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ABSTRACT.
Experimental observations show that the βN threshold for (2,1) NTM excitation is increased by flow 
shear, but the physical explanation for this trend is still unclear. In the present work, we investigate 
this issue by performing numerical experiments addressing the dependence of the critical island width 
on toroidal plasma rotation with the full MHD toroidal code XTOR [1], on the basis of a typical 
JET Advanced Tokamak case. We find that for situations where the Lundquist number is increased 
towards the experimental value, the (2,1) NTM is destabilized by flow shear at low magnetic 
Prandtl number Prm, while the threshold remains nearly insensitive to the flow at high Prm. The 
experimental trend is therefore not recovered, and possible explanations for this disagreement are 
discussed. A simple model of anisotropic viscous tensor shows that the high toroidal viscosity does 
not influence the value of the threshold, but comparison with experimental measurements suggests 
that the effective Prm seen by the mode is however larger than its small collisional value. Finally, 
the scaling of dimensionless parameters to ITER range is discussed.

1. Introduction
Large fusion devices like ITER will operate with little external momentum input, in contrast with 
most present tokamaks, and the sensitivity of the operational limits to plasma rotation has therefore 
received increasing interest in the last decade. Neoclassical Tearing Modes (NTM) are one of these 
limiting Magneto-Hydro-Dynamic (MHD) instabilities for which the extrapolation to ITER is a major 
issue, and a complex one too, due to their metastable nature. Indeed, NTMs are magnetic islands that 
are linearly stabilized by the combined effect of field line curvature and pressure gradient, but are
non linearly destabilized by the bootstrap current perturbation [2]. The destabilization of these 
modes requires a primary mode, a coupling process with the island, and the seed that is thus 
produced must exceed a critical island width for entering the non linearly unstable NTM branch. 
These three ingredients (primary mode, coupling process, critical island) can all be affected by 
plasma rotation, although in different ways. In particular, there is no consensus on the response of 
the tearing mode to plasma flow and flow shear in realistic tokamak conditions. Early works in slab 
geometry with a reduced MHD model have shown that flow shear has first a destabilizing effect 
on the tearing mode in the sub- Alfvénic regime, either in inviscid [3, 4] or viscous plasma [5], 
before full stabilization is obtained for larger values of flow shear. However, reduced MHD models 
retaining perturbations parallel to the magnetic field (dB||, dV||) predict that flow shear becomes 
stabilizing when the plasma viscosity exceeds a threshold in cylindrical geometry [6], or even in 
inviscid plasma if toroidal geometry is accounted for, due to mode coupling [7]. In the non linear 
regime, predictions are also contrasted. Analytical work assuming a fully relaxed equilibrium in 
slab geometry predicts that the effect of flow and flow shear on the saturated tearing mode should 
be minor [8], while non linear simulations find that saturated islands are reduced in the presence 
of plasma rotation [9, 7]. In addition to this variety of results, it is not obvious that linear current-
driven island physics and non linear pressure-driven NTM physics behave the same. The theoretical 
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basis for interpreting experiments on NTMs, where toroidal curvature stabilization [10, 11], heat 
transport properties [12], and bootstrap current are all potentially interacting with plasma flow, is 
therefore not firmly established.
	 Experiments have addressed an operational issue: establishing the plasma performance, expressed 
with bN (bN = baB/Ip

MA, with b = 2μ0 〈p〉 /B2, 〈p〉 is the volume average plasma pressure, a is the 
plasma minor radius, B is the magnetic field on axis, Ip

MA is the total plasma current expressed 
in MA), above which NTMs are triggered. The result of experimental analysis clearly shows that 
the critical N increases with plasma rotation [13, 14, 15], suggesting an increased (meta-)stability 
of the island. Moreover, the seeding process (primary mode and mode coupling) does not seem 
to be involved in this improved performance with rotation, suggesting that the dominant effect is 
on the intrinsic NTM stability in these discharges performed in the so-called “Hybrid scenario” 
with a safety factor q(0) ~ 1. This interpretation is supported by the observation of a reduction of 
saturated islands with increasing flow shear [16], suggesting a heuristic formula where the effective 
stability parameter Δʹ decreases linearly when flow shear and magnetic shear length are increased. 
A coherent picture has been proposed after these experiments, which can be summarized as follow: 
at NTM triggering, the critical island width is close to zero due to the increase of Δʹ as ideal limit is 
approached [17], and rotation shear allows approaching further the ideal limit by reducing Δʹ [15]. 
Although experimental results could be explained with this model, its theory base and quantitative 
verification of its main feature (i.e. a stability improvement with rotation in linear as well as non 
linear regimes) is missing so far.
	 In the present work, we investigate numerically the impact of plasma flow on the critical island 
width for (2,1) NTM destabilization, i.e. on the intrinsic (meta)stability. Our tool is the non linear, 
full MHD, toroidal code XTOR [1], which has been used with a single fluid and a simplified 
bootstrap current model [18]. The reference equilibrium comes from a JET Advanced Tokamak 
discharge with q > 1, where a (2,1) NTM is observed. Its global stability properties may slightly 
differ from that of q(0) ~ 1 discharges that have been examined in the experimental studies of (2,1) 
NTM threshold with rotation mentioned above. However, the present work was initiated in the view 
of addressing this issue on the hypothesis that plasma flow could have a generic impact on tearing 
modes (we will come back on this hypothesis in the discussion). In contrast with previous works, 
we focus specifically on the NTM threshold issue, in conditions approaching the experimental ones, 
in terms of geometry, field description, and dimensionless plasma parameters, allowing a better 
understanding of what is behind the experimental trend.
	 The paper is organized as follows: physical model is described in section 2, experimental inputs 
in section 3, results on the effect of rotation on NTM threshold in section 4. Then we investigate the 
effect of a simple non isotropic viscous tensor (section 5), and the impact of resistivity in simulations 
(section 6). A discussion on the results obtained in the present work, and their link with experimental 
observations is developed in section 8, and a conclusion follows.
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2. Physical Model
The effect of bulk plasma rotation on NTM is addressed in the framework of the standard single 
fluid MHD model:

