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ABSTRACT.

The equilibrium equation for a rotating plasma is constructed supposing the thermal Mach

number is much less than unity. The canonical profile of angular rotation velocity is defined as

the profile which minimizes the total plasma energy while conserving toroidal current and

obeying the equilibrium condition. The transport model based on this canonical profile, with

stiffness calibrated by JET data, reasonably describes the velocity of the forced toroidal rotation.

The RMS deviations of the calculated rotation profiles from the experimental ones do not

exceed 10-15%. The developed model is also applied to the modeling of MAST rotation.

1. INTRODUCTION

Toroidal rotation of plasma occurs in all tokamaks. In accordance with torque mechanism it

can be divided for modern tokamaks into two types:

1) intrinsic rotation, for which the rotation velocity υt is usually limited in experiment by the

condition:

υt <  20 – 40 km/s (1)

2) forced rotation with rather large velocities

υt <  200 – 400 km/s (2)

The level of forced rotation is determined by the input of external angular momentum (torque)

T. The most widespread source of torque now is neutral beam injection [1-2]. Below we

discuss forced rotation only.

In this work we solve two main problems. At first we construct the canonical profile for

the toroidal angular frequency ω using the variation principle proposed in [3]. Then we

develop the linear transport model for the toroidal momentum L = nmi R υt based on this

canonical profile. Here n is the plasma density, R is the distance from the major axis of torus,

mi is the ion mass. The stiffness of the frequency profile is found by the simulation of the set

of 11 JET H-mode shots. The full model includes the nonlinear equations for the electron and

ion temperatures, Te, Ti, and plasma density, n, and the linear equation for ω. The nonlinear

transport model includes the External Transport Barrier (ETB) [4]. The linear model for

ω does not include the ETB and uses the experimental boundary conditions. The RMS

deviations of the calculated angular frequency profiles from the experimental ones do not

exceed 10-15%.
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The paper is organized as follows. In the Section 2 the equilibrium equation for rotating

plasma is obtained. The variation problem concerning plasma energy minimum is considered

in the Section 3. The canonical profile of the angular frequency is constructed in Section 4. In

the Section 5 the transport model is developed. The Section 5.1 is devoted to the linear model

concerning the momentum. In the Section 5.2 we remind the nonlinear model for the

temperatures and density. The stiffness of the angular frequency profile is discussed in

Section 5.3. The results of calculations for JET and MAST are considered in the Section 6.

The conclusion reviews shortly the main results of the paper.

2. THE EQUILIBRIUM EQUATION FOR ROTATING PLASMA

The velocity of toroidal rotation is as follows: υt = υt(ψ, R) = ωR, where ω = ω(ψ) is an

angular frequency, ψ is the poloidal magnetic flux. The equilibrium equation for rotating

plasma can be written as

∆*ψ = - R jϕ = - (FF′ + R2p′) p = p(ψ, R) (3)

where p is a plasma pressure, F is the toroidal field function F=RBt. In sections 2 and 3 the

prime designates the derivative with respect to ψ. The dependence on R has to satisfy the

condition

∂p/∂R = ρmυt
2 / R = ρmRω2. (4)

Here ρm is the mass density of plasma (ρm = n mi). We suppose that the kinetic energy of

plasma rotation is much less than the thermal energy

ρmυt
2/2 << p,  or  υt

2 <<υT
2 (M 2 = υt

2/ υT
2 << 1). (5)

Here υT is the ion thermal velocity, М is the thermal Mach number. We choose the simplest

form of the function p(ψ, R), which satisfies the condition (4) as:

p = p0(ψ) + R2/R0
2 p1 (6)

where p0(ψ) is the usual thermal pressure for non rotating plasma

p1 = (R0
2 /2) ρmω2 (7)

and R0 is a major radius of plasma. From relation (5)

 p1 << p0, (8)
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so in the expression for p1 (7) we can accept that ρm and p1 are independent on R. Therefore

n = n(ψ) and p1 = p1(ψ). As a result, the equilibrium equation (3) has the form

∆*ψ = - R jϕ = - {FF′ + R2 (p0′ + R2/R0
2 p1′)} (9)

