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  Abstract 
This paper describes advances made in the field of energetic particle physics since the topical 

review of Alfvén eigenmode observations in toroidal plasmas (K-L Wong 1999 Plasma Physics 

Control. Fusion 41 R1-R56). The development of plasma confinement scenarios with reversed 

magnetic shear and significant population of energetic particles, and development of novel 

energetic particle diagnostics were the main milestones during the past decade, and these are the 

main experimental subjects of this review. Theory of Alfvén cascade (AC) eigenmodes in 

reversed shear tokamaks and its use in magneto-hydrodynamic (MHD) spectroscopy are 

presented. Based on experimental observations and nonlinear theory of energetic particle 

instabilities in the near-threshold regime, the frequency sweeping events for spontaneously 

formed phase space holes and clumps and evolution of the fishbone oscillations are described. 

The multi-mode scenarios of enhanced particle transport are discussed and a brief summary is 

given of several engaging research topics that are beyond the authors’ direct involvement. 

 

1. Introduction 

 

The need to control the behaviour of the energetic ion population and associated instabilities is one 

of the key issues for magnetic fusion [1]. Alfvénic instabilities are of primary interest as well as 

primary concern in that regard. They have received an overwhelming attention after Toroidal 

Alfvén Eigenmodes (TAE) were predicted theoretically [2] and shown to be susceptible to 

excitation by fast ions in burning plasmas [3]. An experimental search for TAE’s on TFTR [4] and 

DIII-D [5] has confirmed their existence convincingly. An extended subsequent world-wide studies 

of TAE’s, both experimental and theoretical, are summarized in Ref. [6].  

During the past decade, the development of new plasma scenarios with Internal Transport 

Barriers (ITB) and reversed magnetic shear has revealed instabilities of Alfvén Cascade (AC) 

eigenmodes [7-9] with characteristics quite different from TAEs. At the same time, the spherical 

tokamak avenue of magnetic fusion was successfully explored with two new mega-amp machines 

MAST and NSTX achieving very high values of β  in the presence of super-Alfvénic neutral beam 

injection (NBI) [10, 11]. These MAST and NSTX experiments have shown a variety of NBI-driven 

frequency-sweeping events in the Alfvénic range, which calls for an adequate theoretical 

description of the conjectured non-perturbative nonlinear modes.  

A significant progress has been made in diagnostics of energetic-particle driven modes. The 

development of novel mode detection techniques based on interferometry [12, 13] and phase 

contrast imaging [14], together with the improved reflectometry [15, 16], made the characterization 

of unstable modes and their amplitudes more reliable. With these diagnostics at hand, the theory-to-

experiment comparison became less ambiguous for all types of modes, including TAEs. In 

particular, interpretation of experiment with multiple modes excited simultaneously, became 

possible and consistent with the experimental data [17, 18]. 
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Thanks to the close interaction between theory and experiment, the experimentally observed 

modes driven by energetic particles have become a convenient tool for so-called MHD 

spectroscopy first discussed in detail in [19] and developed experimentally in [8, 20]. This type of 

diagnostics allows infering unique information about plasma properties and plasma equilibrium 

from the experimentally measured spectra of discrete Alfvén eigenmodes. In particular, a routine 

use of the observed ACs in shear-reversed plasmas has helped a great deal in developing ITB 

scenarios [21].  

The advances in theoretical description of nonlinear mode evolution have been largely due 

to exploration of the near-threshold regimes typical for most of the energetic particle driven waves 

[22]. The near-threshold situation develops naturally when the energetic particle population builds 

up gradually and the energetic particle drive becomes competitive with the mode damping. The 

near-threshold evolution of the mode can be characterized as either soft or hard. In the first case, 

the mode saturates at a low level reflecting the closeness to the instability threshold. In the case of 

hard excitation, the nonlinearity acts to destabilize the mode and push the system further away from 

the threshold. Both soft and hard scenarios have been observed experimentally. The developed 

theoretical approach has been applied successfully to TAE ‘s [23-25] and fishbones [26] in an effort 

to characterize nonlinear evolution of isolated weakly unstable modes and use this understanding to 

interpret measurements of the modes and fast ions.  

A more challenging physics problem to address is multi-mode transport of energetic 

particles. This essential step is required to predict with confidence the macroscopic effects of the 

modes on energetic particles in burning plasma machines such as ITER [1]. In contrast to present-

day experiments with typical ratio between the orbit width and the minor radius of plasma, 

ρα / a ≅ 0.1 , ITER will have much larger dimensions and ρα / a ≅ 10−3 ÷10−2 . Under such 

conditions, a single mode cannot affect the transport on a global scale, and only multiple modes can 

if they provide overlap of the wave-particle resonances over significant part of the minor radius.  

The aim of this paper is to review the ongoing theoretical and experimental studies of 

energetic particle-driven instabilities and their nonlinear consequences. The content of the review is 

largely influenced by our personal research preferences, which obviously makes the paper less then 

comprehensive. Yet, we hope that this deliberately biased description does not overlook the most 

challenging points in the continuing effort to complete the energetic particle puzzle. The rest of the 

paper is organized as follows. Section 2 describes Alfvén Cascades in tokamak plasmas with 

reversed magnetic shear and their use in MHD spectroscopy. Section 3 deals with nonlinear 

properties of the modes driven by energetic particles. Section 4 presents our current understanding 

of the bursty “fishbone” instability. Global transport of energetic particles due to multiple unstable 

modes is described in Section 5. The concluding section (Section 6) is an outline of broader 

research activities. 

 

2. Alfvén modes in plasmas with reversed magnetic shear 

 

2.1 Alfvén Cascade eigenmodes  

 

During the past decade, significant attention was paid to advanced tokamak scenarios aimed at 

obtaining Internal Transport Barriers (ITB) with non-monotonic safety factor profiles )(rq . Such 

plasmas have a region of magnetic shear reversal, which enriches their Alfvén wave spectra. In 

addition to the arising multiplicity [27] of Toroidal Alfvén Eigenmodes (TAEs) [2] in the low-shear 

limit, these plasmas commonly exhibit the so-called Alfvén cascades (AC) [7-9, 21], also known as 
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Reversed Shear Alfvén Eigenmodes (RSAE) [16]. ACs have been observed on JET [7-9, 21], JT-

60U [28, 29], C-MOD [14], TFTR [30], and DIII-D [13]. They are excited by either ICRH-

accelerated ions (JET, JT-60U, and C-MOD) or by NBI-produced ions (JET, JT-60U, and DIII-D). 

Fusion born alpha-particles excited the AC in TFTR DT plasmas [30], indicating relevance of these 

modes to burning plasma experiments. 

The AC modes, an example of which is shown in figure 1, are associated with the 

extremum point of the shear Alfvén continuum localized at the magnetic surface with the minimum 

value of q(r) , labelled as q0 [7-9, 21]. During time evolution of the plasma current, the 

eigenfrequency of the AC, ωAC (t) , changes in step with q0 (t)  in accordance with the local 

dispersion relation for shear Alfvén waves. In the simplest case of cold (low pressure) plasma, this 

gives 

 ω AC (t ) ≈
VA

R0

n −
m

q0 (t )
+ ∆ω   (1) 

 

Here, n  and m  are toroidal and poloidal mode numbers, 0R  is the major radius of the tokamak, 

VA = B0 / 4πρ0( )1/2
 is the Alfvén speed, 

0B  is the equilibrium magnetic field, and 
0ρ  is the mass 

density of the plasma. The first (dominant) term on the right-hand-side of (1) is the shear Alfvén 

continuum frequency at the zero shear point. 

The correction ∆ω  in (1)  describes a deviation of the AC eigenfrequency from the 

continuum, and it originates from the effects of: large ion orbits [7, 31], toroidicity [32], and 

thermal plasma pressure gradient [33]. In plasma with higher pressure, deformation of the 

continuum itself becomes important due to geodesic acoustic effect [34].  This deformation will be 

described later, but it is important to note here that both ∆ω  and the geodesic acoustic 

contribution remain nearly constant on the time scale of q0 (t)  evolution.  

Except in the vicinity of qTAE ≡ (2m −1) / 2n , each Alfvén cascade mode consists of 

predominantly one poloidal Fourier component. As  q0 (t)  approaches qTAE , toroidicity-induced 

coupling modifies the dispersion relation (1) and changes the mode structure into a sum of two 

comparable harmonics (m  and m −1 ),  as figure 2 shows. This transition from AC to TAE is seen 

as spectral line bending in figure 1 near the TAE gap.  The corresponding theory has been 

developed in Ref. [32].  

It is observed experimentally that the edge magnetic probe signals from the AC 

perturbations peak when the AC frequency enters the TAE-gap (see, e.g. [30, 35]). This peaking 

can be reasonably attributed to radial broadening of the AC mode during its transition to TAE (as 

seen from the plots shown in figure 2). It is noteworthy that the mode can look stronger on the 

magnetic probes even when internal (reflectometer) measurements show that its amplitude 

decreases in the plasma core [30]. The change in the mode structure correlates with the change in 
the mode damping rate during the AC-to-TAE transition [36].  The AC-to-TAE transition is also 

accompanied by notable redistribution of the fast ions [35], although ACs themselves cause a 

weaker than TAE’s degradation of fast ion confinement. The relatively weak effect of the ACs on 

the fast ion redistribution can be explained by the AC mode structure: the ACs with different mode 

numbers are all associated with the same magnetic flux surface at q0 (t)  and are localized in 

vicinity of the zero shear point. 

It follows from Eq.(1) that the AC frequency tracks the evolution of q0 (t)  so that the modes 

with higher poloidal numbers m have steeper slopes in figure 1. The sequence of modes in figure 1 
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is also consistent with (1): each mode appears when q0 (t)  passes a corresponding rational value 

m / n . The integer values of q0 (t)  give rise to so-called grand cascades in which there are 

simultaneous unstable modes with all toroidal mode numbers, such as in figure 1 at t ≈ 5.2 s,. This 

clustering of the ACs has been employed in MHD spectroscopy to find the exact timing of the 

safety factor evolution [8, 9, 21]. 

On JET, the excitation of ACs is observed in almost every reversed-shear discharge with 

ICRH or NBI, but these modes do not cause significant degradation of fast ion confinement in JET 

plasmas. On the other hand, the measured discrete spectrum of ACs provides valuable information 

about both fast ions and MHD characteristics of plasmas. A particularly important example is the 

relation between the grand cascades, integer values of q0 (t) , and so-called ITB triggering events 

[37, 21]. This relation has been first observed on JET, and it is presented in figure 3. As seen from 

the figure, the neutron rate in the discharge is constant for about one second (from t = 6 s to t = 7 s) 

at fixed power of NBI and ICRH. However, the yield then goes up and almost doubles after t = 7 s 

without any change in the NBI or ICRH power. At the same time, a grand cascade is detected by 

Mirnov coils, which indicates that the safety factor q0 (t)  takes an integer value at the location of 

magnetic shear reversal. 