			   ∂tr + ∇ · rV 			   = r · D⊥∇r + S 
			   ∂tp + V · ∇p + Gp∇ · V 	 = − (G − 1)∇ · q + (G − 1)H 			          (1)

			   q 				    = − rχ⊥∇p/r − r (χ|| − χ⊥) ∇||p/r 		         (2)
			   ∂tB 				    = ∇ × (V × B) − ∇ ×  (J − JNI)

with D⊥ the particle diffusion coefficient, G = 5/3, χ⊥ and χ|| the perpendicular and parallel heat 
diffusivities. The density is restored by a particle source S = −∇ · χ⊥∇pt = 0, and the pressure is 
equilibrated by a heat source H = −∇ · χ⊥∇pt = 0. Here JNI = Jcd + Jbs is the non inductive current 
density, Jbs is the bootstrap current, modelled as Jbs = Jeq (∇p(t)/∇peq)B/B, and Jcd is the imposed 
current source (Jcd = (J − Jbs)t = 0).
	 We use a momentum equation of the form:

 					    r (∂tV + V · ∇ B) = J × B −∇p + n∇2 V + M			            (3)

withthe viscosity, M = − n∇2 Vsrc the momentum source, and Vsrc the target toroidal velocity profile.
	 This system of equations is solved in toroidal geometry for up-down symmetric plasma cross-
section, by the full MHD non linear code XTOR [1]. The magnetic equilibrium itself is computed 
with the CHEASE code [19], which also provides the equilibrium bootstrap current.

3. Experimental inputs
The experimental discharge that is considered corresponds to an Advanced Tokamak JET pulse 
performed at a magnetic field B = 1.8T, a plasma current Ip = 1.2MA, with a total additional beam 
power Padd = 21MW. The edge safety factor is q95 = 5, and a (2,1) NTM is triggered at t = 7.06s during 
the main heating phase, after an ELM crash. The NTM stability properties of this discharge have 
been described and studied for a static plasma in a previous work [20]. However, the central plasma 
rotation is at about 7% of the Alfvén speed, and the corresponding Mach number is M Section 1 
36%, thus motivating a focus on this particular pulse for studying the impact of toroidal rotation.
	 In the following, we detail the input parameters that have been considered in the simulation: 
magnetic equilibrium, density and velocity profiles, diffusivity and viscosity. When moving from 
the real world to the virtual one that is offered by numerical simulations, our understanding of the 
physics phenomenon is greatly helped by the simplifications offered by the model, by the flexibility 
in the choice of parameters and by all possible synthetic diagnostics. However, computer limitations 
impose some restrictions on the accessible range of parameters, and non linear MHD simulations 

bs
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ψ′(x + σ) - ψ′(x + σ) 
ψ′(xs )

a∆′0 =  lim
σ→0

are still limited in the choice of the plasma resistivity (h), which in the experimental range would 
lead to unreasonable spatial discretisation and computing time. The magnetic diffusivity Dh ≡ h/μ0 
is therefore chosen to be higher in the simulation compared to the experiment. The rescaling of 
resistivity that is applied imposes an appropriate rescaling of the other parameters, in order to keep 
the main physics similar to the real one. This results in

					          tE/tR ~ μ0 χ⊥/h = (μ0χ⊥/ h)exp.

allowing for a consistent dynamics of the plasma current (tR) with pressure driven bootstrap current 
(tE). However, in addition to the heat source H that depends on χ⊥, several physics parameters 
cannot be conserved in this transformation, like the size of the resistive layer (dh,n /h

2/5), or the 
visco-resistive layer (dh,n ∝h)1/6 [21]), and the relative importance of convection (V · ∇p) compared 
to diffusion (∇ · q) in the pressure dynamics that governs the bootstrap drive. We will come back 
on this h-scaling issue in section 6, where the importance of investigating the trend towards the 
experimental Lundquist number will be demonstrated.
	 Other dimensionless parameters can be conserved as they are in experiments, like the magnetic 
Prandtl number Prm μ0n/h. This parameter is important in our study because of its role in the effect 
of flow shear on the linear tearing mode: at low Prm, flow shear has been found to be destabilizing, 
while the opposite holds at high Prm [6].
	 Another ratio that has a strong impact on the island dynamics is χ||/χ⊥ [12]. It determines the 
characteristic island width above which perpendicular heat transport is no longer able to maintain 
the temperature gradient inside the separatrix. This ratio is particularly important in the context of 
NTMs, since it is related to the island size at which the bootstrap effect is maximum. It is therefore 
crucial to keep it constant in the rescaling procedure.
	 The analytical formulation of the neoclassical island dynamics can be written in the form of a 
so-called Generalized Rutherford Equation :

(4)

where the various terms are evaluated at q = 2, S is the Lundquist number (S = tR/tA, with tR = 
μ0a2/h and tA = R0   μ0r/B0), Jbs  (μ0R0/B0)Jeq with R0 and B0 the major radius and magnetic field at 
geometric axis, a the minor radius and W ≡ w/a. The characteristic length scale for the temperature 
flattening in the island is Wχ = 2    2 (χ⊥/χ||)

