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ABSTRACT
Nonlinear MHD simulations with the JOREK code may be used to improve our understanding of 
Edge-Localised-Modes (ELMs) [1,2,3]. These H-mode related instabilities may cause some damage 
to the tungsten divertor of ITER [4], and it was demonstrated experimentally that the ELM energy 
losses increase with both machine size and decreasing collisionality [5,6]. In sight of producing 
simulations of ELMs in ITER, in order to give some predictions of ELM size and divertor heat-
fluxes in the future device, simulations first need to be quantitatively validated against experimental 
data of present machines.
	 This paper presents simulations of ELMs in the JET tokamak, for the low-collosionality type-I 
ELMy Hmode Pulse No: 73569. The simulation results are compared to experimental data to 
provide a qualitative validation of simulations. This comparison comprises the dynamics of filaments 
and divertor heat-fluxes, the effect of resistivity and collisionality on ELM energy losses, and the 
observation of ELM precursors prior to the pedestal collapse.

1.	 Introduction
1.1 Goals and Motivation
At present, it is commonly agreed that the most successful tokamak scenario, in view of producing 
fusion energy, is the type-I ELMy H-mode. In fact, Edge-Localised-Modes are necessary for steady 
plasma operation, since they evacuate the excess of density and impurities from the plasma core. 
The type-I ELMy H-mode is planned to be the basis operational scenario for the future device ITER. 
However, and although ELMs are necessary, these instabilities may cause some rapid erosion of some 
Plasma-Facing Components - especially the tungsten divertor [4]. In fact, it is natural that the amount 
of energy released by ELMs increases proportionally with the machine size, leading to larger ELM 
heat-fluxes in larger machines such as ITER and DEMO. But in addition to the increase in size, it 
has been shown in some experimental studies that when going towards lower collisionality - higher 
temperatures needed for fusion - the amount of ELM energy losses relative to the pedestal energy 
DWELM/Wped increases as well [6]. Together, these two predictions prospect that large type-I ELMs 
in ITER will cause heat-fluxes that could significantly damage divertor materials, which would in 
turn limit plasma operation. There are some ELM-control tools and techniques - Resonant Magnetic 
Perturbations, pellets, kicks - which were developed to reduce the impact of ELMs on the PFCs, 
but although these tools work reasonably well, the understanding of their mechanism is yet poor. 
The understanding of basic ELM physics could help determine the mechanisms of ELM-control 
tools, and it could also help predict the size of ELMs and related heat-fluxes in bigger devices. In 
addition, advanced knowledge of ELM physics could be used to develop new ELM-control tools.
	 There is already some advanced knowledge of linear MHD properties of ELMs, relying on 
the peelingballooning theory for stability limits of edge currents and pedestal pressure gradients 
[7,8,9,10]. There are also some intuitions that ELMs would be caused by the pedestal pressure 
gradient rather than the parallel current at the edge [11,12]. And some work has also been dedicated 
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to the nonlinear behaviour of ELMs, with mainly two different opinions: that ELMs are explosive 
instabilities [13], or that ELMs are interchange-like instabilities [14]. However, a most efficient way 
to improve our understanding of the nonlinear evolution of ELMs remains the numerical simulations. 
Many nonlinear codes have been developed in recent years [1,15,16,17], and their results are all in 
reasonable qualitative agreement, both with one another, but also with experimental observations. 
In particular, a filamentation of the plasma edge into the Scrape-Off Layer (SOL) is observed, with 
strong heat-fluxes on the divertor and a significant ergodization of the separatrix. In this paper, 
simulations of the 3D nonlinear MHD code JOREK are presented.
	 Although nonlinear simulations of ballooning modes may be used to improve our understanding 
of some basic ELM physics, relying on qualitative comparisons with experiments (filaments, 
heat-fluxes), a more advanced understanding should rely on a robust, quantitative validation of 
simulations against experimental data. In particular, nonlinear simulations may be used to give 
coherent predictions for ITER only if the numerical code has first been thoroughly validated. In 
sight of providing such a quantitative validation against experiments, one first needs to produce 
simulations of realistic plasmas, with correct magnetic geometry, and pressure and current profiles. 
Here, we present simulations of Edge-Localised-Modes for the JET tokamak, using the type-I 
ELMy H-mode Pulse No: 73569, referenced as a low collisionality shot [18]. The study is laid out 
as follows. The second part of this section introduces the basic characteristics of the JOREK code, 
including the reduced MHD equations used for simulations. Section2 describes how experimental 
data for Pulse No: 73569 has been used to provide a coherent plasma equilibrium in JOREK, 
respecting the magnetic geometry of JET, and using pre-ELM pressure profiles with steep pedestal 
gradients. In the second part of Section2, this JET equilibrium is tested for its ideal MHD stability 
with respect to ballooning modes, using the HELENA equilibrium code [19], and the effect of 
the equilibrium poloidal rotation on the linear stability of ballooning modes is studied, as in [3]. 
Section3 deals with the simulation of ELMs using this JET equilibrium as a basis; it is divided into 
three sub-sections. The first part concerns the filamentation of the plasma edge into the SOL, the 
second part describes divertor heatfluxes and parallel transport in the SOL, and the third part aims at 
a qualitative validation of simulations by producing collisionality scans for the ELM size. Section4 
ends the paper with an overview of the results and future prospects. These simulation results are 
compared to experimental observations.

