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Abstract.
Modern nuclear fusion experiments utilise a large number of sophisticated plasma diagnostics, which 
are sensitive to overlapping subsets of the physics parameters of interest. The mapping between the 
set of all physics parameters (the plasma ‘state’) and the raw observations of each diagnostic, will 
depend on the particular physics model used, and will also be inherently probabilistic. Uncertainty 
enters into the mapping between model parameters and observations through the inability of most 
models to predict the precise value of an observation, and also through aspects of the diagnostic 
itself, such as calibrations, instrument functions etc. To optimally utilise observations from multiple 
diagnostics and properly deal with all aspects of model uncertainties is very difficult with today’s 
data analysis infrastructures. For this work, the Minerva analysis framework [1, 2] has been used, 
which implements a flexible and general way of modelling and carrying out analysis on this type 
of interconnected probabilistic systems by modelling of diagnostics, physics models and their 
dependencies through the use of Bayesian graphical models [3]. To date about 10 diagnostic systems 
have been modelled in this way at JET, which has already led to a number of new results, including 
the reconstruction of flux surface topology and q-profiles without an equilibrium assumption [4], 
profile inversions including uncertainty in the positions of flux surfaces, first experimental verification 
of relativistic effects to explain polarimetry measurements [5], and a substantial increase in accuracy 
of JET electron density and temperature profiles, including improved pedestal resolution, through 
the joint analysis of three different diagnostic systems [6].

1.	 Introduction
1.1 Chained Analysis
Analysis of experimental data in large nuclear fusion experiments is currently done independently 
and differently for each diagnostic system. There is very limited infrastructure support for scientific 
analysis itself, with the effect that the substantial complexity of analysis of diagnostic data, testing 
of models, validation of results from different diagnostics etc, is a semi-manual, time consuming 
and non-transparent process, which, as will be explained further down, also limits the applicability 
of diagnostics for inference on physics models, and can substantially underutilise diagnostic data.
	 Typically, data analysis is done in chains of purpose-built diagnostic codes run after each 
experiment. The order in which the codes are executed, is determined by the dependencies each 
diagnostic code has on physics parameters estimated from codes run previously. This approach has 
some major shortcomings:

•	 The dependencies between diagnostic codes leads to unmanaged error propagation, e.g. ne or 
Te profiles from a Thomson scattering diagnostic is used further down the chain by another 
diagnostic code that estimates some other parameter from its measurements.

•	 Dependencies imply sensitivity to the same physics parameter. These could be utilised to extract 
more information about the underlying common parameter [7, 8, 4, 6]. Such dependencies can 
provide much information, but are not possible to explore within today’s analysis infrastructure.
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•	 Physics assumptions, parameterisations, smoothing assumptions etc., are spread out and hidden 
among the different analysis codes, usually rigidly frozen into compiled code. It is therefore 
a huge effort to assess what exactly the full scientific model behind the analysis of data from 
an experiment is, which has implications for the scientific standards of conclusions based on 
such models.

1.2 The Minerva framework
The Minerva framework [1, 2] tries to remedy these shortcomings by implementing a standardised 
scientific analysis infrastructure, where modelling of diagnostics, analysis of measurements, 
exchanging of underlying physics assumptions, and experimental design, are all done in a unified 
way. To accomplish this, Minerva uses the formal concept of Bayesian graphical models [3]. Being 
an amalgamation of probability theory and graph theory, it allows all functional and probabilistic 
dependencies between physics models and diagnostic raw data, diagnostic setup parameters etc, 
to be formally and explicitly defined (figure 1). The formal specification then represents a full 
scientific model for a given analysis scenario, and makes it possible to apply generic operations 
on the graph, such as different inversion methods, which are not tied a particular diagnostic. By 
using standard interfaces, multiple diagnostics can be combined, for joint inference on common 
physics parameters, thereby optimally utilising the diagnostic measurements. This can also be 
used to automatically calibrate diagnostics (see section 4), and can lead to a substantial increase in 
accuracy of inferred parameters.
	 The loose coupling and building block approach of Minerva also allows different assumptions 
behind the analysis of data from multiple diagnostics to be changed, such as assumptions on 
parameterisations and smoothness of profiles, and physics assumptions such as the Grad-Shafranov 
assumption (see section 3). Such assumptions determine how much information, and about what 
physics parameters, a diagnostic can contribute. Models implemented in Minerva are generative 
(figure 2), that is, measurements can be simulated from underlying physics assumptions and 
diagnostic setup parameters, such as line of sight geometries, calibrations etc. Thus, the same system 
used for analysis can also be used for experimental design.
	 The generic description and implementation of diagnostics and physics models in Minerva makes 
it possible to transfer diagnostic models to other machines [9]. The framework is currently used at 
the JET, MAST, H1 and W7-X experiments. We will here show some results from the application 
of such models at JET. The mathematical underpinning of Minerva, Bayesian probability and 
Bayesian graphical models, are introduced in section 2. Section 3 describes the modelling of the JET 
magnetics, flux surfaces and equilibrium. In section 4 a joint analysis of JET’s two LIDAR systems 
with an 8-channel interferometer system is presented. Section 5 gives a summary and outlook.