1/4 /x∈ns, with x =    Φ, Φ is the normalized toroidal 
flux, s = d(log q)/d(log x) the magnetic shear and ∈ = a/R0. The resistive index DR, defined in [22], 
represents the stabilizing effect of field line curvature in a torus [10, 11]. In the Rutherford equation 
above, the Dʹ parameter represents the drive for tearing instability coming from outside the resonant 
layer, and it is defined as

bs

DR

W  + 0.65W

dW
dt0.82S-1             = a∆′(W) -6.35                            + 6.35Jbs

χ χ
2 2 2 2

q
s

W

W  + (1.8W  )
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with  y the perturbed poloidal magnetic flux, and xs the radial position of the resonant surface. In 
the heuristic model of [15], an effect of flow on the effective Δʹ was conjectured, in the form a Δʹ 

(Ls, Lw) = aΔʹ0 +
 CLs/Lw, with C a constant, Ls = qR/s the magnetic shear length, and a/Lw = a d(w/

wA)/dR the rotation shear, with w = Vj/R and wA = VA/R0 = 1/tA.
	 Despite allowing for a very useful and easy framework for understanding the physics of the 
NTM, the Rutherford equation has not an accurate predictive capability (in particular because of 
the absence of a reliable model for Δʹ(W)), as was shown for the saturated or critical island widths 
[23, 20]. Connexion between the flow and the pressure dynamics in our problem increases the 
complexity of the interactions between the separate pieces of the Rutherford equation (bootstrap, 
curvature, resistivity, and possibly Δʹ). The use of comprehensive non linear MHD computations 
is therefore mandatory for clarifying the situation in real experiments, keeping in mind however 
that at least one dimensionless parameter, the Lundquist number S, cannot in general (as for the 
present work) be taken equal to its experimental value.

3.1. Magnetic equilibrium
The magnetic equilibrium is taken from a reconstruction by EFIT code, constrained by Motional 
Stark Effect (MSE) measurements, as well as polarimetry and pressure measurements. Thus, the total 
pressure is an input from this equilibrium reconstruction. The separatrix is fitted in the mean least 
square sense by an up-down symmetric shape in order to be compatible with XTOR constraints, and 
the equilibrium is then computed again using the CHEASE code, which also provides the bootstrap 
current profile. The total bootstrap current fraction used in the simulations is fbs = 0.38, a value 
that is close to the one given by the NCLASS module [24] implemented in TRANSP [25], which 
gives fbs = 0.34. The local bootstrap current (at q = 2) represents 36% of the local parallel current.

3.2. Density profile
The density profile is given analytically in XTOR, but it fits very well the experimental one (as 
measured by LIDAR technique) up to the top of the pedestal region (figure 1).

3.3. Velocity profile and its shear
Velocity shear, differential velocity (between the mode and its coupled harmonics), and absolute 
velocity could have different effects on the island dynamics. In toroidal geometry, differential velocity 
has been shown to be the most important stabilizing effect, while velocity shear at the resonance 
was reducing this stabilization [7]. In slab geometry, the effect of velocity shear is mixed with the 
absolute flow [4]. In order to address different situations, we have considered two different toroidal 
velocity sources having different velocities at q = 2 for the same rotation shear. These are expressed 
as functions of the normalized poloidal magnetic flux y as:
			   Low V : Vj ∝ (1 −  y2)2 p/r			 
			   High V : Vj ∝ (1 − 0.9y  + 0.23y4)
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The two velocity profiles and the corresponding velocity shears are shown in figure 2, together with 
the experimental profile. Note that the implementation of the velocity source insures that with these 
sources the resulting equilibrium flow will have essentially a toroidal component and a negligible 
poloidal component.
	 We show in figure 3 the relation between the rotation shear and the plasma flow (normalized 
to the Alfvén velocity) at q = 2 (on the low magnetic side, at R = 3.55m). An error bar of 5cm in 
the position of q = 2 in the experiment has been considered for determining the error bars on the 
toroidal flow and the flow shear.
	 It is worth noting that the level of flow shear and magnetic shear length, in the experiment that 
is considered, is far below the point where full stabilization of the tearing mode was predicted in 
analytic theory [3, 4]. The stability condition in [4] is of the form |Gʹ| ≥ |Fʹ| with Fʹ = −a/Ls, Gʹ =
− ∈/q(V + xa/Lw) and V = v/VA, so that full stabilisation corresponds to:

In the experiment considered, we have (at q = 2 where x ≡    Φ = 0.54) V ≈ 0.03, a/Lw ≈ −0.07, 
Ls/a ≈ 7, and ∈ ≡ a/R0 = 0.292. This gives |Ls/Lw| ≈ 0.5, while full stabilisation is predicted 
above the threshold value |Ls/Lw|crit ≈ 60. Note that the control parameter NFS −Ls/Lw used to fit 
experimental results in [15], is in our case NFS ≈ 0.5. This is about the maximum value that has 
been obtained in these experiments, so that our study covers a comparable range of rotation shear 
as the experiments. For |Ls/Lw| ≈ 0.5, the bN threshold for (2,1) NTM was observed to be increased 
by one unit compared to the static case (bN ~ 3 compared to bN ~ 2). The rotation effect is therefore 
expected to be significant.