In order to investigate the correlation between ACs and ITBs with higher time resolution 

and higher degree of certainty, a technique of AE detection from plasma density perturbations has 

been developed [12]. Figure 4 shows an example of the O-mode interferometry (top) versus Mirnov 

coils measurements of the same Alfvén Cascades (bottom). Other types of interferometry 

measurements, e.g. the far infrared interferometry (FIR) used for density measurements also detect 

high frequency modes, and these now operate successfully on JET [21] and on DIII-D [13, 38].  

With the newly developed diagnostic technique, numerous JET reversed-shear experiments 

have demonstrated a close link between ITBs and integer values of q0 (t)  [21]. The ITB triggering 

event is observed on the electron temperature profile Te(r;t)  as a spontaneous steepening of the 

slope ∂Te / ∂r  when q0 (t)  approaches/passes an integer value. Figure 5 shows an example of such 

event at constant heating power applied. 

The steepened electron temperature profile either relaxes in few hundred milliseconds or 

developes into an ITB if the main heating power is being supplied when the triggering event 

occurs. Figure 6 shows a grand-cascade soon after the ITB triggering event. Similar sequence of 

events is observed in most of the discharges not perturbed by strong MHD phenomena like NTM 

[21]. This sequence suggests that the spontaneous improvement in electron confinement is likely to 

be associated with a gap in the density of the rational surfaces prior to the appearance of an integer 

q0  [39] rather then with the very existence of an integer q0  in the plasma [37]. The link between 

ITB triggering and low-order rational surfaces inferred from the grand-cascades is routinely used 

on JET for developing ITB scenarios in the following way. A single discharge with low power 

ICRH is performed first at the beginning of an experimental session and the times of AC 

appearance are accurately measured. Thanks to the very good reproducibility of JET discharges, the 

measured times for the grand cascades with low-order rational values of q0  are then used reliably 

in all other discharges of the series to turn on the  main heating power at a desirable “target” value 

of q0
 in order to create an ITB [21, 37]. The correlation between ITB triggering events and ACs 

has also been seen clearly in DIII-D [38]. It was, however, noted that such a link seems to weaken 
in discharges with higher plasma density.  

We now note an interesting difference between the AC spectrograms in figure 4 (top) and in 

figure 6. This difference results from fast toroidal rotation of the plasma in the discharge shown in 
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figure 6. The plasma spins up due to the uni-directional neutral beam injection. The mode 

frequency fn
LAB  in laboratory reference frame differs from the frequency fn

0  in the plasma reference 

frame by a Doppler shift, 
 

 fn
LAB = fn

0 + nfrot r0( ),  (2) 

 

where, ( )0rf rot  is the rotation frequency at the mode location, and n  is the toroidal mode number. 

With increasing toroidal rotation of the plasma, the Doppler shift modifies the frequency of AC 

significantly. However, the grand cascade is still seen clearly in this case in figure 6 as a cluster of 

modes starting at the same time but with frequencies separated by the Doppler shifts. 

Measurements of ACs on DIII-D, made with FIR interferometry, [40] give somewhat 

different spectrograms than those on JET. The Doppler shift was about 20% of the TAE frequency 

in DIII-D (due to the strong E × B  rotation) and it had the opposite sign. The competition between 

the negative Doppler shift and the upward frequency sweeping due to the time-dependent safety 

factor q0 (t)  forms a “hilly” structure of the AC spectral lines seen in figure 7. 

 

2.2 Quasi-modes  

 

The preferred upward direction of Alfvén cascade sweeping seen in figure 1 indicates that a 

Schrodinger-type equation for the AC has a radial potential well for the upward sweeping 

eigenmodes, as opposed to a potential hill for the downward sweeping perturbations [41]. However, 

in some JET discharges with weakly reversed q(r)  profile (about 1% of total number), ACs can 

also sweep downward and exhibit frequency rollover shown in figure 8. This rollover indicates a 

hill-to-well transition for AC’s. The rollover and the downward sweeping can be interpreted in 

terms of Alfvén cascade quasi-modes that arise on the potential hill and stay there transiently prior 

to damping at the Alfvén continuum resonance. The fairly large value of the lowest frequency in 

figure 8 results from the deformation of the shear Alfvén continuum due to the geodesic acoustic 

effect [34]. In the limit of large mode numbers n  and m , both Alfvén cascade modes and quasi-

modes are governed by the same wave equation 
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 +≡ ieG TT
MR 4

72
2

2ω  is the square of the geodesic acoustic frequency and 

ω∇
2 ≡ −

2

MR2
r
d

dr
Te + Ti( )− ω

m

eB

Mc

r

nplasma

d

dr
n fast  is an offset arising from the plasma pressure 

gradient and from  the fast ion response in the large orbit limit. Assuming that the perturbation of 

interest is localized near the zero shear point r 0  such that r − r0 << r0 , one can expand the safety 

factor q(r)  around r 0
 and look for a radially extended solution of (3) with r0 / m( )<< r − r0 << r0 . 

This requires that ω 2  be very close to  
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 ω 0

2 ≡ ω G

2 +
VA

2

q0

2R 2
nq0 − m( )2 + ω ∇

2 ,  (4) 

 

One can then neglect small radially dependent quantities in the second derivative term of (3). With 

these simplifications, (3) reduces to  

 

 
∂2Φ

∂z 2
= λ − ηz 2 − z 4 Φ ,  (5) 
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The upward sweeping Alfvén cascade modes are solutions of (5) with η < 0 , whereas Alfvén 

cascade quasi-modes represent solutions with η > 0  and with radiative boundary conditions at 

infinity. Let λ(η)  be a complex eigenvalue of (5) for η > 0 . Of particular interest is the eigenvalue 

with the lowest imaginary part, corresponding to the weakest damping. In the limit of large η , i. e., 

when q0
 is sufficiently far from the m / n  rational surface, (5) reduces to the Schrödinger equation 

for an inverted pendulum [41]. The characteristic life time of the quasi-mode wave-packet can then 

be calculated analytically.  The corresponding damping rate for large η  is [42] 
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The opposite limiting case of small η  refers to perturbations near the rational magnetic surface 

with q0 = m / n .  In this limit, one can set η = 0  in (5) to obtain: 

 

 
∂ 2Φ

∂ z 2
= λ − z 4( )Φ .  (8) 

 

The least damped quasi-mode solution of (8) has Imλ ≈ 0.57 , with the following dependence of 

the damping rate on plasma parameters: 

 

 

3/2

0

3/2

0

0

2

0

2222

2

22

0

1

22

57.0




















 ′′

++
+−=

∇∇
∇=

mqq

qr

R

V

G

A

G

G
G

ωωωω
ω

ωωγ η       (9) 

 



 7 

For intermediate values ofη , a time-dependent Schrödinger equation was solved numerically [42] 

to give the dimensionless damping rate Imλ shown in figure 9. 

A population of ICRH-accelerated ions can provide sufficient drive to overcome the quasi-

mode damping. Calculation of this drive requires a non-perturbaive treatment described in Ref. 

[42]. In the high- n  limit, the dominant contribution to the particle-to-wave power transfer comes 

from the turning points regions of the fast ion banana orbits. As a result, despite the large width of 

the fast ion orbits, the ensuing wave equation retains the Shrodinger-type structure, rather than 

becoming an integro-differential equation. An interesting difference between the “true” modes and 

quasi-modes is that the “true” modes have a rigid structure due to discreteness of their frequencies 

whereas rigidity of the quasimodes is due to quantization of their damping rates. 

It is important to note that radiative damping of quasimodes can also be viewed as a result 

of phase mixing between different kinetic modes that make up the initial perturbation. As an 

alternative to a single radiatively damped quasimode, one can consider a dense spectrum of kinetic 

Alfvén modes for which finite Larmor radius ( ρi ) effects create a potential well to form bound 

states [43, 44]. The frequency spacing δω  for these discrete kinetic modes is given by [43] 
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By comparing this spacing to the quasimode damping rate (7)  in the limit η >>1, which refers to the 

commonly observed flattish q - profiles, we find that the damping rate exceeds the spacing if  

 

   
r0

ρim
ω∇

ω0

> 1  .     (11) 

 

This inequality makes it allowable to ignore discretization of the kinetic mode spectrum, because 

the timescale required to resolve the neighboring kinetic modes is longer than 1 / γ d  by which time 

the quasimode has either decayed to zero or grown beyond the applicability of linear theory. Near 

marginal stability, i.e., for the case γ L − γ d << γ d , where γ L is the linear drive due to resonant 

particles, an extra factor (γ L − γ d ) / γ d  appears in Eq. (11), which makes criterion (11) more 

restrictive. Violation of this criterion means that the kinetic modes become distinguishable. Such 

modes with a broad radial scale have been constructed in Ref. [44].  

 

2.3 Nonlinear sidebands and internal measurements 

 

As seen from (4), the measured deviation of the Alfvén cascade frequency from the 

idealized dispersion relation (1) can apparently be used to determine the ion temperature, the 

electron temperature, or fast ion parameters, depending on which contribution dominates in (4). 

Another interesting opportunity for plasma diagnostics involves nonlinear sidebands of Alfvén 

eigenmodes. In experiments on Alcator C-Mod [14], measurements of density fluctuations with 

Phase Contrast Imaging (PCI) in figure 10 show a second harmonic of the basic Alfvén cascade and 

TAE signals. This second harmonic perturbation can be interpreted as a nonlinear sideband 



 8 

produced by the eigenmode via quadratic terms in the magnetohydrodynamic equations [43]. The 

signal at 2ω  is nearly resonant with the 2m;2n( ) branch of the Alfvén continuum. 

The resulting enhancement of the second harmonic is counteracted by the relatively weak 

non-linearity of the shear Alfvén waves. For shear Alfvén perturbations in a uniform equilibrium 

magnetic field, the quadratic terms 4πρ v ⋅∇( )v  and B ⋅∇( )B  tend to cancel in the momentum 

balance equation. For this reason, special care is needed to include magnetic curvature effects 

properly and to evaluate the coupling between shear Alfvén perturbations and compressional 

perturbations. As shown in Ref. [45], the ratio of the second harmonic density perturbation ρ2ω  to 

the first harmonic perturbation ρω  is roughly ρ2ω / ρω ≈ mq0 R / r0( ) δBω / B0( ), where δBω  is 

the perturbed magnetic field at the fundamental frequency. This estimate is consistent with recent 

new measurements on Alcator C-Mod [46]. The estimate for ρ2ω / ρω  can be refined via more 

detailed calculations, which would provide the spatial structure of the second harmonic signal for 

the observed modes. Such calculations together with PCI data, would then allow determining the 

perturbed fields inside the plasma, rather than just at the plasma edge as with magnetic probes. 

