2c.eps
http://figures.jet.efda.org/JG11.03-3c.eps
http://figures.jet.efda.org/JG11.03-4c.eps
http://figures.jet.efda.org/JG11.03-5c.eps