3.4. Heat and particle diffusivites
The perpendicular heat diffusivity is determined in TRANSP from a power balance analysis 
(involving Neutral Beam and Ohmic heating in the experiment considered here). Since we evolve 
the total pressure, it is the effective diffusivity that is considered for XTOR simulations. The 
perpendicular diffusivities given by TRANSP and used in the simulations are shown in figure 4. 
The ratio χ||/χ⊥(0) is equal to 108 in the simulations, a value that is consistent with experimental 
evaluation taking into account the heat flux limit [20]. This gives Wχ = 0.038 and a theoretical 
peak of the bootstrap drive at W ≈ 1.8Wχ ≈ 0.07 following the analytical formulation of equation 4.
	 The particle diffusion coefficient D⊥ is taken equal to χ⊥. The radial profile of χ⊥ and D⊥ in 
XTOR are such that μ0 χ⊥/h = Cste, an assumption that is reasonable for most of the plasma volume 
of interest for our study (the q = 2 surface is at    Φ = 0.54) as shown in the bottom plot of figure 
4. The parallel heat flux is taken as constant radially in the simulations.

q/∈
x + VLω/a> ≡Ls

Lω

Ls
Lω

crit
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3.5. Viscosity
Perpendicular plasma viscosity is generally expected to be small, allowing turbulence and MHD 
modes to develop as observed. From the theory of collisional transport in a magnetized plasma, the 
perpendicular viscous coefficient is [26, 27]:

with

the ion collision frequency, wci = eiB/mi the ion cyclotron pulsation, and ln� Λ ≈ 17. For the 
experimental case that is considered, we find   m0n⊥,coll./ h ~ for Zi = 1, but this value is underestimated 
due to the presence of impurity ions (the line integrated Zeff is around 2.2). If we take for example 
Zi = Zeff , we get m0n⊥,coll./ h of the order of unity.
	 Anitropic viscous forces also arise from the neoclassical stress tensor. In the banana regime, 
the neoclassical viscous coefficient is proportional to the ion collision frequency: nneo ∝ a2ni [28], 
and is generally larger than the classical viscosity. We have not considered this component of the 
viscous tensor in the numerical applications, but we will come back on it in the discussion.
	 Finally, the viscous force in the toroidal direction can be determined experimentally from the 
toroidal momentum balance. This is done in the TRANSP code after calculating the torque induced 
by Neutral Beam Injection (NBI) into the plasma. The toroidal viscosity nj is then found to be 
comparable to ion diffusivity, and about 2 orders of magnitude higher than the collisional estimate 
(figure 5). The connection between heat diffusivity and toroidal viscosity is explained by the fact 
that they are both consequences of the turbulent transport [29]. Note that, in the simulations, the 
viscosity coefficient is constant (in space and in time), leading to a non-constant radial profile of 
Prm. At q = 2 (    Φ  ≈ 0.54), the actual value of Prm is about a factor 3 below its central value.
	 The extrapolation to ITER will depend on what part of the magnetic Prandtl number is important 
for the NTM dynamics. The toroidal part will give Prmj ≡ μ0nj /h ≈ μ0χ⊥/h ∝ b/n* � if we assume a 
gyroBohm scaling of perpendicular diffusivity,with n* ≡ a/vTe and vTe     2Te/me. The perpendicular 
part due to classical collisions will scale as Prmcoll. ≡ m0n⊥/h ∝ b  [26], while the neoclassical 
part will scale as Prmneo ≡ m0nneo/h ∝ b/�r*2. Considering that the main changes will be on size 
(r*�) and collisionality � in ITER, we can conclude that the perpendicular collisional Prm will not 
be significantly different in ITER, the neoclassical part will be a factor ~ 5 above the present JET 
case, while the toroidal part will be about one order of magnitude higher (using aJET ≈ 0.86m, BJET 
= 1.8T, and aITER ≈ 2m, BITER ≈ 5.3T).

4. Rotation effect on NTM threshold
4.1. Procedure
The procedure for determining the critical island width is the following. First, the plasma rotation is 

2v⊥coll  = 0.3 
Tivi

miωci

vi = 
4   π

3
e4 Zi

4

(4π∈0)2
ni ln Λ

mi
1/2 mi

3/2
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h h

h h

established with the prescribed source Vsrc. Since resistive modes are linearly stable, the non linear 
evolution only affects the n = 0 components at this stage. When a stationary n = 0 state is reached, 
a seed island is inserted into the plasma. This seed has been obtained by amplifying the bootstrap 
current by a large factor (a similar result can be obtained by reducing the Lundquist number to low 
values), allowing the tearing mode to enter a linearly unstable regime [30]. The size of the island is 
determined by a Poincaré plot of the field line trajectories, and converted in the normalized toroidal 
flux flux coordinate   Φ to give W = w/a. The seed island size is varied by a scaling factor, and 
increased stepwise until a non linear growth of the (2,1) mode energy is obtained.
	 For the simulations, we take S(0) = 107 (instead of S(0) ~ 4 × 108 in the experiment). The radial 
resolution is 400 grid points, toroidal modes n = 0, 1 are evolved (we used 8 toroidal intervals to 
avoid aliasing), and the poloidal discretization consists of 128 Fourier modes.
	 As the island is inserted into the rotating plasma, oscillations of the magnetic energy are observed. 
Two examples of time evolution of the magnetic energy of the (2,1) mode are shown in figure 6, 
one at low Prm (left plot), and the other one at high Prm (right plot). Three characteristic pulsations 
are observed. At low viscosity (Prm = 2) and high rotation, oscillations at the Alfvén pulsation (wA = 
VA/R0, wA(0) ≡ 1/tA and wAtA ≈ 0.9 at q = 2) are observed in the initial phase (as in figure 6, left 
plot). These Alfv´en waves have only been observed in a low Prm, high velocity case, and they 
are damped in about 100A. More commonly, energy oscillations at the sound wave pulsation (ws 
= cs/R0 and ws tA ≈ 0.13 at q = 2) are observed just after the introduction of the seed (as in the two 
examples of figure 6). They are damped in about 1000tA. Finally, oscillations slower than the sound 
wave frequency are observed (figure 6, right plot), and the pulsation of these oscillations depends 
on the equilibrium plasma flow shear rather than on the flow itself (figure 7). These waves need 
more than 10000A to be damped.
	 The comparison between experimental and simulation times requires a rescaling of the time 
scale