 Internal measurements of mode amplitude and mode structure have been boosted in 

experiments on various machines recently. The mode structure diagnostic is based on 

measurements of electron density perturbations and electron temperature perturbations. The density 

perturbation δn , created in a tokamak by plasma displacement ξ  in a shear Alfvén wave, contains 

a convective part  and a compressional part [47],  
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The convective contribution to δn  is due to the equilibrium density gradient ∇n0
, whereas the 

compressional contribution is associated with the geodesic curvature κ ≡ R / R2 , where R / R  is 

the unit vector along a major radius direction, and  R  is the major radius. In the case of ACs, the 

density perturbations measured by the X-mode reflectometry reveal the mode localization and 

thereby identify the location of magnetic shear reversal. This diagnostic technique has been used 

extensively on DIII-D [48] and JET [49]. A more recent PCI diagnostics on C-MOD [50] enhances 

this capability. 

 Based on a model for the AC frequency, a sensitive diagnostic for the evolution of the 

minimum magnetic safety factor ( )tRq ,0
 was developed and compared successfully with motional 

Stark effect (MSE) measurements, an example of which for DIII-D is shown in figure 11. The 

successful use of “Alfvén spectroscopy” on present-day machines has demonstrated the importance 

and feasibility of the core diagnostic of AEs in ITER [1]. With regard to ITER, this technique of 

monitoring temporal evolution of the safety factor profile can serve as a back-up to the MSE 

diagnostic.On C-MOD, the PCI measurements over a wide width in major radius, have led to an 

excellent technique of reconstructing the AE mode structure [50]. Figure 12 shows an example of 

such reconstruction and comparison to the NOVA code modelling. In this case, the effect of 

cancellation of positive and negative density perturbations along the line-of-sight was investigated 

in detail. 
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Finally, excellent internal diagnostics of AE’s has been developed on DIII-D [51], based on 

ECE measurements. The multiple-channel ECE technique expands the capability of mode 

detection significantly due to its high spatial resolution. The ECE technique is one of the main 

diagnostics for equilibrium temperature measurements, and multiple ECE channels are already 

available for that. The use of ECE as a diagnostic for AE’s requires only a modest amendment: 

digitization of the measured signals up to the relevant frequency range. 

 

3. Nonlinear evolution of energetic particle driven mode 

 

The near-threshold regimes of wave excitation by energetic particles reveal a rich family of 

nonlinear scenarios ranging from benign mode saturation to spontaneous formation of nonlinear 

coherent structures (phase space holes and clumps) with time-dependent frequencies [52, 53, 23, 

24]. This variety results from an interplay between the wave field, which tends to flatten the 

distribution of resonant particles, and the relaxation processes, which tend to restore the unstable 

distribution function. The relaxation process was modelled in Ref. [22] via an `annihilation' (Krook 

[54]) collision operator.  Within this model, four regimes of the near-threshold evolution of a single 

wave have been predicted depending on the ratio of the effective relaxation rate νeff  to the linear 

growth rate γ : 1) a steady-state regime; 2) a regime with periodic amplitude modulation; 3) a 

chaotic regime, and 4) an `explosive' regime.  The case of velocity space diffusion exhibits very 

similar non-linear behaviour [52, 53]. 

The first three regimes have been identified in JET experiments on Toroidal Alfvén 

Eigenmode (TAE) excitation by ICRH (ion cyclotron resonance heating) [23, 24]. The explosive 

regime leading to a strongly non-linear phase was identified in MAST experiments with TAEs 

driven by NBI (neutral beam injection) [25]. Due to the strong non-linearity that develops in the 

explosive scenario, the instability on MAST was observed in the form of TAE `bursts', representing 
a near-threshold type of a general `bursting' non-linear scenario described in [55]. 

Figure 11 illustrates observations of different nonlinear scenarios. Experimentally, the 

TAE’s driven by ICRH-accelerated ions on JET exhibit a variety of regimes just above the 

excitation threshold. Figure 13 shows how raw signals and magnetic spectrograms of TAE change 

during gradual increase of ICRH power [24]. In this case, the distribution function of the fast ions 

resonating with TAE’s is formed via quasi-linear RF diffusion. The effective rate of replenishing 

the distribution function, νeff , is therefore an order of magnitude higher than the rate associated 

with Coulomb collisions [23]. In agreement with the theory [23, 24], such diffusion-dominated 

distribution function gives a soft nonlinear regime of TAE with steady or modulated amplitude. 

Although the diffusive case does not exclude a hard nonlinear regime with the explosive TAE 

evolution, such regimes are rare in experiments.   

On the other hand, the nonlinear TAE driven by NBI-produced energetic ions on MAST, 

very rarely exhibit a steady state nonlinear evolution. Most often, the explosive regime is observed 

that gives a bursting evolution of the mode amplitude with a sweep in the mode frequency. Figure 

14 shows an example of such TAE-bursting mode [25].   

These findings suggest that the difference between the JET and MAST observations may be 

due to specifics of the fast particle relaxation mechanisms. Consequently, the earlier theoretical 

model has been generalized by including dynamical friction (drag) as an additional relaxation 

mechanism. The upgraded model has revealed that only the explosive behaviour is possible in the 

near-threshold regime when drag dominates over other relaxation mechanisms [56]. As a result, the 

instability follows a so-called ‘hard’ non-linear scenario in which the saturation level is insensitive 
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to the initial linear growth rate. This profound difference in behaviour arises due to a qualitative 

change in the non-linear response of the system from an exponential “loss of memory” to an 

oscillatory response with positive nonlinear feedback.  

Technically, the near-threshold regimes are described by the following cubic nonlinear 

equation for normalized mode amplitude A : 

 

   (12) 

 

where the time τ  is measured in the units of the linear instability growth time. The quantities ν̂ , 

β̂ , and α̂ represent the rates of velocity-space diffusion, annihilation and drag respectively 

(normalized to the instability growth rate). The dimensionless amplitude A  is proportional to the 

perturbed field and its normalization depends on specific mode of interest.  Equation (12) implies 

that the characteristic bounce frequency ωb
 of resonant particles trapped by the mode is   

 

 ω b = A
1 / 2 γ γ / γ d( )1 / 4   (13) 

 

where  γ d  is the mode damping rate in the absence of energetic particles, and the ratio γ / γ d  is 

much smaller than unity, because  the energetic particle drive only slightly exceeds the background 

dampingγ d  in the near threshold regime. 

Equation (12) determines whether the initial linear instability evolves into a soft or hard 

non-linear regime. The amplitude A  saturates at a finite level in the soft case, whereas the hard 

case gives a solution that `explodes' in a finite time. In the absence of drag (α̂ = 0 ), (12) admits a 

saturated solution in which A
2 = 2

z 2dz

β̂ + ν̂ 3z 2
0

∞

∫ exp −2ν̂ 3z 3 / 3 − 2 β̂ z( )









−1

at τ→∞, and the 

amplitude indeed converges to that solution, but only when the annihilation rate ( β̂ ) and/or 

diffusion rate ( ν̂ ) is sufficiently large. At smaller values of β̂  and ν̂ , the steady saturated solution 

is unstable, which gives rise to a periodic limit-cycle behaviour known as “pitchfork splitting”.  

Further decrease of the relaxation rates creates period doubling bifurcations and then leads to a 

chaotic mode amplitude evolution and to explosive growth of the mode. The details of these 

transitions can be found in Refs. [22, 23]. The same (12) also shows that the mode evolution is 

always explosive in the case of pure drag ( β̂ = ν̂ = 0 ). The cubic nonlinear term in the equation is 

destabilizing in this case. Because of that, (12) does not have any saturated solution at ( β̂ = ν̂ = 0 ), 

and the mode grows beyond the applicability range of (12). 

In presence of both drag and diffusion, the existence of steady saturated solutions is only 

prohibited when the integral in (12) has a negative real part at τ →∞ , which takes place at 

ν̂ / α̂ < 1.043 (as marked by the dashed line in figure 15). However, some of the steady solutions 

that formally exist at ν̂ / α̂ > 1.043  are in fact unstable [56]. The stability boundary is shown in 

figure 15 by the solid line. The area above the solid line represents stable steady solutions. 

Equation (12) implies that the dominant nonlinear effect from the wave is modification of the 

resonant particle drive whereas the background damping is herein assumed to be linear.  In 

particular, this model applies to the case in which the background damping is purely collisional and 

does not involve any resonant phenomena. Yet, in reality, the damping mechanism itself may also 
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be of resonant nature, like Landau damping on plasma particles or continuum damping. The wave 

can then modify both the drive and the damping. Moreover, a nonlinear reduction of the damping 
rate may actually enhance the instability as it happens in fishbone pulses (see Section 4). Equation 

(12) allows a straightforward generalization to describe this interplay of different resonances [62] in 

the near-threshold regime. Alternatively, the resonance that is responsible for wave damping may 

still behave as a linear resonance if a sufficiently fast classical relaxation rate prevents its nonlinear 

distortion (this can happen because the effective collision frequencies are generally different for 

different resonances).  

In order to apply the above scenarios to the TAE instability in toroidal geometry, one needs 

to consider a group of particles that resonate with the wave. The corresponding resonance condition 

is ω − n ωφ − l ωθ = 0 , where ω  is the TAE frequency, ωφ ≡ dφ / dt  and ωθ ≡ dθ / dt  

are the orbit frequencies of energetic ions along the toroidal, φ , and poloidal, θ , coordinates, ...  

represents the orbit averaging, n  is toroidal mode number of the TAE, and l  is an integer value. 

The particles detune from the resonance due to the drag and diffusion, and the appropriate collision 

operator for the problem is a Fokker-Plank operator written in action angle variables. Its explicit 

form, which can be found in Ref. [53], allows one to express the quantities ν̂  and α̂  in terms of 

plasma parameters and thereby evaluate relative importance of pitch-angle scattering and slowing 

down for the resonant ions. 

Observations of TAE’s on different machines have shown that there is a tendency for NBI-

driven Alfvénic instabilities to exhibit a bursting behaviour (hard nonlinear regime) on NSTX [11], 

TFTR [4], DIII-D [5], and JT-60U [57]. On the other hand, ICRH-driven modes, similar to those 

observed in [23, 24], show predominantly soft regimes on TFTR [58], JT-60U [59], DIII-D [60], 

and C-MOD [14]. Taking into account that the distribution function of NBI-produced ions 

establishes itself due to electron dynamical friction, while the distribution function of ICRH-

accelerated ions is formed via a quasi-linear diffusive process, we find that the difference in 

observed nonlinear scenarios is consistent with the trend predicted by (12). 