1.2 The Numerical Tool: JOREK
The JOREK code is a 3D nonlinear MHD code that has been developed with the specific aim to 
produce simulations of Edge-Localised-Modes [1,20]. It uses a poloidal grid built with isoparametric 
cubic Bezier finite elements [20], which are a generalization of the Hermite finite elements used in 
the HELENA equilibrium code [19]. The advantage of this generalization is that Bezier elements 
enable the refinement of isolated grid elements, although such localised refinement is not used for 
the simulations presented in this paper. The isoparametric property of the elements means that the 
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continuity of all variables and their derivatives is satisfied, including the poloidal space coordinates 
(R,Z). This finite element grid is aligned to equilibrium flux surfaces for both closed and open flux 
surfaces in X-point geometry, thus representing the three regions of the core, the Scrape-Off-Layer 
and the private region. The alignment of the grid with open flux surfaces in the SOL enables accurate 
treatment of fast parallel transport of energy along magnetic field lines. The toroidal dimension is 
represented by Fourier series.
	 The time-discretization is done using the fully implicit Crank-Nicholson scheme for all equations, 
so that temporal evolution is not restricted by the grid size, as in explicit schemes. The size of time 
steps depends mainly on the nonlinearity of the simulation. This implicit scheme results in a sparse 
system of equations, which are solved using a Generalized Minimal REsidual Solver (GMRES). 
The preconditioner for this iterative GMRES is obtained by solving independently each sub-matrix 
corresponding to different harmonics, which amounts to a block-Jacobi preconditioner. These sub-
matrices are solved using the direct parallel sparse matrix solver PaStiX [21].
	 The simulations presented below were run with two different poloidal grids: a standard resolution 
grid and a high resolution grid. The standard grid is composed of 50 radial elements, 200 poloidal 
elements and additional SOL elements, which amounts to a total of ~15,000 elements. This grid was 
used to obtain the general results of ELMs simulations presented in Sections 3.1 and 3.2. The higher 
resolution grid is composed with 70 radial elements (~22,000 elements in total) and in addition the 
radial distribution of elements has a higher concentration near the separatrix. The aim of this grid 
was to obtain simulations of plasmas with steep pressure gradients in the pedestal region, and with 
low resistivity, reaching near-Spitzer values. Most simulations presented below were run for one 
toroidal mode number, on parallel computers, varying between 128 and 512 CPUs for the highest 
resolution grids. The simulations with high resolution grids were run on the HPC-FF (Juelich, 
Germany).
	 The MHD model solved for the simulations presented below is similar to that used in [3]. It is a 
two-fluid, reduced MHD model for the six variables (poloidal magnetic flux), (electric potential), 
v|| (parallel velocity), r (density), Ti (ion temperature) and Te (electron temperature). The reduction 
of the equations used here is based on the ansatz that the perpendicular velocity lies in the poloidal 
plane, and that the toroidal magnetic field is constant in time, so that the total plasma velocity and 
the total magnetic field are expressed respectively as

(1)

(2)

where R is the major radius in toroidal geometry, ef is the toroidal unit vector and Fo = BoRo, with 
the magnetic field strength Bo at the magnetic axis R = Ro. Substituting these two ansatz into the 
visco-resistive MHD equations leads to the so-called reduced model, first derived by H.R. Strauss 

v = v|| + v⊥ = v|| B + Reφ × ∇Φ 

Fo
R

1
RB = Bφ + Bp =      eφ +      ∇ψ × eφ 
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[22], with two distinct equations for the parallel and perpendicular momentum,

(3)

(4)

(5)

(6)

(7)

where the parallel current j, the toroidal vorticity W and the plasma pressure p are defined by

(8)

(9)

(10)

where D*y  = R2∇ ( ∇y ) is the Grad-Shafranov operator. The Poisson brackets used in the equations
above are defined by [a, b] = ey · (∇a × ∇b), and the convective derivative is defined by d/dt = 
∂/∂t + v · ∇. Also, the parallel gradient operator is defined by ∇||

 = (B/B2)B · ∇. The density and 
temperature sources Sr and STj have been introduced in the equations, and the perpendicular mass 
and thermal diffusivities D⊥ and k⊥j used in simulations are ad-hoc coefficients with a well at the 
pedestal region to represent the H-mode transport barrier. A Spitzer-like resistivity h = ho(Te/Te,o)

−3/2 
is used, with Te,o the electron temperature at the magnetic axis. The Braginskii parallel thermal 
conductivities k||j  are expressed as

(11)

where the ratio of electron to ion parallel conductivity has been set to k||o,e/k||o,i = 40, which results 
from the smaller electron mass [23]. It should be noted that this set of equations is equivalent to 
that derived in [24], where energy of the system is shown to be conserved at first order.
	 The normalization used for these equations is based on the two quantities μo (magnetic 
permeability) and ro (core density), so that time is normalized to a near Alfven time t = t /   μoro. 
For a deuterium plasma with particle density no = 6.1019m

−3, a normalized time unit corresponds 

R2

~

ρF0        = F0       - R [ψ, p] + µ|| ∇
2v||

dv||
dt

∂p
∂φ

2

= η (j-jA) + R [η, Φ] -∂ρ
∂t

∂Φ
∂φ

= -∇ . (ρv) + ∇ (D⊥ ∇⊥ρ) + Sρ
∂ρ
∂t

ρ         = -ρv . ∇Tj - (γ-1)p∇ . v + ∇ . (k||j ∇⊥Tj + k||j ∇||Tj) + STj
∂Tj
∂t

R∇ .   R2ρ∇⊥                 = [R4ρW, Φ] -   [R2ρ, R4,|∇⊥Φ|2]

- [R2, p] + [ψ,  j] -       + µR∇2W,Fo
R

∂Φ
∂t

∂j
∂φ

1

2

j = -R2∇φ . J =      ∆∗ψ
1
µ0

W = ∇φ . (∇ × v⊥) = ∇⊥Φ2

p = ρ (Ti + Te)

k||i = k||o Tj
5/2
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to 0.7μs. Naturally, current is normalized with μo and density with ro. Pressure is also normalized 
with μo, and the diffusive parameters are normalized as h = h    ro/μo, m

 = m    mo/ro , D⊥
 = D⊥     μoro

and k⊥ = k⊥    mo/ro,. Note that the parallel thermal conductivity depends explicitly on temperature, 
so that k||o varies as k||o ~ ro

−3. This will be important in Section3.2, where a scan in collisionality 
is obtained by varying ro. The plasma boundary in the SOL is taken to be a flux surface, usually 
around 10cm away from the separatrix. On this boundary, Dirichlet conditions are applied for all 
variables (ie. perturbations of the equilibrium quantities are set to zero) except for temperature 
and density, which have Neumann conditions with null gradient. At the divertor targets, Mach-1 
(Bohm) conditions are used for the parallel velocity, and the temperature and density have free 
outflow boundary conditions. In the private region, which is bounded by a flux surface, Dirichlet 
conditions are used for all variables.