Dt[s] = (Dsim /Dexp ) tADt

where t is the simulation time (normalized to the Alfvén time tA ≈ 7.35 × 10-7s) and Dh ≡ μ0 is the 
magnetic diffusivity. For simulations at S = 107, we have Dsim /Dexp  ≈ 40, and this translates into 
Dt[s] = 2.94 × 10-5 t. Using this transformation rule, we can for example evaluate the characteristic 
time that is necessary for heat diffusivity to restore the pressure gradient in the seed:  tc ~ w2/c⊥. 
For the typical seed size W = w/a ~ 0.05 that we deal with in the present work, and with c⊥ ~ 5m2/s 
around q = 2 (   Φ  = 0.54), this gives a relatively short characteristic time tc 4×10-4s. In simulations 
performed at S = 107, this represents (tc/tA)sim = (Dexp /Dsim)   (tc/tA)exp ≈ 10. This value increases 
as the Lundquist number is increased towards its experimental value S ~ 40×107, where (tc/tA)exp 
≈ 500.
	 The neoclassical nature of the instability is revealed by looking at the bootstrap hole that develops 
at the O-point of the island. This is shown in figure 8 where a poloidal cross-section of the toroidal 
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component of the bootstrap current is plotted after the introduction of a seed Wseed = 0.053, 
together with a Poincar´e plot showing the island separatrix. In non linearly stable situations, this 
hole progressively vanishes, whereas it increases as the NTM branch is accessed. We quantify the 
hole in the bootstrap current by calculating dJbs ≡ Jbs − Jbs, where X and O refer to the island X and 
O points.

4.2. Numerical results
The value of the critical island width for the excitation of a (2,1) NTM has been determined for the 
two velocity profiles in the range of experimental flow shear, and for viscosities corresponding to 
Prm(0) equal 2 and 100. Detailed results for the ’High V’ case with Prm=2 are shown in figure 9. 
From top to bottom, the figure shows the evolution of the island width on q = 2, the amplitude of 
the bootstrap perturbation Jbs, and the bootstrap at the O-point of the island. These plots are shown 
for the static case (left plot) and for rotating cases with increasing rotation shear (right plots). We 
only display here two levels corresponding to the highest stable (O) and the lowest unastable seed 
(    ). At an island size of about W Section 1 0.06, which corresponds approximatively to the critical 
size above which heat transport is no longer able to restore the pressure gradient (see section 3.4), 
the bootstrap at the O-point is close to zero (see bottom plot of the static case on the left). Then, the 
NTM enters a phase of negative bootstrap at the O-point. As saturation is approached and island 
growth slows down, the bootstrap at the O-point tends to zero. In simulations where momentum 
source is non-zero, the island and bootstrap dynamics are much softer, and become slower as rotation 
is increased. Equilibrium flow initially reduces the amplitude of the bootstrap current perturbation, 
before the non linear drive is (or not) taking over. In most cases with a non zero momentum source 
(except at Prm=100 and S = 5 × 107, see section 6), the island dynamics is too slow to access the 
critical size where the bootstrap at the O-point becomes negative within the computation time 
necessary to discriminate between stable or unstable seed.
	 Results are shown in figure 10 as a function of the flow shear (left plot) and as a function of the 
flow (right plot) at q = 2.
	 The first observation is that for a given rotation profile, the variation of Prmbetween the collisional 
value and the turbulent one results in a significant increase of Wcrit, of about 20%. This motivates 
investigations on the behaviour of the MHD mode in a more realistic situation with anisotropic 
viscosity, for which a preliminary study is presented in the next section.
	 The second observation is that for a given Prm, the effect of plasma rotation on the critical island 
width is moderate (about 5% within the experimental range of a/Lw), Prm being small or large. This 
result is therefore not in agreement with experimental observations. Several possible explanations 
for this contradiction will be investigated in the following sections: a possible interplay between 
the direction of rotation and the anisotropic viscosity, or a role of the parameter domain in which 
simulations are performed, i.e. a role of the Lundquist number.

X O
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5. Anisotropic viscous tensor: results from a simple model
We have seen that the magnetic Prandtl number has a significant impact on the NTM threshold, 
although this impact is weakly dependent on plasma rotation. In this section, we investigate the 
consequence of taking a non isotropic viscous tensor in the momentum equation. As a first step, 
we just separate the toroidal component of the viscous force, which we assume to be dominated by 
turbulent viscosity (nj ≈ c⊥ and Prm10 100), from the other components which we assume to be 
dominated by collisional viscosity n ≈ ncoll and Prm ~ 2). The momentum equation is then:

		    	      r (dtV + V · ∇V) = J × B − ∇p + n∇2V + (nj − n)(∇2V)j + M		         (5) 

with a momentum source M = −(nj− n)∇2Vsrc. In the toroidal direction, we get therefore to leading 
order a viscous force Fj ≈ nj d

2(V’)/dx2 that is formally comparable to the toroidal momentum 
diffusion driven by turbulence.
	 The critical island width for anisotropic viscosity is found to be dominated by the collisional, 
non toroidal, component of the viscous force (see figure 11). This result is consistent with the usual 
picture that MHD perturbations develop in the direction perpendicular to the magnetic field, but the 
results obtained in reduced MHD with parallel components seemed to suggest that they could play 
a role in presence of rotation. Our simulations show that it is not the case (at least with the simple 
anisotropic model we used). The only signature of the higher toroidal viscosity is the stronger 
damping of Alfvén waves, as shown in the right plot of figure 11.
	 We can therefore conclude that the dimensionless parameter Prm that is used in simulations 
should not be based upon its toroidal component, but rather upon its perpendicular component. 
The classical value that we have considered here scales like  and is therefore in the correct range 
for extrapolating to ITER. However, the neoclassical part, which we have not considered here but 
scales as b/r�2, will be higher in ITER.