The explosive near-threshold regimes are known to give rise to phase space holes and 

clumps. The build-up of such structures was demonstrated in Refs. [61, 62], but their initial 

quantitative description was limited to the case of small frequency deviations from the bulk plasma 

eigenfrequency.  However, there are multiple experimental observations of frequency sweeping 

events in which the change in frequency is comparable to the frequency itself [10, 63, 64]. Figure 

16 shows an example of such “chirping” frequency modes with down-ward frequency sweeping 

observed in MAST discharges with NBI-heating [10].  

Another example is modes with upward frequency sweeping observed in JET discharges 

with high field side ICRH (i.e. the ICRH resonance layer is on the high field side from the magnetic 

axis of the tokamak). Figure 17 shows persistent, high clarity, upward frequency chirping modes 

with toroidal mode number n = 0  [65, 66]. These oscillations have frequency just below the lowest 

AC frequency, and they obey the 2/1

eT  scaling typical of geodesic acoustic mode (GAM) [67]. 

Therefore, these modes were identified as energetic particle driven global geodesic acoustic mode 

(GGAM) [65], which are electrostatic at the main localisation region, but become electromagnetic 

away from it. The free energy source driving these modes is found to be associated with the bump-

on-tail energy distribution function created by ICRH.  

Interpretation of such dramatic phenomena as the ones in figures 16, 17 requires a non-

perturbative theoretical formalism developed recently in Ref. [68]. The underlying idea is that 

coherent structures with varying frequencies represent nonlinear travelling waves in fast-particle 
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phase space.  Given that the energetic particle density is usually much smaller than the bulk plasma 

density, it seems difficult for these particles to change the eigenmode frequency significantly. The 

way to resolve this difficulty is to take into account that, regardless of how small is the energetic 

particle density, a coherent group of these particles can still produce an observable signal with a 

frequency different from the bulk plasma eigenfrequency. A relevant example is a modulated beam 

in the plasma. The modulation occurs spontaneously as a result of the initial instability and resonant 

particle trapping by the excited wave. The initial modulation matches the frequency of a plasma 

eigenmode. However, as the coherent structure evolves due to dissipation, the trapped particles 

slow down without losing coherency, and the resulting frequency shifts considerably from the 

initial frequency. The corresponding theoretical building block is then a nonlinear Bernstein-

Greene-Kruskal (BGK) mode [69], rather than a slowly evolving plasma eigenmode. In Ref. [68], a 

rigorous solution of this type has been obtained for a simple one-dimensional bump-on-tail model 

with immobile ions and with the following form of the perturbed electrostatic potential ϕ : 

 

 ϕ ≡ −
1

e
U x − s(t ); t[ ]  (14) 

 

where e

 

is the electron charge, and the electron potential energy U  is a periodic function of its first 

argument x − s(t )[ ]  and a slowly varying function of the second argument t . Also, the wave 

phase velocity 
 
&s ≡ ds(t) / dt  is a slowly varying function of time with a sweeping rate  &&s . The 

perturbed cold electron density is linear in ϕ  whereas the density perturbation of the fast electron 

tail is nonlinear, dominated by adiabatic response of the trapped particles. Evaluation of this 

nonlinear response involves the notion that the electron distribution function is nearly uniform 

within the trapped particle phase space area and that the ambient passing particles are basically 

unperturbed.  

The resulting Poisson equation for the BGK mode has the form 
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where  z ≡ x − s(t) , ω p

 
is the plasma frequency, 

 
&s0 is the initial phase velocity of the wave, f0  is 

the unperturbed velocity distribution of the fast electrons, and angular brackets denote averaging  

over the spatial period  λ . Equation (15) gives the following structure for the BGK mode [68]:  
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For small deviations of  &s  from 
 
&s0 (early phase of frequency sweeping), (16) simplifies to                  
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represents the fast electron contribution to the mode growth rate. Equation (17) reproduces the 

result of Ref. [61], i.e., a sinusoidal mode with constant amplitude at the beginning of frequency 

sweeping. On the other hand, the more general expression (16) shows that the amplitude and the 

mode structure change significantly for larger variations of  &s .  As result, the boundary (separatrix) 

between the passing and trapped particles changes its shape as shown in figure 18. The separatrix 

shrinks and thereby releases some of the originally trapped particles, like a leaking phase space 

bucket. The remaining particles move to lower velocities together with the separatrix, which allows 

the wave to extract power from the fast particle population. The extracted power is 
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and the balance between this power and the power dissipated in the bulk plasma determines the rate 

of sweeping needed to compensate for collisonal dissipation of the BGK-mode. 

Early in time, the power balance condition gives 
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where ν  is the cold electron collision  frequency. This expression reproduces the square root 

scaling of frequency sweeping found in Ref. [61]. Later in time, the mode moves further away from 

the initial linear eigenmode, and its phase velocity  &s  deviates gradually from the simple square root 

scaling. 

This evolution can be viewed as spontaneous transformation of the initial plasma wave into 

an energetic particle mode.  It also presents a plausible scenario for energetic particle modes 

generated by Alfvén wave instabilities [70-72], for which nonlinear modification of the mode 

structure appears to be essential, especially when the instability is non-perturbative even in the 

linear regime. 

The presented consideration of the 1-D electrostatic bump-on-tail problem suggests a 

similar approach to the frequency sweeping events in tokamaks.  Experimentally, such events can 

be attributed to the excitation of toroidal Alfvén eigenmodes. However, the measured frequency 

quickly moves away from the original eigenmode frequency, and a plausible underlying mechanism 

is spontaneous formation of coherent phase space structures at the wave-particle resonances.  

 For a linear mode, the resonance condition has the form 

 

 ω − nωϕ (Pϕ ;Pθ ;Pψ ) − lωθ (Pϕ ;Pθ ;Pψ ) = 0 ,  (21) 

 

where ω  is the mode frequency, ωϕ (Pϕ ;Pθ ;Pψ )  and   ωθ (Pϕ ;Pθ ;Pψ )  are the toroidal and poloidal 

transit frequencies, and n , l  are integers. The pairs (Pϕ ;ϕ ), (Pθ ;θ ), and (Pψ ;ψ ) are the canonical 

action-angle variables for the integrable unperturbed motion. The third pair (Pψ ;ψ ) describes fast 
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gyro-motion that does not resonate with shear Alfvenic perturbations. For an isolated linear 

resonance, the perturbed particle Hamiltonian is a sinusoidal function of ω t − nϕ − lθ . Similarly 

to the bump-on-tail problem, transition to the nonlinear case generalizes the Hamiltonian to  

 

 H = H 0 + U ω
0

t

∫ τ( )dτ − nϕ − lθ ; t






,  (22) 

 

where the function U  (to be determined  numerically) is still periodic (but not necessarily 

sinusoidal) function of its first argument. We now note that the quantities Pψ  and P = lPϕ − nPθ  are 

constants of motion for such Hamiltonian and that slow evolution of the function U  should also 

preserve an adiabatic invariant for trapped particles. These three conservation laws establish a 

simple relationship between the trapped particle distributions at any two locations of the resonance 

(see figure 19).      

The distribution of the ambient passing particles remains virtually unperturbed. Any 

macroscopic quantity, like perturbed energetic particle pressure, now becomes a known functional 

of the unperturbed distribution and the “potential energy profile” U .  What remains to be solved 

(numerically) is a set of linear MHD equations for bulk plasma response with an analytic nonlinear 

input from the energetic particles. These equations represent an analog of (15), and their solution 

determines the wave profile U . After that, the power balance condition can be used to calculate the 

frequency-sweeping rate.  

 

4. The fishbones 

 

A bursty “fishbone” instability, with toroidal mode number n = 1  and dominant poloidal 

mode number m = 1 , was first observed in experiments with perpendicular neutral beam injection 

(NBI) on the Poloidal Divertor Experiment (PDX) tokamak [73] and then found in most tokamaks 

with a suprathermal ion population: DIII-D [74], JET [75], JT-60U [76], ASDEX-U [77], and 

MAST [78]. Figure 20 shows a typical fishbone burst signal from a Mirnov coil. The repetitive 

bursts resemble fish skeletons going one-by-one, hence the name “fishbones” given to such 

oscillations. The fishbone instability is known to cause enhanced losses of energetic ions. It may 

also thwart confinement of the thermal plasma by initiating long-lasting kink and neoclassical 

tearing modes [77-79].  

The fishbone bursts are oscillatory. Their frequency typically decreases by about a factor of 

two during each burst as can be seen, e.g. from figure 20. Experimentally, the radial plasma 

displacement in the fishbone mode was found to have a “top hat” structure of the internal n = 1  

kink mode [80] associated with the 1=q  magnetic surface, where q is the safety factor. The 

frequency of the fishbone oscillations in PDX was found to be close to the magnetic precession 

frequency of the trapped energetic ions, ω dh
, as well as to the thermal ion diamagnetic frequency, 

pi*ω . The first theoretical interpretation [81] established the resonant wave particle interaction at 

dhωω = , as the key drive for the fishbone instability. Two different regimes have been identified 

for the linear instability. The first regime of so-called “precessional” fishbones [81] refers to the 

case when the mode frequency ω  in the plasma reference frame is much greater than the thermal 

ion diamagnetic frequency, 
pi*ω ,  
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 ω >> ω* pi .  (23) 

 

In this case, trapped energetic ions destabilize the 1,1 == mn  mode that emerges from the Alfvén 

continuum and is subject to continuum damping. At the onset of the fishbone pulse, the linear drive 

from fast particles is almost balanced by continuum damping near the q = 1  resonant surface. The 

mode structure shown in figure 21 has singularities at the radial locations, Ar , of Alfvén 

resonances,  

     ( ) ( )AAA rVrk ⋅±=ω      (24) 

where )(rVA  is the Alfvén velocity, and k  is the wave-vector parallel to the equilibrium 

magnetic field 0B .  Due to the significant continuum damping, associated with magnetic shear at 

the fluid resonances, the precessional fishbones are excited at relatively high values of the energetic 

(hot) ion beta, crit

hothothot P βπβ >≡ 2

0/4 B . Here hotP  is the pressure of energetic ions and the 

threshold value crit

hotβ  is determined by the balance between the kinetic drive due to the energetic 

ions, hotγ , and the Alfvén continuum damping, MHDγ , which can be expressed in the form  

 

 

  

Γ ≡
γ
hot

γ
MHD

= 1  (25) 

 

The precessional fishbones constitute an example of the hard nonlinear excitation scenario due to 

the destabilizing dependence of the threshold parameter Γ  on the wave amplitude.  