2.	 Reconstructing the JET Equilibrium
2.1 From Experiments to Simulations
The JET Pulse No: 73569 has been chosen for simulations. It is a standard type-I ELMy H-mode with
constant NBI power, resulting in a regular ELM frequency and regular ELM size. This plasma pulse
has a low triangularity (0.17), a total injected NBI power of 12.5MW, a magnetic field of 2T and a 
plasma current of 2.2MA. The pedestal electron density and temperature are respectively 5.1019m−3 

and 0.9keV, giving toroidal and poloidal betas of 2.2% and 0.66 respectively. The edge safety factor 
is q95

 ≈ 3. The collisionality is relatively low (0.1< n* <0.2), and this shot was used for pedestal 
studies with High- Resolution Thomson Scattering (HRTS) [18]. The ELM frequency is 20Hz, and 
the ELM size is on average 0.25MJ, which is about 10% of the pedestal energy.
	 The two criteria for choosing this specific pulse was that it combines a good Infra-Red camera 
diagnostic [26,25] together with good HRTS profiles. The magnetic configuration used for this 
shot results in the outer strike point arriving on tile 5 of the outer divertor, so that the orientation 
of the IR-camera produces full views of the outer divertor heat fluxes during ELM crashes, which 
provides a comparison basis for simulations. Both temporal and spacial resolutions of the JET IR-
camera are high enough to deal with ELMs dynamics (1 frame every 35μs with a 1.7mm resolution). 
Good HRTS profiles, together with a regular ELM frequency and ELM size, were required for the 
reconstruction of the plasma equilibrium in simulations. The pre-ELM HRTS electron density and 
temperature profiles are selected to obtain a pressure profile, which is used as input to solve the 
Grad-Shafranov equilibrium. Here, pre-ELM profiles means these are taken between 70 and 95% of 
the ELM period, when the pressure gradients are steepest. The combination of all pre-ELM profiles 
provides a good spacial resolution in the pedestal, in particular because horizontal shifts of the 
plasma are performed during the shot. These slight sweeps do not affect the plasma equilibrium, but 
enable a scanning of the whole pedestal region with the HRTS [18]. The pre-ELM HRTS profiles 
for the pulse are shown in Fig.1a, together with the fits used for simulations. Note that Ti = Ti has 
been assumed for the initial equilibrium profiles in simulations.

~

~

~ ~
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In addition to the pressure profile obtained from the HRTS diagnostic, the reconstruction of theplasma 
equilibrium also requires a current profile and a flux boundary around the plasma, in order to solvethe 
Grad-Shafranov equation. Both these ingredients are taken from the EFIT equilibrium reconstruction. 
The global plasma current is that of EFIT, but an additional bootstrap current is also included to 
obtain the final profile. This bootstrap current is calculated with the HELENA equilibrium code 
using the Sauter model [27], for the corresponding pressure profile obtained from the HRTS. The 
flux contour is taken just around the first vessel wall, so that the resulting plasma equilibrium has a 
SOL size that corresponds approximately to that of JET. The final reconstruction is shown in Fig.1b, 
where it can be compared to the EFIT equilibrium.

2.2 Linear Stability of the Equilibrium
This equilibrium has been tested for its linear stability with respect to ballooning modes. The 
calculations were done with the equilibrium code HELENA for the ballooning mode number n = ∞, 
with ideal MHD equations. The resulting shows that the JET equilibrium, with the HRTS pressure 
profile, is ideally unstable. A scan in pressure gradient was performed by varying the pedestal pressure 
gradient width, and each case was tested with HELENA. The result, shown in Fig.2a, indicates that 
the JET equilibrium is indeed well above the ideal MHD stability limit.
	 However, the MHD model solved in the simulations is not ideal, and all diffusive parameters 
play a crucial role regarding the linear stability of the equilibrium. The resistivity  has an enhancing 
effect on ballooning modes, so that linear growth rates of modes increase with increasing . All 
other diffusive parameters (μ, D⊥ and k⊥) have the opposite effect: they damp ballooning modes 
growth rates. This is illustrated in Fig.2b, which shows a scan for the growth rate of the ballooning 
mode n = 12, as a function of resistivity and viscosity. All these diffusive parameters are strongly 
limited by numerical limits, since the lower diffusivity, the smaller eddies. Actual grid resolutions 
do not enable simulations with all diffusive parameters at correct values (experimental or at least 
theoretical values). Hence, one should bear in mind that no matter how ideally unstable a plasma 
equilibrium is, the resulting non-ideal ballooning mode simulations may result in stable modes 
(and vice-versa). For example, if resistivity is taken to be very low, but other parameters are taken 
relatively high (so that the mode is damped), the growth rates of ballooning modes might remain 
close to zero. The importance of this issue will be addressed again in Section3.3.
	 The other aspect of the equilibrium that may affect the linear stability of ballooning modes, and
which is not taken into account in the HELENA calculations, concerns the poloidal equilibrium 
flow. A thorough study of such E × B flows at equilibrium, and their effect on ballooning modes, 
can be found in [3]. The circular (m = 0), pedestal rotation of the plasma for the JET equilibrium is 
observed to be particularly strong and sheared, and the consequent effect on the linear stability of 
ballooning modes is well identified. Fig.3a shows the poloidal flow structure for the JET equilibrium, 
which is the typical structure observed in simulations of realistic tokamak plasmas. Fig.3b shows 
the corresponding mid-plane profile for the poloidal rotation together with the density, to illustrate 
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that the flow is localised at the pedestal pressure gradient. The effect of the flow on the linear 
stability of ballooning modes is shown in Fig.3c, where growth rates are calculated for a range of 
ballooning mode numbers, with and without equilibrium flow. Without equilibrium flow means 
that the flow is artificial forced to zero. The damping effect of the flow is strongest for high mode 
numbers. It should also be noted that the poloidal flow may have a significant influence on the 
nonlinear behaviour of ballooning modes. In particular, the poloidal flow may stabilize ballooning 
modes and lead to ELM-like multiple bursts [3].