6. Investigations at higher Lundquist number
In this section, we investigate the validity of the -scaling rule, by computing the critical island 
width at a smaller magnetic diffusivity Dh (closer to the experimental one) while keeping other 
dimensionless parameters (Prm, μ0c⊥/h and c||/c⊥) constant. In the experiment, the Lundquist number 
at magnetic axis is about S ≈ 40×107, i.e. a factor ~40 above the one used in previous simulations. 
We have thus performed numerical experiments at S = 2 × 107 in order to assess the impact of this 
parameter on the non linear NTM threshold.
	 As mentioned earlier, the rescaling imposed by taking a larger resistivity in the simulation has 
consequences on the width of the resistive layer, (dh ∝ S−2/5), or the visco-resistive layer (dh,n ∝ 

Prm1/6 S−1/3 [21]), on the heat source H, and on the relative importance of convection and diffusion 
in the pressure dynamics that governs the bootstrap drive. Indeed, with μ0c⊥/ h = Cste, the convection 
term V · ∇p is unchanged as S is increased in the simulations, diffusion term will be smaller since
c⊥∇⊥

 p = CsteS−1 ∇⊥p and c||
 p = CsteS−1(c||/c⊥)∇||p.2 2 22
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We use the equivalent real time scale (see section 4) for comparing simulations at different Lundquist 
numbers.
	 We show in figure 12 the island dynamics just below and above the threshold at S = 107 and S 
= 2 × 107, in the low Prm regime (Prm=2). The island evolution is slower, and it takes more time 
to discriminate between stable and unstable seeds. But considering the first 20×103tA (Dt[s] ~ 0.3s), 
it appears that the lowest unstable seeds at S = 107 (circles) are stable at S = 2 ×

 107 for finite flow 
cases. The threshold is therefore moving up when increasing S, and the change is more significant 
for finite but small flow, resulting in a destabilizing effect of flow.
	 For the static case (no rotation source), the opposite trend seems to hold, with a slightly lower 
threshold at S = 2 ×

 107. The apparent saturation at S = 2 ×
 107 for the static case is significantly 

below its size at S = 107. This may correspond either to a state that is not the final saturation of the 
island, or indicate a dependence of saturated width on the Lundquist number (note that a reduction 
of saturation width while increasing S was also reported in [31] using a cylindrical reduced MHD 
non linear model).
	 At high Prm, numerical constraints are less stringent due to the damping of small structures, 
allowing in addition larger time steps. Investigations could therefore be extended to S = 5×107. The 
island dynamics above and below the threshold are shown in figure 13. Several observations can be 
made. First, the conversion into the equivalent experimental time shows that the NTM dynamics 
predicted by the simulation becomes faster as S is increased. Second, the perturbed bootstrap 
current dJbs that remains after the initial transitory phase is increasing with S, although the seed is 
comparable or smaller. This points towards a role of the heat source in this change: at lower S, the 
heat source is larger due to the Sc⊥ scaling rule, and may partly compensate for the bootstrap hole 
created by the seed. Although the consequence on the critical island width is not important up to
S = 2 × 107, this phenomenon results in a significant decrease of Wcrit in the S = 5 × 107 simulations. 
This effect is however absent in low Prm simulations, where after the transitory phase dJbs is lower 
at higher S for the same seed (see  symbols in figure 12).
	 These numerical experiments accross the Lundquist parameter domain show the complexity 
of the NTM behaviour in presence of flow, where different physics mechanisms are at play for 
deciding on the non linear behaviour of the mode. We find that both the critical island width and the 
effect of rotation are strongly affected when moving closer to the experimental domain in S while 
keeping other dimensionless parameters constant, and the value of the magnetic Prandtl number is 
playing a crucial role in determining the overall trend. The picture that emerges can be summarized 
as follows (figure 14).

•	 At low Prm, the static case behaves differently compared to the rotating ones, with a thresholds 
that decreases with S. But from the lowest rotating case considered, increasing S stabilises the 
NTM, resulting in a higher non linear threshold. However, this stabilization is less effective as 
rotation shear is higher. As a result, closer to the experimental domain in S, a clear destabilizing 
effect of rotation shear appears.
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•	 At high Prm, moving to higher S leads to a more unstable NTM (lower non linear threshold), 
an effect that could be due to the lower heat source, and would be therefore a consequence 
of the -scaling rule which links S and ?. Rotation shear does not affect significantly the value 
of the non linear threshold, in the range of S that is covered.

These results are reminiscent of some properties previously obtained in the linear regime. For 
example, they suggest both a change of the rotation effect with Prm, and a S-dependence of this 
change, as found in [6]. However, no stabilizing effect of rotation is found in the high Prm regime 
up to S = 5 × 107. This may appear above the S range that has been addressed. Also, the dynamics of 
the mode reacts differently to the change of the Lundquist number at low and high Prm. In presence 
of rotation, the mode dynamics in the viscous regime (Prm = 100) is faster when increasing S. This 
is reminiscent of the linear regime with viscosity, where indeed the growth rate could be comparable 
or higher in presence of finite viscosity in situations of significant rotation shear (whereas high 
viscosity otherwise reduces the growth rate) [5]. Besides these links with the linear tearing mode 
behaviour, our simulations show that the overall NTM stability in rotating plasma is determined 
by competing mechanisms and results in a more complex picture.