The second linear regime refers to the fishbones with ω ≈ω*pi  [82, 83]. In this case, the mode 

lies within a low-frequency gap in the Alfvén continuum, which effectively eliminates continuum 

damping. The fishbones represent one of the two FLR-stabilized oscillatory kink modes which 

would be unstable within ideal MHD [84].  

Numerous fishbone experiments on various machines have triggered a further significant 

development of the linear theory of fishbones. First, theory of the energetic particle drive for 

fishbones was extended in order to account for the transit resonances of the energetic ions [85] and 

finite orbit width corrections [86]. Second, the impressive results obtained on Spherical Tokamaks 

(STs) required a careful analysis of instabilities in STs, and fishbones were one of the prominent 

avenues there.  

In spherical tokamaks (ST) with tight aspect ratio and high volume averaged beta [87], the 

fishbone modes may differ significantly from those in large-aspect-ratio tokamaks. In particular, 

the fishbone drive from both trapped [88] and passing [89] energetic ions terminates if the 

equilibrium magnetic field  B  has a minimum in major radius. This happens at very high values of 

β , which can be achieved in STs due to improved MHD stability at tight aspect ratios. In the 

presence of radial minimum in  B , the power transfer from trapped energetic ions to the mode 

becomes negative as its sign depends on the sign of /B r∂ ∂ . On the other hand, the toroidal drift 

frequency, 
Dhω ,  of the energetic passing ions becomes so large  at high β  that the drift motion 
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shifts the radial location of the wave-particle resonance by several particle orbit widths [89]. This 

large orbit effect suppresses the instability drive from the passing ions.  

Furthermore, the fishbone modes in spherical tokamaks may have a different radial mode 

structure than the conventional 1q =  fishbone. In particular, the very low magnetic shear, typical 

for ST plasmas, may permit an infernal 1n =  fishbone mode even at 1q > , or the structure of the 

fishbone mode may be similar to the interchange mode [90]. These specifics of STs still require 

simultaneous treatment of the MHD and wave-particle nonlinearities with regard to fishbones.  

Besides the ion-driven fishbones, there are also fishbone-like instabilities driven by energetic 

electrons. They were discovered in DIII-D experiments with ECRH [91] and more recently 

observed in other machines under ECRH and Low Hybrid heating. A nice overview of these 

instabilities and the related theoretical formalism can be found in Ref. [92].  It is noteworthy that, 

due to the smallness of electron drift orbits, the electron fishbones in present-day devices may 

replicate essential features of the ion-driven fishbones in large burning plasma experiments, 

Losses of energetic ions resonating with the fishbones were examined in  experiments on many 

machines. In the worst case scenario of plasmas with high- pβ , 
  
β
p
≡ 8πnT / B

P

2  (at small plasma 

current), when the fishbone amplitude is high and particle orbits are wide, such losses may affect 

the fast ion population significantly. For example, losses of NBI-produced energetic ions in low 

current low field JET tritium discharges could exceed 50% of the total beam energy content [93]. 

The resonant redistribution/losses due to fishbones in burning plasmas of ITER-scale machine were 

assessed in [84]. It was shown that typical energy range for resonant fusion born alpha-particles is 

300-400 keV, well below the birth energy 3.5 MeV. Losses of such ions due to fishbones may be in 

fact beneficial for ash removal from the plasma core.  

Non-resonant losses of alpha-particles with high energies were predicted in [84] as well. For 

very fast ions, the mode looks like a stationary 1=n  MHD perturbation of the plasma. This 

perturbation destroys the toroidal symmetry of the magnetic field and distorts the fast ion 

trajectories (see, e.g. [94]). In particular, it broadens the regions of phase space corresponding to 

the unconfined orbits (prompt loss region), giving rise to enhanced non-resonant losses due to the  

1=n  fishbone. Experimentally, the fishbone-induced non-resonant losses of highly energetic 

fusion products were detected on DIII-D, TFTR, and JET [95-97]. 

The advancements of plasma scenarios reveal some new phenomena associated with 

fishbones, of which two cases of long-lasting MHD perturbations are of particular interest: i) a 

long-living n = 1  kink modes in low-shear spherical tokamaks, e.g. MAST [78], and ii) fishbone 

initiated NTMs in so-called “hybrid” scenarios on JET [98] and ASDEX-U [77].  

When fishbones initiate a long-living 1=n  kink mode in MAST (see figure 22), this mode 

sometimes becomes locked and provokes degradation of plasma confinement. The bursting 

fishbones seemingly evolve into steady-state long-living modes. This effect is likely to be 

associated with a gradual decrease of the safety factor q and radial expansion of the 1=q  surface. 

At small radii of the 1=q  surface, i.e. at early time in figure 22, the ion diamagnetic frequency 

ω∗pi  is relatively small (due to the smallness of the ion pressure gradient near magnetic axis). In 

this case, the ion diamagnetic frequency is lower than the characteristic precessional frequency of 

the beam ions. As a result, the Chen-White-Rosenbluth fishbones [81] driven from the continuum 

are observed. As the 1=q  radius expands to the region with higher pressure gradient, the ion 

diamagnetic frequency ω∗pi  increases, which is beneficial for the Coppi-Porcelli pi*ωω ≈  

fishbones. It is therefore plausible that the observed initiation of a long-living 1=n  kink mode 
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represents a gradual transformation of the Chen-White-Rosenbluth fishbones [81] into the Coppi-

Porcelli mode [82], driven by the NBI-produced fast ions.  
An interesting feature of the data shown in figure 22 is the presence of very high harmonics 

(up to seven) in the Mirnov coil signals. Such observations are very similar to so-called “snake” 

MHD modes [99] which form a narrow helical current filament rotating toroidally. A possibility of 

the fishbones to form a current filament at nonlinear phase of the mode development remains an 

intriguing open question. 

In the development of so-called “hybrid” plasma scenario aimed at ITER [98], an important 

NTM triggering effect was observed during fishbone activity. A distinctive feature of this scenario 

is a broad region of flat ( )q r  just above unity. The most common example of a reconnection in 

tokamak plasmas is the sawtooth reconnection driven by instability of the internal kink mode. 

However, experiments on ASDEX-Upgrade [77, 100] and on JET [98] have shown that fast particle 

driven fishbone instabilities, and frequency-sweeping modes in the Alfvén frequency range, can 

also initiate NTM reconnections. Figures 23, 24 display a typical example of this kind on JET. 

The interplay between the fishbones and long-living NTM on JET is somewhat more subtle 

than the initiation of the long-lasting 1n =  mode on MAST (figure 22). First, the 2, 3n m= =  

NTM occurring at 28.8 sec is localized near the 3/ 2q =  magnetic surface whereas the 1n =  

fishbones are associated with the 1=q  magnetic surface. Second, the frequency coupling between 

the fishbone and the NTM appears to be due to differential toroidal rotation of the plasma, which 

allows the Doppler shift ( )3 / 2rotnf q =  for the 2n =  mode to match the Doppler-shifted fishbone 

frequency. It is also noteworthy that the excitation of NTM correlates with a change in the 

fishbones’ period followed by suppression of fishbones after 29.05 sec However, the physics 

mechanism of the suppression is so far unclear.  

A theoretical model for the observed NTM triggering by fishbones was recently proposed 

in Ref. [79]. The fishbones can act on the NTM as an external magnetic perturbation that brings the 

frequency of the micro-tearing islands into the unstable zone via toroidicity-induced coupling. The 

nonlinear equations for the NTM amplitude and phase contain a corresponding fishbone 

contribution. The role of fishbones is to kick off the NTM phase strongly enough to change the sign 

of the polarization current term in the NTM amplitude equation. It was also found in Ref. [79] that 

multiplicity of the fishbone bursts may be essential, because a periodic sequence of small-

amplitude bursts can move the NTM frequency into the unstable window easier than a single large 

burst.  
The characteristic burst-like structure of the fishbone oscillations and the significant 

decrease of the oscillation frequency of the mode within a single burst indicate that fishbones have 

a strongly nonlinear character [101]. A significant progress was achieved in understanding the 

nonlinear evolution of the fishbones with the use of near-threshold condition (3), which 

significantly simplifies the nonlinear wave description very close to the instability threshold. 

Empirical nonlinear predator-prey models [101] as well as a more accurate model [52] were 

developed to interpret the repetitive bursts of the pi*ωω ≈  fishbones and the resulting re-

distribution of energetic ions. The model [52] based on the kinetic wave particle trapping 

nonlinearity retain the essential physics of the pi*ωω ≈  fishbones, since the kinetic nonlinearity 

appears to be the dominant one when the fishbones are in the diamagnetic 
pi*ω  gap. This regime 

allows a perturbative description of the mode, which makes the problem technically similar to the 

bump-on-tail problem, as well as to many other wave-particle interaction problems (see Ref. [52] 
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and references therein). For the pi*ωω ≈  fishbone within the diamagnetic gap, the MHD damping 

effect is not important, 0MHDγ = , and kinetic damping due to thermal electrons and ions determines 

the excitation threshold instead. A linear theory of the kinetic damping for the pi*ωω ≈  fishbones 

was developed by analogy with Toroidal Alfvén Eigenmodes in, e.g. [102]. In nonlinear theory [52] 

such kinetic damping was considered to be of constant value not depending on the mode amplitude.  

The description of precessional fishbones ( pi*ωω >> ) presents a more challenging problem as 

in this case MHDγ  becomes essential and the fluid resonances may behave strongly nonlinearly 

during the fishbone evolution. The linear responses from the kinetic and fluid resonances are almost 

equal near the instability threshold. However, their nonlinear responses are very different and a 

special investigation is needed in order to assess the importance of the fluid nonlinearity, in 

addition to the kinetic nonlinearity similar to the one analyzed in [52].  

The role of the fluid nonlinearity on the damping in the precessional fishbones was 

investigated in [26]. In order to delineate the effects of the fluid nonlinearity, a fishbone evolution 

was considered, during which the energetic ion response remained linear at all times so the effects 

of kinetic nonlinearity could be neglected. 
 The nonlinear MHD model for the fishbones [26] takes into account that fishbone modes are 

strongly extended along the equilibrium magnetic field, ⊥<< kk , so that the fast magnetosonic 

degrees of freedom, AVk⊥≅ω , are essentially not excited during the instability and the fishbone 

oscillations are of the shear Alfvénic type. It is important to note that the fluid nonlinearity, which 

is known
 
to be small for local Alfvén waves satisfying the dispersion relation AVk=ω , is not 

small for the global fishbone mode that satisfies the condition AVk=ω  at two radial positions, 

Arr = , only. In order to exclude the magnetosonic oscillations, a nonlinear reduced MHD model 

[103, 104] combined with a linear response for the energetic particles was used in [26]. The 

analysis of the reduced MHD model for fishbones has shown that near the instability threshold, 

hotMHDhot γγγ <<− , the radial structure of the fishbone mode of frequency ω  has two singular 

layers, one inside and one outside the 1=q  surface as figure 21 shows. The radial locations, Ar , of 

the resonance layers are determined in accordance with  

 

   ( )( ) ( ) ( )[ ]222 /1 AAAA rRqrVrq−=ω      (24) 

 

Near the instability threshold of the fishbone, the radial width of each singular layer is smaller by a 

factor γ /ω  than the distance between the layers, where γ << ω  is the instability growth rate, 

MHDhot γγγ −≡ .  