3. Simulations of ELMs
3.1 General Results: Filaments
In ELMs simulations, there are two characteristics that stand out and that deserve some particular 
attention. The first one is the filamentation of the pedestal plasma into the Scrape-Off Layer, and the 
second one is the heat flux arriving on the divertor targets via parallel transport of energy along open
magnetic field lines in the SOL. These two properties of ELMs, which are observed both in 
experiments and simulations, can be considered separately, but it may also be shown that they 
are strongly linked by the perturbation of the ballooning mode. In fact, the kinetic and magnetic 
components of the ballooning mode are but one perturbation, and the dynamics of filaments can 
be correlated to the dynamics of divertor heat-fluxes.
	 Before considering the link between these two phenomena, one first needs to consider the filaments 
themselves. It should be pointed out that in most ELMs simulations, multiple sets of filaments are 
repetitively ejected from the plasma, and those filaments have both poloidal and radial motion. 
Different sets of filaments may also entangle and get mixed with one another. Sometimes, filaments 
may even cross the separatrix and get sucked back into the plasma at a later time. Thus, the dynamics 
of filaments is rather complex, and to avoid confusion, the following study is performed only for 
the first set of filaments that leaves the pedestal. This brings some confidence as to the stability of 
the plasma at that moment, because the pedestal pressure is known (unperturbed), and the growth 
rate of the ballooning mode can be well identified, given the long linear exponential growth of the 
mode preceding the formation of the filaments.
	 The first characterization of filaments concerns their composition. The ballooning mode 
perturbs all MHD variables, but it is convenient to rely on one of these at first and then refer to it 
when considering other compositions of the filaments. The density is chosen to be this basis for 
comparison. The temperature inside a density filament is generally found to be rather significant, 
so that filaments can be said to be warm. A natural comparison with experiments consists in taking 
radial profiles of filaments, as with the HRTS diagnostic. In simulations, it is straight forward to 
obtain such profiles, but it is not so trivial to observe filaments with the HRTS, and given the tedious 
effort needed to obtain such profiles, comparisons are not made with the HRTS profiles from Pulse 
No: 73569, but with profiles presented by Beurskens et al. in [18], for Pulse No: 70553. As seen 
from Fig.4a, both the composition of the filament and its size are qualitatively well reproduced 
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by simulations. In particular, there is a large amount of density carried in the filament, with a hole 
(or well) of density forming behind the filament, which shows that the filament clearly separates 
from the main plasma. There is also a significant amount of electron temperature in the filament, 
which agrees with experiments. In fact, it is possible in simulations to compare electron and ion 
temperatures in the filaments: due to higher parallel conductivity for Te, the electron temperature is 
evacuated from the filament more rapidly than Ti, which is illustrated in Fig.4b, with a 2D (poloidal) 
plot of a filament crossing the separatrix for r, Ti and Te.
	 In addition to density and temperatures, there may also be some current crossing the separatrix. 
In previous simulations of standard plasmas, some current was also observed to be carried in the 
filaments. However, simulations of JET have a particularity that was not observed for other plasmas: 
the current is localised at the front gradient of the density filament, whereas all other previous 
simulations, including JET-like simulations, have filaments where density and current are almost 
perfectly in phase. To illustrate this, Fig.5a shows a HRTS-like radial profile of a filament for both 
density and current. In some extreme cases, where the growth rate of the ballooning mode is low, 
the density filament does not cross the separatrix because it is sheared by a poloidal flow. In such 
cases, only current crosses the separatrix. This
is illustrated in Fig.5b, which shows the time evolution of a density filament, together with current.
	 This latter point raises another characteristic of filaments: their speed. Filaments have both 
poloidal and radial motion, but although their poloidal speed can be well identified, it is not clear 
whether there is much variation in their radial speed. For example, Fig.4b and Fig.5b show the 
same simulations where only the value of resistivity is different (h = 10−5 in the first case and
h  = 10−7 in the second). As was illustrated earlier in Fig.2b, at lower resistivity, the growth rate of 
the ballooning mode decreases significantly, and the first effect which can be seen on filaments is 
that with a lower growth rate, they do not really cross the separatrix. However, the radial speed of 
filaments does not vary much between the two cases, only the distance traveled, but at the beginning 
of the perturbation, the speed is similar (about 2 to 3km/s). So far, no clear mechanism has been 
identified for the radial speed of filaments.
	 Nevertheless, it is clear that the ballooning growth rates play a major role concerning the 
amount of energy evacuated by the filaments, since at lower resistivity, filaments do not even cross 
the separatrix, so that less energy is ejected from the pedestal. In fact this couples with another 
particularity of filaments. It has been found that the radial size of filaments, at the beginning of their 
formation in the pedestal, always corresponds to the width of the pedestal pressure gradient (this 
was verified with both JET and non-JET simulations). Hence, considering the two cases at high 
and low resistivity, at the beginning of the crash, the filaments have the same radial width and the 
same radial speed, but they clearly do not evacuate the same amount of energy in the end. It should 
also be noted that the fact that filaments do not cross the separatrix is not due to a variation of the 
amplitude of the poloidal equilibrium flow, which does not change with resistivity [3].
	 Concerning the poloidal rotation of filaments, a clear quantification of the speed is also hard to 
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obtain, and it may vary strongly from one case to the other. Also, the relation to the equilibrium 
poloidal flow is not clear, since the ballooning perturbation itself induces a strong poloidal rotation in 
the pedestal [1,3]. The poloidal rotation of filaments may vary between 0 up to 3km/s in simulations 
of JET plasmas, and negative rotation (clockwise poloidally) is often observed. Rotation of filaments 
during ELMs is clearly observed on tokamaks, using either the fast visible camera on MAST [28], 
or the ECE-imaging diagnostic on AUG [29], where filaments are observed to rotate with a speed 
of about 2km/s. It should however be noted that in some simulations of standard plasmas (not JET 
plasmas), higher poloidal speeds have been observed, up to 15km/s; simulations of JET plasmas 
have not yet exhibited such high speeds.