3. CANONICAL EQUILIBRIUM EQUATION

Now we consider the variation problem. The canonical profiles of pressure, rotation and

poloidal current can be defined as those minimizing the total plasma energy while conserving

the toroidal current and satisfying equation (9). The total plasma energy W and the toroidal

current Ip are

W = ∫
V

dV {[F2 + (∇ψ)2]/(2R2) + 3/2 p+ρmvt
2/2}, (10)

Ip = 1/(2πR) ∫
V

dV (FF′ + R2p′)/R (11)

The generalized Lagrange functional has the form:

Φ = W - 2πλ Ιp

Its first variation in the extreme point should be equal to zero

δΦ = ∫
V

dV δψ {[(FF′ - ∆*ψ)/R2 + 3/2 (p0 + R2/R0
2 p1)′] -

 - λ[(F′F′ + FF′′)/R2 + (p0 + R2/R0
2 p1)′′]} = 0 (12)

From this and (9) we obtain the 2D Euler equation

[2FF′/R2- λ[(FF′)′/R2] + (5/2 p0′- λp0′′) + R2/R0
2 [5/2 p1′- λp1′′] = 0 (13)

The second term in (13) is constant over the magnetic surface, but other terms are not. From

this we obtain three independent 1D equations

2FF′ - λ(FF′)′ = 0,  5/2 p0′ - λ p0′′ = 0, 5/2 p1′ - λ p1′′ = 0 (14)

Here first and second equations coincide with corresponding equations for a stationary plasma

[3]. The third equation for p1 coincides with the equation for p0. Thus, the canonical profile

for the function p1 = (R0
2/2) ρmω2 coincides with the canonical profile for the function p0.

The solutions of equations (14) are the functions

FF′ = CF exp(ψ/λ),   p0′ = Cp exp(5ψ/4λ),  p1′ = Cp1 exp(5ψ/4λ) (15)
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Substituting (15) to (9), we obtain the equation for the canonical equilibrium:

∆*ψ = - R jϕ  = - {CF exp(ψ/λ) + Cp R
2 exp(5ψ/4λ) (p0(0)+R2ρm0 ω0

2/2)} (16)

Here we define that on the magnetic axis ψ = 0, ρm0 = ρm(0), ω0 = ω(0). The parameters CF,

Cp and λ have to be defined from additional conditions, for example:

ψ⎪S = ψa, q(0) = q0 Ip  is prescribed (17)

In the case of a circular cylinder Eq. (16) has the form:

- ∆ψ = CF exp(ψ/λ) + Cp exp(5ψ/4λ) (18)

If we put Cp = 0 (low plasma pressure), we obtain

1/r d/dr (r dψ/dr) = ψ′′ + ψ′/r = - CF exp(ψ/λ) (19)

The solution of this equation has the form:

ψ/λ = - ln(1+Dr2)2 (20)

Substituting (20) into (19), we find the link between parameters D, λ and CF. Then it is

straightforward to find the poloidal magnetic field Bθ, µ = 1/q and the current density j:

Bθ = CF/2 [r/(1+Dr2)],    µ = R Bθ/(rB0) = µ0/(1+Dr2),     j = j0/(1+Dr2)2  

(21)

The constant D is defined by boundary conditions. Expressions (21) coincide with

Kadomtsev’s formulae based on the minimization of the poloidal magnetic energy functional

[5]. This coincidence is a basis for conclusions given in the following section.

4. CANONICAL PROFILE FOR ANGULAR ROTATION FREQUENCY

Taking into account that the canonical profiles are defined with accuracy of multiplier and

using the result from previous section that pc1 ∝ pc0, we obtain

pc1 ∝ pc0 ∝ ρmc ωc
2 ∝ nc ωc

2 ∝ nc Tc (22)

therefore

Tc ∝ ωc
2 (23)

The canonical profiles here are denoted by the subscript “c”. The canonical profile for

temperature was defined in our previous papers [6, 7]. In particular there was shown that Tc ∝

pc
2/3. From this we obtain
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 ωc ∝ Tc
1/2 ∝ p0c

1/3 (24)

In the transport model we will use the logarithmic derivatives of different variables. From

(24), they are linked by following relations

ωc′/ωc = 1/3 p0c′/ p0c = ½ Tc′/ Tc (25)

Here and below the prime now denotes the derivative over the dimensional radial coordinate

ρ, which defines the magnetic surface (0 < ρ < ρmax). The canonical profiles for the current

and pressure were defined in [6, 7].