Under these conditions, the fluid nonlinearity becomes important when the plasma 

displacement is comparable to the width of each singular layer near the q = 1surface, whereas the 

particle nonlinearity can still be negligible at this level. It was found in [26] that the dominant 
effects of the fluid nonlinearity in fishbones are caused by a generation of a m = 0  poloidal plasma 

flow, and a m = 0  poloidal magnetic field. The generation of the magnetic field, )0(~
pB , can be 

considered as a flattening of the “effective” safety factor profile ( ) ( )( )0~
/, ppT BBRrBtrq += . The 

early stage of near-threshold fishbone instability, during which the two resonant layers are well 
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separated, was found to be characterized by an explosive behavior of the mode amplitude, 

accompanied by a fast change in the mode frequency and in the mode structure as figure 25 shows. 
   Fishbone events have long been recognized as a typical manifestation of so-called non-

perturbative modes, for which the mode structure undergoes significant changes at the nonlinear 

stage. Although the overall top-hat structure of the fishbone is robust, a narrow resonant layer in the 

vicinity of the q = 1  surface dominates the nonlinear evolution of the mode, and one of the main 

challenges is to develop a credible description of that layer. The technical difficulties are most 

pronounced in the case of “precessional” fishbones [81] because the case of “diamagnetic” 

fishbones [82] still leaves room for a perturbative treatment. 
A systematic nonlinear description of fishbones requires self-consistent treatment of kinetic 

and MHD nonlinearities, which is a challenging technical issue for numerical modeling. One of the 

difficulties here comes from the need to incorporate an accurate description of the narrow phase-

space resonances into global MHD simulations. For linear problems, this difficulty is only a 

moderate obstacle since the resonant response of the system is often insensitive to the width of the 

resonance and can be treated in terms of Landau damping. In contrast, nonlinear problems typically 

need much better resolution to calculate the resonant response appropriately, which is prohibitively 

demanding for any of the existing global codes.  

Several attempts have been made to address this issue. Two earlier efforts investigated the 

fishbone mode either by using a nonlinear fast particle pusher with linear MHD [105] or by using a 

nonlinear MHD response with a linear description for energetic particles [26]. More recently, the 

approach of Ref. [105] was applied to electron-driven fishbones [92]. 

The full-geometry M3D code has both nonlinear MHD and nonlinear energetic particles, but 

encounters the resolution difficulty described above [106]. The challenge is to include kinetic 

phase-space resonances on an equal footing with fluid nonlinearities, while overcoming the 
resolution issue. This need is particularly evident for precessional fishbones.  

Experimental data on precessional fishbones [73] exhibit a robust pattern with several 

elements that call for theoretical interpretation. These elements are: (1) explosive initial growth of 

the fishbone pulse, (2) saturation of the pulse, (3) downward frequency chirping during pulse 

decay, and (4) recovery between subsequent pulses. 

 As already mentioned, at the onset of the fishbone pulse, the linear drive from fast particles is 

almost balanced by continuum damping near the q = 1  resonant surface. As the mode amplitude 

grows, the nonlinearity of the system becomes increasingly important. As can be seen from back-

of-the-envelope estimates, the MHD nonlinearity initially dominates over the fast particle 

nonlinearity. This early stage can be adequately described analytically within a weakly nonlinear 

approximation, which shows that the MHD nonlinearity plays a destabilizing role, leading to an 

explosive growth of the pulse [26]. The accelerated growth effectively broadens the two resonances 

shown in figure 25. The weakly nonlinear approximation holds as long as the two neighboring 

resonances remain well separated. At the limit of its applicability the amplitude of the radial 

displacement ξ  is on the order of ξ ≅ rq=1ω thR /VA << rq=1  , where thω is the fishbone frequency at 

the excitation threshold.  At this point the fast particle nonlinearity is still negligible, so the 

particles continue to drive the mode. One can then expect that the mode will grow somewhat 

beyond the level of ξ ≅ rq=1ω thR /VA  but the dynamics of this growth will now be different due to 

the non-perturbative nature of the MHD nonlinearity. It is conceivable that the structure of the 

MHD resonant layer will resemble a magnetic island of the kind described in Ref. [107] and the 

fast particles will force this island to grow until there is no free energy left in the fast particle 
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distribution. In other words, the growth of the fishbone pulse can only stop when the fast particle 

nonlinearity flattens the phase-space distribution of particles near the kinetic resonance. Analytical 
theory has not yet been able to make credible predictions for the mode saturation level. Numerical 

simulations demonstrate mode saturation due to fast particle nonlinearity, both with and without 

MHD nonlinearity in the code. However, numerical viscosity in the global nonlinear MHD code is 

currently too high to adequately describe the structure of the narrow resonant layer.  We thus have 

an unresolved issue of predicting the mode saturation level in terms of plasma parameters and those 

of the fast particles. 

The above description suggests that the mode saturates when the fast particle drive switches 

off, due to nonlinear modification of the fast particle distribution. Assuming that this modification 

is irreversible (due to fast particle phase mixing), one can conjecture that the subsequent dynamics 

of the pulse should be similar to that of a nonlinear pendulum in presence of dissipation. It is 

therefore natural that the mode frequency changes during the decay of the pulse since the frequency 

should depend on the mode amplitude. The fact that the frequency goes down can then be viewed 

as a reversal of the upward chirping predicted by the weakly nonlinear description of the explosive 

initial growth of the pulse [26]. A simple scaling argument suggests a quartic potential well for the 

fishbone-relevant pendulum. The reason is that the local Alfven frequency is proportional to the 

distance from the q = 1  surface.  For nonlinear perturbations, the characteristic distance is on the 

order of radial plasma displacement and it scales as the mode amplitude.  We thus observe that the 

frequency of the relevant nonlinear pendulum should be proportional to the oscillation amplitude, 

which is indeed the case in a quartic potential well. 

In the light of the description above, it is interesting to note that the fishbone signals in figure 

22 grow in amplitude during downward frequency sweeping. This is in contrast to the common 

case shown in figure 20 where the amplitude goes down together with the frequency. A plausible 
reason for the “anomalous” mode evolution in figure 22 is low magnetic shear in the corresponding 

MAST discharges. Because of the low-shear, the continuum damping becomes quite small and the 

role of MHD nonlinearity should be less important. The overall fishbone dynamics could then be 

dominated by the wave-particle nonlinearity as opposed to fluid nonlinearity. 

An additional open issue for fishbones is quantitative modeling of recurrent pulses in 

presence of fast particle sources and sinks. This problem is apparently more demanding 

computationally than the description of a single pulse because of the multiple time-scales that are 

involved. 

We expect future theoretical studies of fishbones to provide a more complete picture of the 

near-threshold regime with an interplay between the kinetic and fluid nonlinearities. This research 

has an obvious linkage to MHD reconnection studies, which likewise deal with a boundary layer at 

a rational surface 

 

 

5. Global transport of energetic particles. 
 

One of the main concerns about Alfvénic instabilities in fusion devices is that these 

instabilities may degrade confinement of the alpha particles and other fast ions and thereby forbid a 

self-sustained fusion burn. Each individual Alfvénic mode tends to be relatively benign in that 

regard. The reason is that the wave-particle resonances associated with a single low-amplitude 

mode can cover only a small fraction of the particle phase space. Consequently, many modes are 
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needed to achieve resonance overlap in a sufficiently large area of phase space to give rise to global 

diffusion.  
Particle diffusion over a set of overlapped resonances falls into the framework of quasilinear 

theory.  In general, this diffusion breaks the constants of motion (E;Pϕ ;µ)  that characterize 

unperturbed particle orbits.  However, in the case of Alfvén modes, the particle magnetic moment 

µ  still remains a good constant of motion. In addition, the particle energy remains nearly constant 

if the wave frequency is smaller than the multiples of the toroidal and poloidal particle frequencies 

in the resonant condition  

 

 ω − nωϕ (E;Pϕ ;µ) − lωθ (E;Pϕ ;µ) = 0 .  (25) 

 

As a result, the waves affect predominantly the toroidal angular momentum Pϕ , or, 

equivalently, the radial position of the particle orbit in the polodal cross-section of the tokamak. 

The width δPϕ  of the resonance (25) can be roughly estimated as  

 

 δPϕ
∂
∂Pϕ

ω − nωϕ (E;Pϕ ;µ ) − lωθ (E;Pϕ ;µ )  = ω b ,  (26) 

 

where  ωb
 is the nonlinear bounce frequency  for  a resonant particle in the wave field. 

The one-dimensional quasilinear diffusion equation in Pϕ  has the form: 

 

 
∂f

∂t
−

∂

∂Pϕ
D

∂f

∂Pϕ
= −ν f − f0( ),  (27) 

 

where the right hand side of the equation accounts for a Krook-type relaxation process and particle 

source  that tend to establish a classical equilibrium distribution function f0 . The gradient of this 

distribution in Pϕ  provides an instability drive for the waves, with a linear growth rate γ 0 = a
∂f0
∂Pϕ

; 

the factor a  depends on specifics of the modes that resonate with a given value of Pϕ .  

The diffusion coefficient D  in (27)  is proportional to the wave intensity and governed by the 

equation 

 

    D
P
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a
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D
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−

∂
∂

=
∂
∂

γ
ϕ

2 .     (28) 

 

The background damping rate γ d in this equation sets an instability threshold and is assumed to be 

smaller than γ 0 . 