3.2 General Results: Divertor Heat-fluxes
The divertor heat-fluxes during simulations of ballooning modes may be compared to what is 
observed during ELMs with the Infra-Red camera on JET, for Pulse No: 73569 in particular. With 
the IR camera, during ELMs, narrow heat-flux structures are typically observed near the strike 
point on the outer divertor. An example of the heat-flux profile along tile 5, during an ELM of 
Pulse No: 73569, is given in Fig.6a. One particularity of such divertor heat-fluxes is the formation 
of distinct stripes near the strike point. Such structures are also observed in simulations, as shown 
in Fig.6b, and it has been shown that, in simulations with strong k||, these structures correspond to 
the perturbation of magnetic field lines [2,30]. In fact, if magnetic field lines are perturbed near the 
separatrix,  k|| being higher in the pedestal, temperature becomes almost constant along field lines, 
so that structures in the magnetic field correspond to structures in the temperature, and thus the heat-
flux. In two-fluid simulations,  k|| is higher for the electron temperature. Hence, where filaments are 
warm with Ti and cold with Te, the divertor heat-fluxes, in contrast, are mainly caused by electron 
temperature. Fig.7 shows the ion and electron temperatures near the X-point during a ballooning 
mode simulation. The same color scaling is used for the two temperatures, to exhibit the fact that 
Ti does not reach the divertor as much as Te. It also should be noted that the number of stripes 
arriving on the outer divertor depends on the mode number which is simulated. Thus, simulations 
could be used to help and determine what is the dominant mode number of JET ELMs. Fig.8 shows 
IR divertor heat-flux profiles from Pulse No: 73569 and from simulations. A scan in mode number 
with simulations shows that the number of stripes increases with increasing mode number. This 
increase is linear, with (including the strike point) 4 stripes for n = 8, 6 for n = 12, and 8 for n = 16.
	 As may be clearly observed on Fig.6a, and as is observed during some ELMs in JET [25], the 
stripes forming near the strike point are moving on the divertor, towards the lower-field side of the 
machine. Such movement is also observed during simulations of ballooning modes. The maximum 
speed of stripes in simulations of JET Pulse No: 73569 was found to be of the order of 200m/s, which 
is quicker than what is typically observed on JET (about 80-100m/s). However, in simulations such 
dynamics is reproduced only for a short time, while stripes in JET experiments can move regularly, 
with almost constant speed, for the whole ELM crash (several hundred microseconds). Such regular 
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dynamic has yet not been achieved with simulations. Nevertheless, simulations have shown that 
the dynamics of heat-flux stripes is strongly linked to a poloidal rotation of the ballooning mode. This 
has been thoroughly verified with simulations of both JET and non-JET plasmas. Fig.9 shows heat-
flux stripes moving about 1cm in 50μs, and a mid-plane zoom on a structure in the electric potential, 
which shows that the ballooning mode is rotating with a speed of about 3km/s at that moment.
	 In order to give a rough explanation of why rotation of the mode induces heat-flux dynamics, 
it should be noted that a poloidal rotation of ballooning mode structures may be interpreted as a 
toroidal rotation: since ballooning modes are aligned with the magnetic field, if a filament structure 
rotates poloidally, it will intersect the horizontal plane Z = 0 at another toroidal angle. Now the heat-
flux stripes on the divertor are the footprints of the ballooning mode. As shown on Fig.10a, for the 
mode number n = 8, eight ‘fingers’ are observed on the divertor, so if the mode rotates toroidally, 
these fingers will rotate too. Fig.10b shows the same figure stretched out in equal length-scale for the 
toroidal and radial directions, showing that a toroidal rotation of the ’fingers’ will appear like a radial 
movement of stripes at a given toroidal location. In addition to this interpretation, Fig.11 shows Te 
stripes on the divertor moving in the other direction, towards the higher-field side, closer to the strike 
point. This is observed when filaments move in the other direction (clockwise poloidally), which 
cerftifies that the dynamics of heat-flux stripes is caused by the rotation of the ballooning mode.

3.3 Towards a Qualitative Validation of Simulations
It has been shown above (Fig.2b) that the non-ideal MHD parameters may have a significant effect 
on the linear stability of ballooning modes. In particular, resistivity enhances the activity of MHD 
modes, so that growth rates become higher at higher resistivity. Therefore, since simulations are 
usually run at relatively high resistivity, due to numerical stability, simulations of ballooning modes 
are expected to produce big pedestal crashes. An example of this is shown in Fig.12, which shows 
a simulation with h = 10−6, where the ELM-affected area is observed to increase almost without 
end, so that the ballooning mode penetrates the plasma core much further than what is observed 
experimentally. For simulations of type-I ELMs, such behaviours should clearly be avoided, which 
means the resistivity has to be brought down as much as possible. This is numerically difficult for 
two reasons: firstly, low resistivity means smaller current structures and thus higher requirements 
on grid resolution; and secondly, since growth rates diminish at lower resistivity, one should make 
sure that ballooning modes do not become stable at low resistivity.
	 It turns out that both problems have the same impact: higher requirements on the grid resolution.
In the first case, the reason is rather clear, since in order to solve smaller current structures at lower
resistivity, one needs more spacial resolution. In the second case, if the ballooning modes are stable at
low resistivity, then there are two options. Since it has been checked (Fig.2a) that the JET equilibrium
used in simulations is ideally unstable, the reason that it may be stable at low resistivity is that other
non-ideal MHD parameters have a stabilizing effect on ballooning modes. As shown in Fig.2b, at 
higher viscosity μ, the ballooning modes are more stable. This is also true for D⊥ and k⊥. Simulations 
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are usually run with such parameters set to relatively high values, which is why the modes are 
stable at low resistivity. To obtain simulations with near-experimental values for D⊥, k⊥ and μ 
would require very high grid-resolutions, which is not achievable yet. Instead, another possibility 
consists in increasing the pedestal pressure gradient by diminishing the width of this pressure 
gradient (within error margins of the HRTS diagnostic), in which case the grid size also has to be 
increased since higher gradients have to be discretized. This second option is less demanding in 
terms of grid resolution than trying to lower all diffusive parameters, and it is the one used in the 
following study. For the case with lowest pressure gradient width (~1.2cm), the radial grid resolution 
in the pedestal region comes up to 5 elements per cm. The grid resolution in the poloidal direction 
reaches 0.3 elements per cm.
	 Mainly two scans have been produced. Since the first goal of the study was to provide some 
validation of simulations, the scan in collisionality n* has been chosen. By measuring the ELM 
energy losses as a function of collisionality, simulations can be compared to the multi-machine scan 
produced by Loarte et al. [6], which is at present one of the most robust experimental results about 
type-I ELMs physics, and which shows that the ELM size increases with decreasing collisionality. 
The collisionality scan is done in simulations by varying density at constant pressure, so that the 
ideal MHD stability of the plasma does not change, but the collisionality does. Since temperature is 
normalized to density ro, this is quite straight forward, and it amounts to a change in the normalization 
of the whole system of equations. Hence, all non-ideal MHD parameters are varied consistently, 
and the neoclassical collisionality is changed as n* ~ ro/To

2 ~ ro
3. In particular, the resistivity and 

parallel thermal conductivity vary respectively as h ~ n*1/6 and k|| ~ n*−1. Also, when considering 
real time from simulations, the correct re-normalized time is used, t =  t    romo.
	 The first scan was run for the JET equilibrium with collisionality n* varying between 0.014 and 
0.896, and corresponding resistivity  varying between 5.10−8 and 10−7. The other parameters were 
varying respectively as 2.10−5 ≥ μ ≥ 10−5, 2.10−6 ≤ D⊥ ≤ 4.10−6, 2.10−6 ≥ k⊥ ≥ 10−6 and 4.105 ≤ k||o,e 