5. TRANSPORT MODEL OF CANONICAL PROFILES

5.1. LINEAR MODEL FOR TOROIDAL ROTATION

The specific angular momentum is defined as:

L = n mi R υt = n mi R
2 ω (26)

We assume that the radial flux of the angular momentum qω is proportional to the difference

between the relative gradient of calculated momentum and the relative gradient of canonical

momentum (similarly to the heat and particle fluxes in [7 - 9]). In the linear model this flux is

equal to

qω = - n mi R
2 χω

PC ω (ω′/ω - ωc′/ωc) (27)

The equation for momentum has the form  

∂/∂t L = - divρ (qω) + tm,  tm = n Φ R (28)

where tm is a specific torque, Φ is the force applied to a mass corresponding to 1 m3. After

integration of (28) over the plasma volume we obtain

∂L0/∂t = - L0/τω + T, (29)

where

L0 = ∫
V

dV L, T = ∫
V

dV tm (30)

are the total angular momentum and total torque, L0/τω = - qωa, τω is the angular momentum

confinement time: τω = L0 / (T - ∂L0/∂t). In the steady state

τω = L0 /T (31)
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Usually in the experiment τω is close to the energy confinement time τE.

5.2. NONLINEAR MODEL FOR THE ELECTRON AND ION TEMPERATURES AND

PLASMA DENSITY

This model was described and validated in [4, 10]. The heat and particle fluxes, qα (α = e, i),

Γ, are as follows:

qα =  − nχα
PCTα (Tα′/Tα-Tc′/Tc) H(-[Tα′/Tα-Tc′/Tc]) Fα -  nχα

0 Tα′ + 3/2 ΓTα (32)

Γ = - D n (pe′/pe – pc′/pc) Fe Fi - D
0 n′ + Γneo,   (33)

where Tα and n are the temperatures and density to be determined, Tc and pc are the canonical

profiles of temperature and pressure, χα
PC and D are stiffness coefficients, Γneo = n vneo, H(x)

is the Heaviside function, ρ is a radial coordinate (0< ρ < ρmax). The values of χα
PC were

found earlier by the comparison of calculations with experiment [9, 6]:

χα
PC = CTα (1/M) (a/R)0.75q(ρ = ρmax/2)qcyl (Te(ρ = ρmax/4))1/2 (3/R)1/4 (1/B0)⎯n/n (34)

where a and R are minor and major radii, B0 is the toroidal magnetic field, M is ion mass

number, qcyl=B0a
2/2IpR, Ip is the plasma current. We use everywhere n, Ip, Ptot, R, Te,i and χ in

1019m-3, MA, MW, m, keV, m2/s respectively, <…> denotes volume-averaging, Ptot is the

auxiliary power deposited into plasma. We also set [4, 8]

χi
0 (m2/s) = 0.46 Ptot/ (<n>Ip),    χe

0 = χi
0 {4.5 (Te)

1/2/R},  D0 = 0.05 (35)

D = Cn χe
PC, Cn = 0.08 – 0.1, D0 = 0.05 (36)

The values of χα
0 and D0 are much smaller than χα

PC and D, but they play an essential role

inside the transport barriers. We use also the following boundary condition for canonical

profile [4]: µc(0) = (3.5 – 4) µc(a), where the value of µc(a) is defined by the solution of the

equilibrium Grad-Shafranov equation.

To describe the barrier formation we use the possibility of bifurcation due to

nonlinearities in transport equations [10]. Such nonlinearity is included in (32)-(33) using the

function Fα as follows:

Fα =exp(-zpα
2/2z0

2), (37)

where zpα= -(a ρmax/ρ) (pα′/pα - pc′/pc) is a dimensionless “distance” between the electron or

ion pressure profiles and the canonical pressure profile. The form of Fα means that the
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transport barrier occurs, when the distance zpα exceeds the critical gradient z0: ⎪zpα ⎪>z0. Note

that inside the transport barrier Fα << 1 and the first terms in fluxes (32)-(33) will be small,

but outside this region Fα ≈ 1. In the transient regime the parameter z0 determines the L-H

transition threshold, but at the steady-state it determines the width of transport barrier. The

range of z0 for different devices was explored in [10]:

z0 = 6-9. A more precise estimate of z0 is only essential for the determination of the threshold

power of the L-H transition. A rough estimate of z0 is sufficient to describe the developed H-

mode. Here we put z0 = 8. With this choice the ETB width, which arises as a result of

bifurcation, usually equals to 3-5% of minor plasma radius - this value does not contradict

experiment. Note that the transport model described in (32)-(37) does not include the effects

of rotation on the transport properties of plasma. Such effects were discovered many years

ago in experiment and were described recently in [11, 12].