In the absence of waves, the distribution function f  will build up to f ≅ f0 ≅
γ 0

a
Pϕ . 
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However, if the waves are present, the steady-state solution of (27) and (28) restricts f  to 

f ≅
γ d
a
Pϕ < f0  . The corresponding diffusion coefficient can be estimated as  

 

 D ≅
a

γ d
ν f0Pϕ ≅ ν

γ 0

γ d
Pϕ

2 .  (29) 

 

In order to formulate the resonance overlap constrain on the steady regime, we consider a set of 

barely overlapped resonances for which the correlation time is 1 /ωb
 and 

 

 D ≈ ω b δ Pϕ( )2 ≅ ω b

3 1

∂
∂Pϕ

ω − nω ϕ (E ;Pϕ ; µ ) − lω θ (E ;Pϕ ; µ ) 












2
.  (30) 

 

This estimate can be rewritten as 

 

 D ≈ δ Pϕ( )3 ∂

∂Pϕ
ω − nω ϕ (E ; Pϕ ; µ ) − lω θ (E ; Pϕ ; µ )  .  (31) 

 

If the entire range of Pϕ  contains N  resonant modes, then the overlap condition takes the form  

 

 D >
Pϕ

N








3

∂

∂Pϕ
ω − nω ϕ (E ;Pϕ ; µ ) − lω θ (E ;Pϕ ;µ )  .  (32) 

 

We now observe from (29) and (32)  that the resonance overlap condition requires a 

sufficiently strong source  

 

 ν
γ 0

γ d
>

1

N 3
Pϕ

∂

∂Pϕ
ω − nω ϕ (E;Pϕ ;µ ) − lω θ (E ;Pϕ ;µ )  .  (33) 

 

If the source is weaker than the value given by (33), then the global transport either terminates 
or becomes intermittent, depending on whether the individual modes can reach the overlap 

condition at some points in their nonlinear evolution. In the absence of overlap, the KAM surfaces 

between the resonances serve as transport barriers for fast particles. This brings an interesting 

question of whether such barriers can be created on purpose, especially at the plasma edge. Doing 

so may ensure satisfactory global confinement of fast particles even if there is a local instability in 

the core. 

It is noteworthy that consideration of individually saturated modes gives a much more 

restrictive overlap condition than (33), namely  

 

 γ 0 (1 +
ν
γ d

) >
1

N
Pϕ

∂

∂Pϕ
ω − nω ϕ (E ;Pϕ ; µ ) − lω θ (E ;Pϕ ; µ )  .  (34) 
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This condition follows immediately from (26) and the estimate for the nonlinear bounce frequency 
obtained in Ref. [108],  

 ω b ≅ γ 0 (1 +
ν
γ d

) .  (35) 

 

The significant difference between (33) and (34) for large values of  N  reflects the fact that the 

overlap of many resonances enhances the energy release per mode dramatically compared to the 

case of isolated modes.  It is therefore possible that an overlap of two closely spaced resonances 

can trigger an avalanche-type relaxation event in which neighbouring modes become involved even 

if they are linearly stable.   

Rapid quasilinear diffusion during such event can reduce the energetic particle 

population to a subcritical value that is below the linear instability threshold, as illustrated 
schematically in figure 27. The waves will then decay within linear damping time, and the system 

will “wait” until the particle sources restore the energetic particle population to make it unstable 

and produce the next avalanche.  

An intrinsic feature of such intermittent diffusion is that the bursts of different modes 

are synchronized because of the triggering effect. The bursts of many modes force the energetic 

particle population to hover around the marginally stable level. This aspect is common to the steady 

and intermittent quasilinear regimes. The difference between the two is mainly in the time 

behaviour of the turbulence level.  It is important to point out that the profile stiffness due to robust 

marginal stability condition actually means that the turbulence level adjusts itself to keep the same 

profile for stronger particle sources. The time averaged transport coefficients are then determined 

by the rate of injection and the gradients in the marginally stable profile whereas the specifics of 

turbulence that provides this enhanced  transport is governed by small deviations from marginal 

stability. This situation makes it extremely difficult (but fortunately superfluous) to predict the level 

of turbulence in terms of few macroscopic parameters of the energetic particle population (such as 

their pressure gradient or density gradient). Comparison between theory and experiment should 
then be focussed not so much on details of turbulence but rather on examining the marginal 

stability constrains and resonance overlap criteria, which requires adequate numerical tools to 

perform comprehensive linear stability assessment for realistic magnetic configurations and plasma 

parameters. 

The above mentioned trend for the level of turbulence to be less predictable than the 

modification of the fast particle distribution pertains to numerical simulations of TAE bursts and 

fast ion losses in TFTR [109].  These simulations have reproduced such features as synchronization 

of multiple TAEs, the duty cycle of the bursts and the saturation of the stored beam energy. Yet, the 

mode saturation amplitude was significantly higher than that inferred from the experimental data. 

In an attempt to resolve this discrepancy, the numerical model has been generalized from the 

originally linearized description of the bulk plasma to the fully nonlinear MHD simulation of the 

bulk [18]. The description of energetic particles was nonlinear in both cases. Although the fully 

nonlinear simulations show some reduction in the mode saturation level, the calculated amplitudes 

are still several times greater than the estimated experimental values.  The MHD nonlinearity 

introduces some interesting new elements into the problem, one of which is generation of zonal 
flows that provide enhanced dissipation of Alfvenic modes. However, the saturated fast particle 

population does not change in any significant way in the fully nonlinear case, which indicates 

robustness of the marginal stability regime. 
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The critical role of resonance overlap condition for global transport has recently been confirmed 

in the analysis of fast ion confinement in DIII-D. A significant flattening of NBI-produced 
energetic ions was observed in DIII-D experiments with reversed magnetic shear and numerous 

Alfvén cascade eigenmodes excited [110]. Neutral beam injection into DIII-D plasmas with 

negative central shear produces a rich spectrum of Alfvén cascade modes and TAE’s as NBI power 

increases above ~1.4 MW. The fast-ion spectroscopy (FIDA) shows that the central fast-ion profile 

flattens in the discharge with Alfvénic activity, and neutron and equilibrium measurements 

corroborate the FIDA data. Figure 28(d) shows an agreement between the experimentally measured 

neutron yield in the absence of Alfvénic activity and the yield predicted by the TRANSP code on 

the basis of Coulomb collision transport mechanism. However, in the presence of Alfvénic activity, 

the experimentally measured neutron yield is lower than the expected one by ~10-45% , as shown 

in figure 28(c). 

Although the measured spectrum of modes reveals tens of different mode numbers, the effect of 

such modes on fast ion transport is not always strong since many of these modes are localized in 

the vicinity of the same magnetic surface that has zero magnetic shear. Under such conditions, 

particularly careful measurements of the mode amplitudes and mode structure are needed in order 

to assess possible role of the modes in energetic ion transport. In [110], such measurements were 
made and numerical modelling was performed for the beam ions’ transport in the presence of 

multiple TAE and Alfvén cascade modes. However, the results of the initial modelling effort were 

mysterious: the calculations based on the measured mode amplitudes could not explain the 

observed significant transport of the fast ions. It was then realized that the initial simulations 

omitted the electric potential associated with the magnetic perturbations [17]. Only after proper 

care was taken about including both electric and magnetic perturbed fields in the analysis, did the 

wave-particle resonances meet the overlap condition. The resulting profiles of NBI-produced 

energetic ions computed with the ORBIT code were then found to be flattened in the presence of 

the modes, consistent with the measurements. 

We conclude this section by discussing non-perturbative modes as a candidate for global 

transport of energetic particles. This mechanism involves mode frequency sweeping, which has 

attracted considerable attention in the energetic particle studies. If the sweeping range is 

sufficiently broad, then the mode can reach the phase space areas that are far away from the initial 

wave –particle resonance where the mode is excited. The effect of a single mode sweep is shown 

schematically in figure 29 for an idealized bump-on-tail model [112]. As a spontaneously created 
phase space hole or clump propagates away from the original resonance, it modifies not just the 

oscillating part of the fast particle distribution but the equilibrium distribution as well. The energy 

dissipation in the bulk plasma during sweeping event makes this modification irreversible. As a 

result, in the absence of fast particle collisions, the equilibrium distribution will remain locally 

distorted when the sweep stops due to the lack of the energetic particle drive far away from the 

original resonance.  In the meantime, the original resonance generates new holes and clumps 

continuously. This can be understood by following the evolution of the ‘wake’ that forms when a 

hole or clump detaches from the original resonance. Referring to figure 26, since the particle 

number is conserved, a number of particles must be displaced during the motion of a hole or clump, 

which leads to a slight excess behind a hole and a depletion behind a clump. There is thus a 

tendency for the gradient in the distribution function to steepen, making the system susceptible to 

instability once again. This effect should be strongest when the hole and clump are still relatively 

close to the original resonance, which could explain why the holes and clumps are produced in 

rapid succession. The lack of drive away from the resonance due to the finite extent of the 
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distribution in velocity space limits the range of chirping for the initially formed holes and clumps. 

It is then reasonable to expect that eventually the holes and clumps will ‘stack up’ next to one 
another as they move away from the original resonance (see figure 30). In this way the distribution 

function should eventually form a n extended plateaux that determines the maximum amount of 

energy that can be released from the fast particles to the wave. At this point the waves should then 

decay due to dissipation, leaving a significantly deformed fast particle distribution.  

In the presence of fast particle source and collisional relaxation processes, the multiple 

sweeping events can compete with classical collisions and reduce the fast particle population 

considerably compared to the classical distribution, as observed in numerical simulations in Ref 

[113]. To have significant macroscopic consequences, this mechanism requires energetic particle 

collisions to be sufficiently low, so that  the holes and clumps can affect a large part of the fast 

particle distribution during their lifetime. The collisional lifetime of a hole or clump can be roughly 

estimated as [61, 112] 

 τ ≅ νdiff
−1 (γ 0 /ω )2 .  (36) 

 

and the corresponding range of sweeping is 

 

 
δω
ω

≅
γ 0

ω






2 γ 0

ν diff
,  (37)

  

 whereνdiff  is the energetic particle collision frequency (for diffusive collisions) and γ 0
 is the linear 

instability drive from the energetic particles.  

It is interesting that the described strongly nonlinear relaxation process can reshape even 

stable initial distributions of the fast particles if there are finite amplitude perturbations that initiate 

the hole-clump production.  The physics reason for that is that formation of holes and clumps is an 

explosive process that represents hard nonlinear regime. The role of the energetic particle modes 

and multiple sweep relaxation scenarios in real devices still needs to be assessed in comparison 

with the quasilinear scenario. This is one of the key unresolved issues in predicting global transport 

of energetic particles.  

 

6. More topics in progress 

 

As already pointed out in the introduction, our selection of material for this review is inevitably 

subjective, which makes it appropriate to call attention to some of the interesting research topics 
that we have not covered here in any depth.  

 

Alpha channeling. 

