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ABSTRACT.

In this work we report the successful application of an innovative method, based on the Sparse

Representation of signals, to perform a real-time, unsupervised and blind detection of the individual

components in a frequency degenerate, multi-harmonics spectrum, using a small number of data

un-evenly sampled in the spatial domain. This method has been developed from its original

applications in astronomy, and is now routinely used in the Joint European Torus thermonuclear

fusion experiment [1, p.617] to obtain the decomposition of a spectrum of high-frequency (~10-

500kHz range) magnetic instabilities with a faster-than-1ms time resolution, allowing the real-

time tracking of its individual components as the plasma background evolves. This work opens a

clear path towards developing real-time control tools for electro-magnetic instabilities in future

fusion devices aimed at achieving a net energy gain, such as the ITER facility [1, p.711] currently

being built in France. More generally, the very high speed and accuracy of this algorithm is

recommended for application to instances of physics measurements and control engineering where

a real-time, blind and unsupervised decomposition of a degenerate input signal is required from

a small number of data.

1. INTRODUCTION

The problem of blind detection of different components in a degenerate multi-harmonics spectrum

using un-even sampling is common to various fields of physics and engineering (see for instance

the many applications presented in Ref.[1]). This problem is particularly important in the field of

Astronomy and Astrophysics (A&A), where the very long measurement series are often interrupted

due to different environmental constraints (such as the weather and the Earth’s rotation). Much

work has been done over the past 20 years to address this mathematical issue and improve on the

limitations of the original methods, which were essentially based on the Lomb-Scargle

periodograms [2-5].

In the field of plasma physics, analysis of electro-magnetic fluctuations is important for

understanding and controlling the Magneto-HydroDynamic (MHD) stability of the plasma. These

instabilities can occur when a plasma is trapped and heated in a magnetic configuration and responds

by generating its own, usually oscillating, magnetic field, i.e. an MHD instability. Considering now

the particular case of magnetically confined thermonuclear fusion plasmas in a tokamak device [6],

the MHD analysis is based on magnetic and turbulence measurements, and routinely involves an

initial Fourier decomposition of the data in the time/frequency domain to obtain the individual

frequency components ψ(ω). As in a tokamak the plasma column has, to a first approximation, 2D

boundary conditions along the longitudinal (toroidal) axis and on the plane perpendicular to it (the

poloidal direction), the spatial structure of the MHD instabilities is determined by further

decomposing each frequency component in its toroidal (n) and poloidal (m) harmonics: ψ(ω)=e-

iωtΣn,mAmne
inφeimθ. Here φ and θ are the toroidal and poloidal angle coordinates, respectively, and

we have used the fact that in tokamak geometry one single toroidal component with a given n is
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usually made up of multiple poloidal components m’s due to toroidicity and various other geometrical

effects. It is to be noted that the data are actually acquired only at some specific angle positions φp

and θp, p={1, …, P}, i.e. there is not a continuous measurement coverage of the toroidal and poloidal

angle coordinates.

The number of mathematical methods currently used to analyse MHD instabilities in tokamaks

is rather high. With evenly spaced sensors, a simple discrete Fourier transform reveals the mode

amplitude for each individual (n, m) component up to the Nyquist number [7]. However, not only is

this measurement arrangement not usually available because of engineering and installation

constraints (essentially related to the large number of sensors required to perform a truly Nyquist-

based analysis), but it can also be shown that an even sensor spacing does not necessarily give the

best measurement performance because of aliasing effects [1]. Hence, other methods have been

developed and applied to fusion plasmas in tokamaks, such as the Singular Value (SVD) [8, 9] and

the wavelet [10] decomposition, the Wigner [11], Choi-Williams [12] and Hilbert [13] Transforms,

and a generalization of the original Lomb-Scargle periodograms [14]. All these methods work very

well for a non-degenerate spectrum of MHD modes, i.e. the case where the different frequency

components are at sufficiently well separated frequencies, such that the half-width at full-maximum

of two close-by modes (which is closely related to their damping and growth rate γ/ω=imag(ω)/ω)

is much smaller than their separation in frequency. However, multiple instabilities often overlap in

frequency space, producing a frequency-degenerate spectrum, and the resulting signal in each

individual sensor is the superposition of these modes. In that case the task of a blind spatial

decomposition becomes a much more difficult problem, and the methods indicated above are in

general unsuitable in such cases because of intrinsic mathematical difficulties, or more simply

because of the too long computational time required to perform the necessary calculations. This

clearly prevents these methods being applied to the real-time detection of MHD instabilities in

tokamaks either for protection of the machine or for optimization of the fusion performance (the

so-called burning-plasma scenarios [15]), a functionality very much required for future thermonuclear

fusion devices aimed at achieving a net energy gain, such as ITER [6, p.711; 16].