5.3. TRANSPORT COEFFICIENT FOR THE LINEAR MODEL OF ROTATING

PLASMA

We assume that the stiffness of the angular frequency profile χω
PC is proportional to the

stiffness of the electron temperature profile:

 χω
PC = Cω χe

PC, (38)

where χe
PC is defined by (34). We determined Cω using 11 JET shots from the International

Multi-tokamak Confinement Profile database [13] (Table 1). The transport equations were

solved in the interval (0 < ρ < ρmax). Boundary conditions at the point ρ = ρmax are taken from

the experiment: ω(ρmax) = 8 – 22 (krad/s). Due to errors in experimental values of ω(ρmax), we

have chosen ω(ρmax) to optimise the solution of the equation for ω to fit the experimental

values of ωexp in the zone ρ/ρmax ~ 0.8 - 0.9. For each shot we optimize Cω to give the best fit

to experimental measurements during the steady-state phase of discharge. The results of

calculations may be approximated by formula:

 Cω = 1 /n1/3 (n in 1019 m-3) (39)

We see that at high densities the rotation stiffness is rather less than the electron temperature

stiffness. We will assess the accuracy of the simulation using the RMS deviations between

calculated and measured profiles. The temperature deviation may be written as:
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d2T = {(1/N) 
2

1
exp

exp

][∑
=

−N

k k

k
calc

k

T

TT
}1/2 (40)

Similar formulae are used for density and angular frequency. Although the experimental data

obtained by TRANSP are finite over the whole plasma cross section, there are really few

measurements of the velocity at ρ > 0.8 ρmax. There is also the influence of ELMs at the

plasma periphery that is not included in our model. Therefore we only sum in (40) over the

region (0 < ρ < 0.8 ρmax).

6. RESULTS OF CALCULATIONS

The calculated and experimental profiles of angular rotation frequency, ω(ρ) and ωexp(ρ), at

t = 11 s for hybrid H-mode shot #60933 are shown in figure 1. We see their reasonable

agreement. Figure 2 presents the temporal evolution of four deviations: d2Te, d2Ti, d2n and

d2ω for the same shot. The first three deviations are calculated with the nonlinear model

presented in section 5.2; the fourth deviation is obtained by the calculations with the linear

model presented in section 5.1. The next figures illustrate the shot #52009 with the H-mode

and rather high density. Figure 3 shows the temporal evolution of the total input NBI power

PNBI, line-averaged density ⎯n, and experimental and calculated central electron temperatures,

Tex0, Te0. We see that the quasi- steady state phase in this shot lasts at least 6 s (17 s < t< 23 s).

Figure 4 shows the temporal evolution of the deviations of electron temperature, density and

angular frequency in the same shot. During the rapid density ramp-up, the simulation

procedure adjusts the calculated density with some delay, so the RMS density deviation d2n is

as large as 20%, and the deviations of temperature and frequency are also at the level of 20-

25%. However, in the second part of steady state phase, for 20 s< t < 23 s, the calculated

density is reasonable (d2n ~ 3-5%) and the  temperature and frequency deviations decrease to

the level of 5-10%. The next figure presents data for shot #52014 with very high density H-

mode plasma. Such a high density leads to peripheral deposition of beam particles, which

transfer their torque to plasma ions also at the periphery (figure 5). However, the experimental

profile of angular frequency has maximum at the plasma center. Such plasma behaviour may

be evidence of an anomalous momentum pinch, directed to the center. This momentum pinch

is intrinsic in our model, when the first term in brackets for the momentum flux in (27) is less

than the second one. Such an anomalous momentum pinch was seen in experiment also [14].
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Figure 6 presents the momentum confinement time τω (a) (Eq. (31)) and the ratio τω/τE (b) as

functions of the plasma density for shots with rather high plasma currents (Ip>1.5 MA) at the

quasi steady-state phase of discharges. At high densities the profiles of input power are

hollow, and the energy rapidly escapes from plasma. However, owing to the strong pinch of

angular momentum (illustrated by figure 5) the momentum confinement time increases during

the density ramp-up. The ratio τω/τE grows from small values (~ 0.5) at low densities up to

values exceeding unity (~ 2) at high densities.