 

This is an exciting idea of using waves to transfer the alpha particle energy to the plasma ions to 

circumvent losses via electron channel [114]. The waves can either be created by extenal rf sources 

or be self-generated due to alpha-particle-driven instabilities. In both cases, the challenge is to 

maintain a suitable spectrum of waves to provide resonant extraction of energy from a large 

fraction of the alpha particle population in phase space without anomalous spatial diffusion of the 

alpha particles. In the self-generated regime, one has also find the means to control the nonlinear 

behaviour of the expected instabilities. One generally needs high-frequency instabilities (in the ion 
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cyclotron frequency range) to utilize the energy of alphas with tolerable anomalous diffusion. 

However, in spherical tokamaks, one might also use the low frequency modes with n=0 to tap the 
free energy associated with poloidal bounces of the alpha particles near the trapped-passing 

boundary. The attempts to explore the idea of alpha channeling continue [115, 116], but the 

ongoing studies have not yet reached the level of conclusive positive predictions with regard to 

fusion.  

 

Background turbulence. 

 

Accurate transport analysis and measurements performed in recent years show that relaxation of 

fast ions may differ significantly from the classical predictions based on Coulomb collisions alone. 

In particular, this is observed as an “anomaly” in the power deposition profile for the NBI-produced 

energetic ions [117, 118]. On the other hand, it was found experimentally [21, 40] in reversed shear 

discharges that a fairly slow beam with can still excite numerous Alfvén modes with high toroidal 

mode numbers approaching those of thermal plasma turbulence. The effect of thermal plasma 

turbulence on fast ions has then attracted attention as a possible candidate for explaining the 

anomalous data [117, 118].  A detailed theoretical study has been performed in Ref.  [119] refining 
the orbit averaging argument for both electrostatic and magnetic perturbations. It was found that the 

electrostatic diffusivity of the beam ions decays as 1 / E  with the beam ion energy, while similar 

magnetic quantity is independent of the beam energy. It remains to be seen yet whether a direct 

comparison between this theory and experiment is feasible. 

 

TAE’s and ripples. 

 

The enhancement of energetic particle transport due to synergy between different types of 

perturbations is another important topic in view of burning plasma experiments. It was found 

experimentally on TFTR and explained theoretically in [120] that there is a violent loss mechanism 

due to combined effect of magnetic ripples and TAE’s excited by the energetic ions. This effect is 

called TAE-induced ripple trapping. It is caused by time-dependent TAE perturbations that increase 

the phase space of particles capable of entering the ripple-trapped area. As a result, the flux of 

energetic particles can be strong enough to damage the vacuum wall (as observed on TFTR [120]). 

Further investigation of such effect is highly desirable in view of the ripples on ITER. However, 
experimental investigation of the TAE-ripple effect on existing machines, e.g. on JET, is hardly 

possible since this effect changes the poloidal distribution of the lost ions from the well protected 

mid-plane region to the less protected bottom of the machine.  

 

Macroscopic equilibrium and stability. 

 

Significant advances in diagnostics of confined and lost energetic ions have made it possible to 

observe various types of interplays between energetic particle driven AEs and strong MHD 

perturbations like sawteeth, ELMs, and NTMs (see, e.g. [121] and references therein). Moreover, 

some diagnostics designed for other purposes contribute a great deal to this effort. For example, the 

very fine time resolution achieved in neutron spectrometry has revealed the effects of MHD modes 

on the energy spectrum of DD neutrons [122].  In burning plasmas, the pressure of energetic 

particles can easily affect both, the equilibrium and MHD stability. The contribution of the fusion 

born alpha-particles to the equilibrium current [123] was found to be essential in ITER scenario 
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with low value of the inductive current, especially for the safety factor values close to integers 

(where transport and MHD stability are particularly sensitive to the current profile). Fast ions can 
potentially be used to stabilize the sawteeth. This possibility has recently been confirmed in cross-

comparison experiments on JET, MAST, ASDEX-U, and TEXTOR [1234]. A combination of the 

fast particle effects with the current drive affecting the magnetic shear at the q=1 surface was found 

to be especially advantageous for the sawtooth control. Finally, it is conceivable, that the resistive 

wall modes [125], which are undesirable in high- β  discharges, will be stable in the presence of fast 

particles, in a range of ITER- relevant parameters. Experimental investigation of this attractive idea 

is now pending.  
 

Energetic ion physics in helical devices and stellarators  

 

Along with the progress made in energetic particle physics on tokamaks, the research of similar 

topics has also progressed significantly on helical devices and stellarators. Most remarkable 

achievements were reported from the LHD machine, in which hydrogen NBI of energy up to 180 

keV drove strong AE activity at magnetic fields in the range from 0.4 T to 3.0 T [126]. Analysis of 

the fast ion confinement performed with NPA has shown a strong correlation between the fast 

change in energetic neutral fluxes and the AE bursts. Moreover, the observed changes in the NPA 

spectra seemingly indicated the formation of hole-clump pairs in the energetic particle spectra 

associated with AE bursts in real space [127]. A direct comparison between the experimental 

observation and theory would be of considerable interest here.  
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Figure 1: Magnetic spectrogram (Fourier decomposition 
of Mirnov coil signal) showing an example of ICRH-
driven ACs with different toroidal mode numbers in a JET 
reversed shear plasma.

Figure 2: Snapshots of the mode structure for n = 4 and m = (12;11)  during the transition from AC to TAE. Left column 
shows the radial profiles of the poloidal components for the even parity TAE; right column presents the odd parity mode.
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Figure 3: Left: Neutron yield, NBI and ICRH power in JET pulse no: 40410 with toroidal magnetic field Br = 3.4 T  
and plasma current Ip = 3MA. Right: grand cascade observed at the time of the neutron rate and Te increase. 

Figure 4: Alfvén cascades detected in the same (JET 
pulse no: 60935) with O-mode interferometry (top) and 
with Mirnov coils (bottom). Microwave beam frequency 
45.2GHz was just above the cut-off frequency of the 
O-mode.

Figure 5: Electron temperature traces measured with 
multi-channel ECE in JET pulse no: 61347. An ITB 
triggering event is seen at t = 4.6s.  
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Figure 6: Alfvén cascades detected with O-mode 
interferometry in JET pulse no: 61347. Due to the Doppler 
shift nfROT  in this toroidally rotating plasmas the discrete 
spectrum observed spreads over a broad frequency range. 
A grand cascade is seen at t = 4.8s.

Figure 7: Left: Evolution of far infrared scattering spectrum showing Alfvén cascades in DIII-D discharge. Right: 
model analysis of frequency evolution of Alfvén continuum at q0  indicating toroidal mode numbers in the range from 
8 to 40 (from [40]).
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Figure 8: Left: Magnetic spectrogram showing Alfvén cascades in JET pulse no:56940. Alfvén cascades with different 
toroidal mode numbers reach the same lowest frequency. Right: Alfvén spectral line behavior computed from theory 
[34], showing the effect of pressure on the mode frequency as a function of safety factor q0 . The solid curve represents 
the MHD continuum, and the triangular and the circular points are for β = 0.005  and β = 0.0015, respectively.

Figure 9: Numerical solution for γ(η)compared to 
analytical result for large η [42].
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Figure 10: Second harmonic of Alfvén cascade and TAE is observed in Alcator C-Mod [14] on the PCI diagnostic 
(left) and hardly seen on the magnetic pick-up coils (right).

Figure 11: At gradually increasing ICRH power, TAEs exhibit steady state, periodically modulated, and chaotic 
regimes. Left panel shows the magnetic probe signals. Right panel shows magnetic spectrograms obtained via Fourier 
decomposition of the signals.
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Figure 12: NBI-driven bursting TAEs on MAST Figure 13: Displays the boundaries in parameter space 
that give stable, unstable and no steady state solutions to 
(10). The unstable solution lies in between the solid and 
dashed lines.

Figure 14:  NBI-driven chirping modes on MAST

Figure 15:  Left: phase magnetic spectrogram showing modes with various toroidal mode numbers excited by ICRH in 
JET pulse no:54895. The n = 0  mode is seen at around 30 kHz and marked in black color. ACs are seen in the range 
of 40-110 kHz. Right: the n = 0 mode in JET pulse No: 54895 (zoom).
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Figure 16:  Evolution of the phase-space bucket during 
sweeping event. The plot shows the initial separatrix 
(upper shaded area) and the shrinked separatrix at half 
of the initial mode phase velocity (lower shaded area).

Figure 17: Transport of resonant particles during 
frequency sweeping. The shaded areas are snapshots 
of the moving resonant region in the momentum space. 
The shades of gray mark different values of the particle 
distribution function. The trapped resonant particles 
form a locally flat distribution across the resonance and 
preserve the value of their distribution function when the 
resonance carries them along the dashed lines.

Figure 18: Oscillations of the perturbed magnetic field time 
derivative during fishbone burst (JET pulse no: 16341).

Figure 19: Spatial structure of the fishbone perturbation 
in the near-threshold regime.The real (red) and imaginary 
(blue) parts of the radial velocity profile show two well-
separated resonant sub-layers near the  surface. The width 
of each sub-layer is proportional to the mode growth rate. 
The distance between the sub-layers is proportional to the 
mode frequency.
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Figure 21: Magnetic spectrogram showing typical JET 
hybrid scenario with n = 1  NBI-driven fishbones. Long-
living NTM at frequency around 12-15 kHz (lab reference 
frame) is initiated in the absence of sawteeth or ELMs 
at  t = 28.77s and after some time it eventually degrades 
thermal plasma confinement. 

Figure 22:  Magnetic spectrogram showing toroidal mode 
numbers of the perturbations in figure 21. 

Figure 20: Magnetic spectrogram showing fishbone 
oscillations that initiate a long-lived n = 1 kink mode (at 
frequency 30 kHz) in MAST pulse no: 16038. The long-
lived mode degrades the plasma performance and causes 
internal reconnection event at t = 0.34s.
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Figure 24: Damped oscillations in a quartic potential well 
illustrate nonlinear frequency downshift during fishbone 
pulse decay.

Figure 25:  (Color online) Cartoon illustrating intermittent 
quasilinear relaxation due to resonance overlap in 
the multi-mode regime. The resonances broaden and 
eventually overlap as the modes grow above the instability 
threshold. The energetic particle population drops to 
subcritical values and then is replenished by the source 
to a metastable level that exceeds the linear threshold 
level due to separation of neighboring linear resonances.

Figure 23: The radial velocity profiles in the linear (left) and nonlinear (right) regimes. 
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Figure 26: (Color online) Cartoon illustrating the motion 
of holes and clumps and the wake (dotted line) that acts 
to steepen to distribution function, creating a favourable 
environment for instability.

Figure 27: (Color online) Cartoon illustrating how holes 
and clumps might form a global plateaux in a distribution 
function with a finite extent in velocity space. The dashed 
lines mark the boundaries of the ‘stacked up’ holes and 
clumps.
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