7. NTM and its impact on equilibrium flow
In this section we investigate the effect of the magnetic island on the plasma flow. The radial structure 
of the n = 0 component of the toroidal flow and toroidal flow shear along the equatorial plane in 
the experiment and for the ”High V” case that is the closest to the experiment, with Prm = 100 and 
Prm = 2, are shown in figure 15. We note t0 = 7.06s the time when the (2,1) NTM is triggered in 
the experiment, and the equivalent experimental time is computed as explained earlier: Dt[s] = 2.94 
× 10−5 t (for S = 107).
	 We find that the presence of the NTM does not strongly affect the toroidal rotation in the Prm = 
100 simulation. Conversely, at Prm = 2, the equilibrium toroidal flow has a fine dipolar structure 
around the resonance that is generated by the island. This equilibrium flow generation also exists in 
simulations with anisotropic viscosity, and is therefore associated with the low perpendicular Prm. 
In the experiment, no significant modification of the toroidal rotation profile is seen by the Charge 
Exchange diagnostic during the island growth. In order to do better comparison between experiment 
and simulation, we calculate the toroidal rotation profile at a radial resolution corresponding to 
that of the Charge Exchange diagnostic (DR ~ 7cm, while the radial resolution of the simulation is 
(DR ~ 0.2cm). We resample the equilibrium toroidal velocity profile from XTOR using all possible 
combination of points equally spaced by 7cm, thus getting a set of 35 synthetic diagnotics having 
the specified radial resolution but different lines of sight. We then compute the average radial 
position, the average toroidal velocity and the average velocity shear parameter a/Lw from the set 
of synthetic Charge Exchange diagnostic. The error bar corresponds to the difference between the 
extremum and the averaged values. This excercice shows that the fine dipole structure produced 
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by the (2,1) NTM is not easily accessible from the Charge Exchange diagnostic in general, except 
when the lines of sight are close enough to the island position where the modification of the 
equilibrium flow could be observed. The absence of this structure in the measurement does not 
formally prove that Prm is larger than 2, but it suggests at least that a larger Prm is more likely 
to be applicable to this plasma.

8. Discussion
The main results that have been obtained and reported in this paper are the following:

•	 Investigations in the Lundquist number domain while keeping other dimensionless parameters 
constant has proved to be essential for extrapolating to experimental regimes. Indeed, 
exploring various S has evidenced significant variations of the non linear threshold as well 
as its dependence on rotation shear.

•	 Extrapolating the trend that is found towards realistic values of the Lundquist number suggests 
that rotation shear has a destabilizing effect at low Prm and a neutral effect at high Prm. This 
is similar to the picture obtained previously in the linear regime, except that the stabilizing 
effect is not recovered. In terms of absolute NTM threshold, we find opposite trends at high 
and low Prm, with a more stable NTM at low Prm compared to high Prm.

•	 A large toroidal component of Prm does not affect significantly the behaviour of the island 
which remains influenced by the perpendicular Prm.

The reason why experimental observations, showing such a stabilizing influence of
rotation, are not recovered in simulations, could originate from different factors:

•	 Non linear simulations are not performed with the adequate physics model: by investigating 
NTM frequency in the plasma frame, experimental observations did not evidence any role 
of polarization effect [13], so that using a bi-fluid model is not expected to better reproduce 
the physical mechanism at work in experiments from this effect. However, the viscous tensor 
model is still very simple, and a more realistic description of viscous forces would be desirable. 
In particular, the poloidal rotation associated to the neoclassical presure tensor could affect 
the threshold more than the toroidal rotation that has been investigated here, although the 
rotation dependence of the NTM threshold that has been reported experimentally relates to 
scans of the toroidal rotation.

•	 Non linear simulations are not in the proper parameter domain: as indicated by our h-scaling, 
it may be that going to relevant Lundquist numbers, with a relatively large Prm due to 
neoclassical physics, the NTM threshold would become much smaller and possibly lead to 
seedless triggering, i.e. linearly unstable island. The effect of rotation does not seems to become 
more clearly stabilizing at high S, but we still remain a factor ~8 below the experimental value 
however.

•	 Non linear simulations are not addressing the same kind of equilibrium as the original 
experiments. In particular, we are far enough from ideal limit to get relatively large threshold 
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for NTM excitation, in contrast with the experiments for which the threshold is suspected 
to be very small due to the so-called ”Δʹ pole”. The boundary condition of our numerical 
simulations (ideal wall at the plasma boundary), tends to push the ideal limit to higher values 
that in the experiment, and may result in missing the 0 increase. In addition, a role of the 
ideal instability in the NTM triggering itself is not to be excluded, as a ballooned kink-like 
structure is often observed in the initial phase of the NTM growth as reported in [32, 20]. As 
mentionned above, however, if Prm is large, small NTM threshold can also be expected at 
large S.