2.	Ba yesian Probability and Graphical Models
If we define the physics state S as the values of all free parameters and nuisance parameter in a 
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given model, we get for the probability distribution over S, from Bayes formula

(1)

where D is the observed data. p(S), the prior distribution, expresses our knowledge about the state 
S before any observations are made. This is used to express regularization assumptions, smoothing 
assumptions, or physics constraints on the free parameters of the model. It is largely this entity that 
makes it possible to move this type of “soft” or auxiliary assumptions from the analysis algorithm to 
the model itself. p(D|S), the likelihood, describes the distribution of observations that are expected 
for a given physics state S. From these two distributions the posterior distribution, p(S|D) can be 
calculated up to a normalisation constant p(D) that is independent of the state S.
	 To infer the posterior of S from observations from a number of diagnostics simultaneously, we 
use the fact that the observations from different diagnostics are conditionally independent given 
the common physics state S:

(2)

This simple formula hides a substantial complexity: the likelihoods for the different diagnostic 
observations, p(Di|S)  , include the full mapping between the physics state S, including physics 
model, diagnostic nuisance parameters such as calibration factors, stray light, line of sight geometry 
etc, and the expected observation of that diagnostic. It is the assumptions in this likelihood, the 
choice of parameters in S, and the form of the prior distribution, that form our scientific model. An 
elegant and transparent way of unfolding and handling this type of complex probabilistic models is 
by expressing them in terms of Bayesian graphical models (figure 1), where each node represents 
a deterministic function, or a probability distribution conditioned on its parents. By associating 
nodes (a, b, c, n, d1, d2 in figure 1) with specific conditional probability distributions, the joint 
distribution of observations and free parameters, which is proportional to the posterior distribution, 
can be formed automatically from the graph definition, and so need not be hardcoded into legacy 
codes. Inversion methods, such as nonlinear optimisation of the free parameters to find a maximum 
probable state (MAximum Posterior (MAP)), or sampling methods such as Markov Chain Monte 
Carlo (MCMC) can then be applied to the graph.

3.	 Magnetic Model
A fundamental quantity to infer, important for much diagnostic analysis, is the magnetic field 
structure. We we will here describe two Minerva models for the magnetic field, the first using a 
magnetostatic assumption, and the second a force balance assumption. Inference on the internal 
magnetic field from diagnostic measurements involves modelling of the plasma current distribution, 
poloidal and toroidal field coils, and in some cases passive structures, such as iron core or vessel 

p(S | D)  p(S)
p(D)

p (S | D) =

Π
N

i=1
p(S | D)       p(Di|S)

p({Di})
p (S | {Di}) =
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eddy currents. For the toroidal current distribution model, we here use a grid of solid current beams 
[4] (figure 3), and the magnetization of the JET iron core is treated as a nuisance contribution to 
the field inside the plasma. From this model, the marginal posterior over current beams can be 
calculated, and by picking samples from the posterior current distribution, and calculating flux 
surfaces, magnetic axis position, x-point etc from those samples, uncertainties on those quantities 
can be established. Prior regularizing assumptions specify the necessary assumptions on the scale 
lengths of the toroidal current distribution, from which the posterior current distribution can be 
calculated using different sets of diagnostics. Figure 4 shows samples of posterior flux surfaces from 
graphical models including increasingly more diagnostics connected to the toroidal current model. 
In figure 4c six diagnostic systems are used jointly to infer the flux surface topology, without using 
any specific equilibrium assumption, and so will not be sensitive to possible anisotropic pressure, 
plasma rotation etc.
	 We can now use the information about the uncertainty of the flux surface coordinate system in 
the analysis of other diagnostic data. Figure 5 shows ne profiles inversed using JET interferometer 
data, from maximum likely flux surfaces (figure 5a), and taking into account the uncertainty in the 
flux surfaces through repeated interferometry inversions on samples from the posterior flux using 
diagnostic coils and the MSE diagnostic (figure 2). As can be seen in the figures, the central dip of 
the density profile can be explained by uncertainty in the flux coordinates themselves.
	 We can now use the same diagnostic models, and change the physics model to include a force 
balance assumptions as well. A Grad-Shafranov constraint is added to the graph model by adding a 
poloidal current model, pressure model, and constraint nodes that impose a given prior assumption 
on the difference between the toroidal current distribution as modelled above, and the right hand 
side of the Grad-Shafranov equation (figure 6b):