≤ 6.3 × 103. Simulations were run at each collisionality for the three mode numbers n = 12, n = 16 
and n = 20. The resulting growth rates and ELM sizes (relative to pedestal energy) are plotted in 
Fig.13, in blue color. [Note that the ELM energy losses, as well as the pedestal energy, are calculated 
by integration over the whole plasma inside the separatrix]. It can be clearly observed that as n* 
is decreased, the growth rates become smaller, due to the decreasing resistivity. This is sufficient 
to result in relative ELM sizes that decrease with decreasing n*. In other words, simulations show 
a trend in ELM size opposite to that observed experimentally in [6], which strongly suggests that 
the effect of resistivity on growth rates should be avoided. As a convention, this first collisionality 
scan is referred to as the resistive scan.
	 In order to diminish the effect of resistivity, two modifications were brought to the scan. The first 
modification is naturally that resistivity was further reduced, with a lowest value of h = 5.10−9, which 
corresponds to the lowest collisionality. It is worth noting that after re-normalization, this is equivalent 
to the physical resistivity h = 2.10−8, which is a factor 20 from the Spitzer resistivity at 10keV. The 

~
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second modification is that the pressure gradient width was diminished from 2.8cm to 1.2cm, so 
that the pressure gradient was increased by more than a factor two. This agrees with corrections 
brought by Beurskens et al. to the data processing of the HRTS diagnostic: after reprocessing the 
data for Pulse No: 73569, the pressure gradient width was found to be 1.3cm, which brings some 
justification to why the pressure gradient needed to be increased at lower resistivity. (Note that 
this correction was brought posterior to the simulations [31]). In addition to this modification, the 
perpendicular mass and thermal diffusivities, D⊥ and k⊥,were adapted to the pressure gradient, so 
that D⊥ ~ (∇r)−1 and k⊥ ~ (∇T)−1 in the pedestal region. Thus, the fluxes D⊥ ∇r and k⊥ ∇T are 
constant in the pedestal region, so that the pressure gradient remains unchanged at equilibrium 
(ie. the pressure gradient would not flatten before the ELM crash). The resulting growth rates and 
corresponding ELM losses are plotted in Fig.13 in red color, for the modes n = 8, n = 12 and n = 16. 
It is observed that the growth rates are not dominated by resistivity anymore, and that the resulting 
ELM losses increase with decreasing n*, which comes closer to experimental results than the first 
scan. As a convention, it will now be refered to as the ideal scan - since the ballooning modes
are dominated by the pressure gradient, not by resistivity. In fact, since good agreement with 
experiments is obtained in this case (higher pressure gradient), a good representation of Edge-
Localised-Modes should rely on the ballooning rather than peeling theory.
	 It is important to keep in mind, however, that although this scan gives better agreement with 
experiments than the first scan, a direct comparison with the scaling by Loarte et al. [6] shows 
that simulations still need further improvement for proper comparisons with experiments. Mainly, 
the simulated ELMs are smaller, with relative energy losses reaching up to 5.5% only, while JET 
type-I ELMs can evacuate more than 20% of the pedestal energy; and the collisionality trend is also 
weaker, with DWELM/Wped varying betwee n*−0.05 and n*−0.15 in simulations, compared to n*−0.45 in 
experiments [6]. Nevertheless, this second scan still comes closer to experiments than the first one, 
and may well be used to enlarge our understanding of Edge-Localised-Modes. Since the biggest 
ELM crashes for this scan are those caused by the mode n = 8, the following comparisons between 
experiments and simulations are done with the n = 8 case.
	 There are a number of comparisons which can be made between simulation results and experimental 
observations. Of course, the first comparison of interest is the ELM size, which has been shown 
to increase with decreasing collisionality. There is another particularity of ELM energy losses that 
can be compared, and which brings some understanding of the mechanisms that drive energy out 
of the pedestal: convective versus conductive losses. Typically, it is observed experimentally [6,18] 
that the increase of convective (density) losses at low n* is negligible compared to the increase of 
conductive (temperature) losses. Simulations show that this is due to the strong increase in k at low 
n*. As observed on Fig.13, the growth rates of mode n = 8 do not exhibit a clear increase or decrease 
as n* is varied, but the ELM size does, because at lower collisionality, k|| is much higher (due to 
higher temperature), so that more temperature is evacuated from the pedestal. This is illustrated in 
Fig.14, which shows the density and
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electron temperature losses relative to pedestal density and electron temperature respectively.
	 Another comparison which was done concerns the ELM-affected area. Whereas simulations with 
high resistivity resulted in high ELM-affected areas, as shown in Fig.12, the ideal scan resulted in 
ELMaffected areas of 15cm (about 17.5% of the minor radius), which did not change with varying 
n*. The fact that ELM-affected area is not affected by collisionality is in agreement with experimental 
results [18]. In particular, this shows that the ELM energy losses is not linked to the ELM-affected 
area for type-I ELMs.
	 Then, one crucial comparison between simulations and experiments concerns the divertor heat-
fluxes. Comparison with the Infra-Red camera have shown that despite some qualitative agreements, 
the boundary conditions at the divertor, as well as the model for parallel and perpendicular transport 
in the SOL, should be improved for better results. Fig.15 shows the divertor heat-fluxes for the 
mode n = 8 at three collisionalities. It is observed that the duration of the ELM crash changes with 
collisionality, and reaches up to 300μs; this is shorter than what is observed with the IR-data for 
Pulse No: 73569, where ELMs are observed to last between 500μs and several ms (see Fig.6a). 
Note that this may be due to the fact that only one (non-zero) toroidal harmonic is simulated, which 
could also explain why relative ELM energy losses in simulations are smaller than in experiments. 
In the highest collisionality case, a slight decrease of the divertor heat-flux is observed after about 
120μs; this is caused by a response of the kinetic equilibrium to the ballooning mode (as studied 
in [3], the equilibrium poloidal rotation in the pedestal region may have a strong stabilizing effect 
on ballooning modes). Although this induces a significant decrease in the ballooning activity, it is 
very brief and is thus not considered as the end of the pedestal collapse. Regarding the amplitude of 
the heat-fluxes, it corresponds to what is observed in experiments (up to 70MW.m−2), and the total 
energy arriving on the outer divertor is 11% of the total energy losses (for the lowest collisionality 
case), which is also in qualitative agreement with experiments. On the other hand, the wetted area 
is usually bigger in simulations (about 10cm) than what is observed with the IR-camera (about 5 to 
7cm). Also, the wetted area does not change at all with varying collisionality, whereas it has been 
observed experimentally [32,33] that the wetted area increases with ELM size.
	 Finally, the last comparison between simulations and experiments is a more general result, about
ELM-precursors. For the first time, simulations of ballooning modes have exhibited clear ELM 
precursors. Typically, simulations are started from an unstable equilibrium, so that the perturbation 
of toroidal Fourier modes grows exponentially to produce an ELM crash straight away. Here, the 
perturbation of the ballooning mode grows exponentially until it starts perturbing the equilibrium, 
at which point the perturbation just stands there for some time, before the real ELM crash appears. 
This is illustrated in Fig.16a, where the energy of the kinetic equilibrium (n = 0 mode) is plotted as 
a function of time, together with the kinetic energy of the ballooning mode n = 8. This simulation 
is that with the lowest resistivity, lowest collisionality (with the biggest ELM losses). It is clearly 
observed that the precursor lasts as long as the ELM crash itself. During all the precursor, small 
filaments are formed inside the separatrix, and move poloidally before bursting out. It is yet not 
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understood what keeps the ballooning perturbation from provoking a crash straight away, but such 
a result takes simulations still closer to experiments, and shows that simulations of multiple ELM 
cycles could be obtained with JOREK. In fact, if an equilibrium has a pedestal pressure gradient 
which is unstable to ballooning modes but does not necessarily produce an ELM crash (at least not 
directly), then it means that after a first ELM crash, if heating power and density sources force the 
pressure gradient to increase again, the MHD limit may be overtaken without producing a regular, 
turbulent relaxation of the plasma. This is exactly what makes it difficult to simulate multiple ELM-
cycles: that after the first crash, the system converges towards a constant turbulent relaxation. Such 
a simulation is shown in Fig.16b, where after the first crash, the heating power and the density 
source are increased, but the ballooning mode creates a steady turbulent evacuation of energy. After 
some time, heating power is again increased in the hope of producing a crash, but the system only 
converges to a higher turbulent relaxation level. The simulation of ELM precursors shows that it 
may be possible to avoid such behaviours, so that the challenge of multiple ELMs simulations may 
be solved in future.