Another output from our work concerns the role of plasma viscosity (through the magnetic Prandtl 
number Prm) in the dynamics of NTMs. We find that the toroidal Prm, that is deduced from toroidal 
momentum balance and explained by the connection between the anomalous heat diffusivity and 
its momentum counterpart, does not impact significantly the dynamics of the NTM, which remains 
dominated by the perpendicular viscosity. However, we have indications that the Prm value deduced 
from classical collisions is too weak to reproduce the observed non linear dynamics of the mode. 
First, the time scale of the NTM growth in the experiment was found to be similar to the static 
case [20]. This means that the low Prm case results in a dynamics that is too slow compared to the 
experimental one. It is only in the high Prm simulations that we have a growth that is not damped 
by plasma flow. Second, the impact of the mode on the equilibrium toroidal flow does not show any 
sign of the dipole structure expected from simulations at Prm = 2. Although the resolution of the 
diagnostic does not allow excluding a situation where the line of sight would miss this structure, it 
seems more likely that this structure is simply absent, as in simulations with Prm = 100. The fact 
that the perpendicular Prm could be influenced by neoclassical physics in present and future plasma 
experiments suggests that Prm could be significantly larger than its collisional value, and will be even 
larger in ITER because it scales as b/r*2. Note however that the dimensionless parameter Pr/Prm 
μ0c⊥/ h⊥ will also be higher since it scales as  The role of this parameter in the NTM threshold and 
its sensitivity to plasma rotation remains to be addressed in more details, but previous simulations 
performed at S = 107 indicated lower (2,1) NTM thresholds at both low and high Prm when μ0c⊥/h 
was increased from 150 to 600 [33].

Conclusions
In the present work, the dependence of (2,1) NTM threshold on rotation has been addressed by 
performing numerical experiments with a full MHD non linear code in toroidal geometry. These 
investigations, based on a representative Advanced Tokamak discharge from JET, were intended 
to better understand experimental results showing an increase of the N threshold for (2,1) NTM 
triggering as rotation shear (and more precisely Ls/Lw) was increased. We find that plasma rotation 
tends to have a destabilizing effect on NTMs at low Prm, while it remains neutral at high Prm in 
the range of Lundquist number that has been investigated. The use of a simple anisotropic viscous 
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tensor also demonstrates that it is the perpendicular (to the magnetic field) value of Prm that 
matters for the NTM dynamics. The favourable effect of rotation that is found experimentally is 
therefore not a generic feature. We envisage two main possibilities for the disagreement between 
our numerical investigations and experimental observations. First, the domain of resistivity that 
has been investigated could be still too far from the experiment, since we find that the resistivity 
scaling influences both the NTM threshold and the effect of rotation. The second possibility is 
that we address a situation with relatively large thresholds while experimental observations report 
seedless or marginal thresholds due to the proximity to ideal limit. The favourable influence of 
rotation may therefore be enhanced in situations where the island is closer to marginal stability, or 
where an ideal mode (modified by finite plasma or wall resistivity), similar to the kink-like structure 
that is sometimes observed on JET, is contributing to the NTM growth. Finally, investigating the 
viscosity issue in a more comprehensive neoclassical model would be desirable, with an associated 
Prm that scales like b/r*2, and will become higher in ITER.
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Figure 1: Density profile: experiment and simulation 
inputs.

Figure 2: Toroidal rotation (top) and rotation shear 
(bottom) profiles: experiment and simulation inputs. The 
position of q = 2 in the simulations is indicated.

Figure 3: Rotation versus rotation shear: experiment and 
simulation inputs.

Figure 4: Heat diffusivity (top) and ratio Prm/Pr (bottom) 
from TRANSP. The values used in XTOR simulations are 
shown with dashed lines in the bottom figure.
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Figure 5. Collisional Prandtl number for Zi = 1 and Zi = 2, and toroidal Prandtl number from Momentum Balance 
(MB) in TRANSP.

Figure 6: Oscillations of (2,1) magnetic energy after introduction of the seed island in ”High V” simulations. At low 
viscosity and high velocity (left), characteristic pulsations are w ~ ws and w ~ wA (insert); oscillations at w ~ ws are 
rapidly damped (right, insert), and larger ones well below ws remain for a longer time.
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Figure 7: Characteristic pulsations of (2,1) magnetic 
energy as a function of flow shear parameter.

Figure 8: Contour of toroidal bootstrap current density for 
the High V case with −a/Lw = 0.071 and Wseed = 0.053, 
at t/tA = 5081, together with a Poincaré plot showing the 
island separatrix.

Figure 9: Island (top), bootstrap current perturbation (middle) and bootstrap current density at O-point (bottom) as 
a function of time for the different flow amplitudes in the ”High V” case, and for Prm = 2.
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Figure 10: Critical island width as a function of the flow shear (left) and flow (right) at q = 2.

Figure 11: Critical island width as a function of rotation shear for isotropic and anisotropic viscosity (left); Island 
width dynamics in the high rotation shear case (right).
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Figure 12. At Prm = 2: Island width (top), bootstrap current perturbation (middle) and bootstrap current density at 
O-point (bottom) as a function of the equivalent experimental time at S = 2×107 (full lines) and S = 107 (dotted lines) 
for the different flow amplitudes in the ”High V” case. Symbols      and     represents respectively the unstable and 
stable seeds; the symbol  represent the dynamics at S = 2 × 107 of the lowest unstable seed at S = 107.
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Figure 13: At Prm=100: Island width (top), bootstrap current perturbation (middle) and bootstrap current density 
at O-point (bottom) as a function of the equivalent experimental time at various S for the different flow amplitudes in 
the ”High V” case. Symbols      and      represents respectively the unstable and stable seeds at S = 107, S = 2 × 107 

and S = 5 × 107.
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Figure 14. Critical island width as a function of rotation shear at Prm = 2 and Prm = 100 (”High V” case) for several 
Lundquist numbers.

Figure 15. Impact of the (2,1) NTM on the n = 0 component of the toroidal flow (top) and toroidal flow shear (bottom) 
in the experiment (left), and in the simulations (“HighV” rotation profiles, right) at Prm = 100 (middle) and Prm = 2 
(right). For Prm = 2, the flow shear has been calculated with the XTOR resolution (DR ~ 0.2cm), and with a resolution 
corresponding to that of the Charge Exchange diagnostic (DR ~ 7cm).
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