(3)

where R is the major radius, p’ the pressure derivative with respect to normalised poloidal flux, 
and f the poloidal current flux.
	 With such a constraint, the toroidal current distribution can be inferred on a high resolution 
beam grid using only external magnetic diagnostics (JET pickup coils, saddle coils and flux loops), 
including unexpectedly high detail of local features, especially at the plasma edge (figure 6) [10]. 
Work is currently ongoing to explore the posterior current uncertainties using Markov Chain Monte 
Carlo sampling.

4.	C ombined core LIDAR, edge LIDAR and interferometry
Another example of how a modular framework can benefit analysis is a the following detailed 
Minerva models for the JET core and edge LIDAR systems [6], the combination of which with the 
interferometer system previously mentioned, gives a substantial increase in accuracy of ne and Te 

µ0
R

Rp′ +        ff ′
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profiles, and manages to resolve the pedestal region to an extent not possible with any diagnostic 
used alone. Figure 7 shows inferred ne and Te profiles from this combined system. For this model, 
the position and absolute density calibrations of both LIDAR systems, and the absolute temperature 
calibration of the edge LIDAR have been free parameters, the combined information of these three 
systems being enough to infer both ne and Te profiles to the accuracy indicated in figure 6. This 
shows that this approach can also lead to powerful selfcalibrating systems in some cases.

Summary
Modelling the complex inference systems in nuclear fusion experiments with Bayesian graphical 
models as implemented in the Minerva framework, makes it possible to have full control over all 
assumptions behind a scientific model, easily change physics assumptions, and combine different 
diagnostics for more accurate inference on the physics parameters of interest. The intrinsic Bayesian 
approach allows full exploration of the influence of all uncertainties in the combined model. This 
modular Bayesian graph approach could potentially be used for very large sets of diagnostics, 
providing a generic data analysis framework for nuclear fusion experiments that would be able to 
optimally utilise all information in the system.
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Figure 1. Schematic Minerva Bayesian graphical model for two diagnostics giving joint evidence on the same 
physics model. Ovals are probabilistic nodes, of which a,b,c are free parameters of the physics model, n is a nuisance 
parameter of a diagnostic, and d1, d2 observations. In reality, also the physics and diagnostic models are implemented 
as exchangeable subgraphs. Inversion of this graph would make both d1 and d2 contribute towards inferring a,b and 
c. The nuisance parameter n would be marginalised out.

Figure 2. All Minerva models are generative, so each observation can be sampled/simulated conditioned on the set of 
dependent parameters that are ancestors of the observation nodes.
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Figure 3. a) Model of the toroidal current distribution as a grid of solid current beams. b) samples of flux surfaces 
from posterior [4].

Figure 4. Samples from posterior of flux surfaces for different sets of diagnostics for the same prior. Width of a flux 
surface corresponds to the uncertainty of the flux surface. From left to right: a) Pickup coils, saddle coils and flux 
loops, b) additional Motional Stark (MSE) measurements, c) additional polarimetry and interferometry measurements.
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Figure 5. Inversion of the JET 8 channel interferometry signals from a) Maximum probable flux surface topology, and 
b) On repeated samples from the posterior of the flux surfaces, showing that the uncertainty in the mapping itself can 
explain the hollow profiles in a). JET Pulse No: 75050, t = 24s.

Figure 6. MAP inference on the toroidal current distribution (left) by adding a Grad- Shafranov constraint in a Minerva 
graphical model (right).
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Figure 7. a) Laser beamline for the two JET LIDAR systems. b) ne and Te profiles. Colored bands are marginal posterior 
density, violet is standard core LIDAR analysis, white edge LIDAR stand-alone analysis, orange are independent high 
resolution Thomson scattering measurements.
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