Overview and Conclusion
In the present paper, it was shown how experimental data can be used to produce coherent equilibria 
for ELMs simulations in JET. The High-Resolution Thomson Scattering diagnostic is particularly 
useful, since it provides pre-ELM pedestal pressure profiles with good spacial resolution, which 
is one of the crucial elements for ELMs simulations based on ballooning modes. For this study, 
the low-collisionality, type-I ELMy H-mode Pulse No: 73569 was simulated, and the resulting 
JOREK-reconstructed equilibrium was tested for its ideal MHD stability with respect to ballooning 
modes. It was found that the equilibrium (pre-ELM) pressure gradients are well above the stability 
threshold. However, it was demonstrated that non-ideal MHD parameters, such as resistivity or 
viscosity, may have a significant influence on the linear stability of ballooning modes. In addition, 
the equilibrium poloidal rotation of the pedestal plasma was shown to have a strong stabilizing effect 
on ballooning modes (ie. growth rates are reduced by the flow). As a consequence, the interplay 
between the pedestal pressure gradient and the non-ideal diffusive parameters is rather subtle, which 
means that the best approach consists in simulating plasmas as close to experimental conditions as 
possible, in order to avoid stable modes as well as artificially large modes.
	 Some general results were described, first concerning the filamentation of the pedestal plasma 
into the SOL. It was found that the filaments are warmer with ion energy than electron energy (in 
simulations) due to the higher parallel conduction of electrons - k||,e/k||,i ~ 40. A large amount of 
current is usually evacuated from the plasma, and the maximum of current is localized at the front of 
the filament. The current density in these filaments may reach large fractions of the pedestal current 
(up to 80% of the pedestal current in some cases). As an example a case was presented, where the 
pressure filaments does not cross the separatrix, but the current component of the filament clearly 
reaches the SOL. Also, one of the characteristics of filaments is that they may rotate poloidally 
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with high speeds (several km/s). In particular, it was shown that this rotation induces a motion of 
the heat-fluxes on the outer divertor. Because the ballooning mode perturbs the separatrix, the high 
parallel conductivity for Te results in the formation of stripes near the strike point: as the mode 
rotates, these structures move on the divertor. The speed of these motions was compared to measures 
of the Infra-Red camera on JET.
	 In order to obtain some qualitative validation of simulations, the JET equilibrium Pulse No: 
73569 was used as a basis for collisionality scans. The scans were produced by varying density 
and temperature at constant pressure, and resulted in the identification of two distinct regimes. The 
first resistive regime is found to be dominated by resistivity, so that as collisionality is lowered, 
temperature increases and so resistivity decreases. Since resistivity ’excites’ MHD modes, at lower 
collisionality, the ballooning growth rates are smaller, and the resulting ELM energy losses decrease, 
which is the opposite of what is observed experimentally for type-I ELMs [6]. In a more ideal regime, 
were resistivity is decreased to near-experimental values, and the pressure gradient is taken to be the 
steepest of what is observed with the HRTS (for Pulse No: 73569), the growth rates of ballooning 
modes are not dominated by resistivity anymore, and the ELM size (relative to pedestal energy) is 
observed to increase with decreasing collisionality. In fact, at lower collisionality, the parallel thermal 
conductivity significantly increases, so that more temperature is evacuated. This is in good agreement 
with general experimental results [6,18], which state that at lower n*, ELMs become conductive 
rather than convective. In addition, for this ideal scan, it was observed that the ELM-affected area 
is not affected by collisionality, which is also in agreement with experiments. However, although 
some reasonable agreement was obtained for the divertor heat-fluxes (time  scales and amplitude of 
fluxes agree with the IR-camera), it was found that the wetted area does not increase with the ELM 
size, which is not the case experimentally. Such differences hint that the fluid transport model used 
in JOREK should be improved, possibly to include some kinetic effects, since the Braginskii model 
[23] is not sufficient to reproduce the divertor heat-fluxes with satisfying accuracy.
	 One particular result obtained at low resistivity, low collisionality, shows that multiple ELM-cycles 
simulations could be obtained in near future with JOREK: ELM precursors are observed before 
the ELM crash. Since simulations are started from an ideally unstable equilibrium, with very steep 
edge pressure gradients, it is generally expected that the perturbation of toroidal Fourier modes will 
result in exponential growth of a ballooning mode, leading to a pedestal crash. In some simulations, 
it was observed that the perturbation does grow exponentially, but that once it starts perturbing the 
kinetic equilibrium (so that filaments start forming inside the separatrix), the perturbation remains 
mild, and does not produce a pedestal crash straight away. The ELM precursor lasts as long as the 
ELM crash itself. Such precursors mean that it is possible to produce simulations were the pedestal 
pressure gradient progressively increases (as in experiments), and slowly overtakes the ideal MHD 
threshold without producing some steady turbulent relaxation, so that once the pressure gradient 
is well above the stability threshold, one obtains a large ELM crash. Simulations of such scenarios 
will be attempted in the near future.
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Figure 1: a). The density and temperature profiles from the HRTS diagnostic for the JET Pulse No: 73569 (blue and 
red circles respectively), with the corresponding fitted profiles used for simulations (plain black lines). b). Flux surfaces 
of the Grad-Shafranov equilibrium resulting from the reconstruction with JOREK, and the comparison with the EFIT 
equilibrium reconstruction.
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Figure 2: a). A scan in the pedestal pressure gradient width shows that the JET equilibrium Pulse No: 73569 reproduced 
in simulations stands well above the ideal MHD stability limit (as calculated with the equilibrium code HELENA). b). 
The growth rates of the ballooning mode n = 12 as a function of resistivity and viscosity. These two scans reveal the 
important role played by non-ideal MHD parameters with respect to linear stability of ballooning modes.