Figure 7 shows RMS deviations of angular frequency d2ω averaged over the time

intervals ∆t ~ 1-2 s for all 11 shots of Table 1, and ranked with plasma density. We see that

the deviations are generally less than 10-15%. The next figure 8 characterizes the quality of

simulation of the electron and ion temperatures and plasma density by nonlinear model (32)-

(37). Here the RMS deviations d2Te, d2Ti and d2n are shown for shots with enough high

current Ip > 1.5 MA. It is seen that the temperature deviations are of the level 10%, but the

density deviations are approximately two times lower.

The developed model was applied to MAST experiment. For this device the coefficient Cω in

(38), found from the analysis of 3 shots, is smaller: Cω = 0.5 /n1/3. Figure 9 shows the profiles

of deposited torque L (from TRANSP), calculated angular rotation frequency ω and the

experimental one, ωexp, for two MAST shots #13035 and #18696 with different densities. It is

seen that for MAST the calculated and experimental profiles are also close one to another.

CONCLUSIONS

The variational problem of minimizing plasma energy has allowed us to find the canonical

profile of the toroidal rotation velocity. The transport model based on this canonical profile

has been calibrated to describe reasonably the velocity of forced toroidal rotation of JET

plasmas. The RMS deviations of calculated rotation profiles from the experimental ones do

not exceed 10-15%. The application of the proposed model to the simulation of MAST

rotation has shown the encouraging results.
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#  Current  Power Density  Torque  Comment 

Ip ( ) P  (MW) n, (1019 m-3) T (N m) 

1 38285 2.5 12 6 11 H-mode 

2 38287 2.5 12 5 10 H-mode 

3 52009 2.5 15 7.5 14 H-mode 

4 52014 2.5 13.5 10.5 10 H-mode 

5 52015 2.5 13.5 10 12 H-mode 

6 52022 2.5 15 9 11.5 H-mode 

7 52024 2.5 15 10 11.5 H-mode 

8 52025 2.5 15 8.5 12.5 H-mode 

9 60927 1.4 13 3.5 13 Hybrid 

10 60931 1.4 17 3.5 17 Hybrid 

11 60933 2.0 15.5 3 22 Hybrid 
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Table 1: Parameters of studied shots.

Figure 1: Calculated and experimental rotation frequencies 
for low-density JET shot.

Figure. 2: The temporal evolution of temperature, density 
and angular frequency deviations of calculations from 
experiment for the same shot.
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Figure 3: Temporal evolution of the NBI power PNBI, line-
averaged density n, and experimental and calculated central 
electron temperatures, Tex0, Te0 for the JET Pulse No:52009  
with the H-mode and rather high density.

Figure 4: Deviations of the calculated electron temperature, 
density and angular frequency from experimental ones for 
the same JET shot.

Figure 5: Profiles of experimental wexp and calculated angular frequency w, and input  specific torque L for high-density 
JET Pulse No: 52014 at t = 21s.
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Figure 6: The momentum confinement time tw (a) and the ratio tw/tE (b) as functions  of the plasma density.
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Figure 7: RMS deviations of angular frequency for 11 JET shots of Table 1.
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Figure 8: RMS deviations for JET shots with currents Ip > 1.5 MA as functions of line-averaged density: (a) of electron 
temperature d2Te, (b) of ion temperature d2Ti, and (c) of plasma density.
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Figure 9: The profiles of deposited torque L from TRANSP, angular rotation frequency w from our model and experimental 
wexp from TRANSP for two MAST shots with different line-averaged densities: Pulse No: 13035 with n = 2.7×1019 
m-3 (a) and Pulse No: 18696 with n = 3.5×1019 m-3 (b).
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