Figure 3: a). The structure of the equilibrium polodal rotation in simulations of JET is typically m = 0. This flow is strongly 
sheared, with a positive component inside the separatrix and a negative component outside. Units are normalized as 
explained in Section1.2, so that the maximum velocity corresponds to about 250m/s. b). The corresponding mid-plane 
profile for the poloidal velocity and the density are plotted to illustrate that the flow is strongly sheared and localised 
at the pedestal pressure gradient. c). The effect of the equilibrium poloidal rotation on the linear stability of ballooning 
modes is calculated by running simulations with and without equilibrium flow. The damping effect of the flow on growth 
rates is strongest for high ballooning mode numbers.
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Figure 4: a). Mid-plane profiles of density and electron 
temperature are taken for a filament in a simulation of 
JET. The comparison with HRTS profiles shows that the 
size and composition of filaments is reasonably reproduced 
by simulations. In particular, the gap of density behind 
the filament is reproduced, which shows that the filament 
clearly separates from the main plasma. Since no such 
filament was observed with HRTS for the Pulse No: 73569, 
comparisons are made with Pulse No: 70553. Units are 
arbitrary. b). The time evolution of a filament is plotted 
for density, ion and electron temperatures, to illustrate 
the effect of high parallel thermal conductivity on Te. The 
electron temperature is evacuated from the filament more 
rapidly than the ion temperature.

Figure 5: a). HRTS-like mid-plane profiles of filaments 
for different values of resistivity. The density and current 
are plotted together to show that the current is localised 
in front of the density filament. Such behaviour was not 
observed in previous simulations of standard plasmas, even 
JET-like plasmas. In previous simulations, the density and 
current were in phase. b). At lower resistivity (h = 10−7), 
the growth rates are smaller, so that the density filament 
does not really cross the separatrix, and is instead sheared 
off by a poloidal flow. In such cases, almost no pressure 
crosses the separatrix, but a current filament is clearly 
ejected across the separatrix. This illustrates not only that 
the current is localised in front of the density, but it also 
shows that with low growth rates, filaments do not reach 
so far across the separatrix.
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Figure 6: a). Infra-Red Camera profile of the divertor heat-flux, plotted as a function of time, for an ELM of JET Pulse 
No: 73569. Stripes are formed near the strike point, and move towards the lower-field side during the ELM. Such heat-
flux dynamics is sometimes observed on JET [25]. b). Simulations of JET Pulse No: 73569 also exhibit such heat-flux 
stripes near the strike point on the outer divertor.

Figure 7: Comparison of ion and electron temperatures near the divertor during a simulation of a ballooning mode 
for JET Pulse No: 73569. Te is rapidly conducted along field lines to the divertor, more than Ti, due to higher k|| for 
electron temperature. The same color scaling has been used for both temperatures.

Figure 8: a). Heat-flux profiles measured by the IR-camera during an ELM of JET Pulse No: 73569, showing stripes near 
the strike point. b). The number of heat-flux stripes in simulatons varies with the ballooning mode number. Simulations 
could be used to help and determine the dominant mode numbers in JET ELMs.
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Figure 9: a). Heat-flux stripes moving on the outer divertor with a speed of ~200m/s. b). The rotation of the ballooning 
mode in the poloidal plane during this time is about 3km/s. Shown here is the electric potential F (defined as u in 
simulations), with a zoom on a filament structure.
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Figure 10: a). The same number of Te ’fingers’ are observed on the divertor as the mode number. This simulation is 
that of the mode n = 8. As the ballooning mode rotates poloidally/toroidally, these ’fingers’ move on the divertor. b). 
Stretched out to equal length-scale for the toroidal and radial directions, the same plot reveals how toroidal rotation 
of stripes may be interpreted as a radial displacement when looking at one specific toroidal location on the divertor.
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Figure 11: As a demonstration that the dynamics of heat-flux stripes is caused by the rotation of the ballooning mode, 
this figure shows Te stripes moving in the opposite direction on the divertor (closer to the strike point): this is observed 
simultaneously with a rotation of the ballooning mode in the opposite direction (clockwise poloidally).

Figure 12: a). ELM-affected area as a function of time, during a simulation with relatively high resistivity (h = 10−6). 
b). The corresponding density at time t = 0 (left) and at time t = 350μs (right), to exhibit how far into the core the 
ballooning perturbation may reach.
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Figure 13: This figure shows a plot of the ballooning growth rates as a function of v* (left), together with the corresponding 
ELM sizes, relative to pedestal energy (right). The thin blue symbols correspond to the scan with high resistivity, while 
the thick red symbols correspond to the scan with lower resistivity. The scans were run for different mode numbers, 
ranging from n = 8 to n = 20.
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Figure 14: The relative density and electron temperature 
losses as a function of collisionality for the mode n = 8. 
Density losses remain constant while electron temperature 
losses clearly increase, due to higher k|| at lower 
collisionality.

Figure 15: The outer divertor heat-flux for the mode n = 8 
at three different collisionalities. Time has been translated 
to start at the ELM onset.
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Figure 16: a). An ELM-precursor is observed, as the kinetic energy of both the equilibrium n = 0 and the ballooning 
mode n = 8 are plotted as a function of time. The precursor is observed to last as long as the ELM crash itself. b). Some 
attempts of simulating multiple ELM cylcles have often resulted in a convergence towards a steady, turbulent relaxation 
of the pressure gradient. In this example, after some time, heating is further increase, in the hope of producing a real 
pedestal crash, but the system converges to another level of steady turbulence. The simulation of ELM precursors 
means that such behaviour could be avoided, since a plasma can stand at the stability limit without producing a crash.
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