The problem of a blind and unsupervised decomposition of a multi component, frequency-

degenerate spectrum, is a typical case where scientific cross-fertilization between two (not-so)

similar fields, in our case thermonuclear fusion in tokamak devices and A&A, yields excellent

results. Considering the similarities between these two fields, it is clear that an un-evenly distributed

measurement time series of A&A data corresponds to an un-evenly spaced measurement array aligned

in the toroidal (poloidal) direction in a tokamak. Hence, the canonical time-conjugate in A&A (i.e. a

temporal frequency) corresponds to the spatial toroidal (poloidal) mode number in a tokamak. There

are, however, minor differences between these two fields: real-valued data and real-valued temporal

frequencies in A&A versus complex electro-magnetic fluctuation data and integer-valued (positive

and negative) mode numbers in thermonuclear fusion plasmas in tokamaks. Furthermore, the role of

the mean value of the data is different in A&A and tokamak plasmas: in the latter this represents the
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n=0 (m=0) mode, which can be responsible for a major magnetic instability leading to an abrupt

vertical displacement of the entire plasma column, which has to be correctly detected to avoid an

unwanted plasma termination. In the former, the mean value is generally of no physical interest and

even perturbs the analysis as the mean of the data is not generally equal to the theoretical mean of the

signal due to the irregular sampling. Finally, the long measurement series of A&A data do not call for

any real-time analysis whereas in tokamak plasma, sub-millisecond calculations are routinely required

in order to protect the machine from the dangerous effect of MHD instabilities.

To tackle the problem of a blind signal decomposition of irregularly sampled A&A data, a new

method has been recently proposed for fitting cissoids to such data [17]. This algorithm is based on

the Sparse Representation of Signals, as implemented in the SparSpec code (freeware available at:

HYPERLINK “http://www.ast.obs-mip.fr/Softwares” http://www.ast.obs-mip.fr/Softwares). This

method has also been initially adapted for post-pulse data analysis of MHD instabilities in the Joint

European Torus (JET) tokamak [6, p.617], where it has been fully benchmarked with simulated and

real data [18]. An algorithm based on this method has also recently been used for the analysis and

optimization of the measurement performance of the proposed MHD magnetic diagnostic system

for ITER [19]. For JET data, the SparSpec method has proven to be extremely robust, and is especially

useful for resolving the amplitudes and phases of multiple Alfvén Eigenmodes (AEs) (see chapter

7.15 in [6]) in the ~100-300kHz frequency range, which are ringing with the same or nearly the

same frequency. The great efficiency with which the SparSpec method detects multiple modes in

large datasets has then suggested that it may be used in real-time applications, not only for AEs but

also for the detection and control of MHD instabilities with much lower frequencies, ~10kHz or

even below, such as resistive wall modes (see chapters 6.7 and 12.5 in [6]) and tearing modes (see

chapters 6.8 and 7.3 in [6]), among others.

This paper reports on the real-time development of the Sparse Representation method, and on

its specific application to the sub-millisecond detection, discrimination and tracking of the individual

toroidal mode numbers in the multi- components, frequency-degenerate spectrum of stable AEs

which are excited in the JET tokamak by an array of external antennas used for MHD diagnostic

purposes. This paper is organized as follows. In Section2 we review the mathematical foundation

of the Sparse Representation method and of the numerical approach used in the SparSpec code.

Section3 gives a brief overview of the active MHD diagnostic system used in JET, with particular

attention to its real-time plant control and data analysis hardware and software. Section4 then shows

the first examples of the application of the real-time version of the SparSpec code to the detection

and discrimination of the different toroidal components in the multi-harmonics spectrum driven by

the active MHD diagnostic system. Finally, in Section5 we briefly summarize our results and give

an outlook towards future work.

2. THE SPARSE REPRESENTATION METHOD AND THE SPARSPEC PRINCIPLE

In the standard tokamak coordinate system (φ, θ), magnetic perturbations can be represented by
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functions involving toroidal and poloidal harmonics; considering now the usual case of a perturbation

with a specific toroidal mode number n, this can be written as ψ(ω,n)=e-iωteinφ ΣmAmne
imθ, where

each mode has one single toroidal mode number, but includes several poloidal Fourier harmonics.

The aim of toroidal (poloidal) mode numbers detection is to detect the mode numbers n (m) of the

magnetic instabilities actually present in the plasma and to estimate their amplitude from data

acquired with detectors unevenly positioned at angles φp (θp) in radians, p={1, …, P} being the

suffix labelling the individual sensors used for the measurement. Mathematically, each measurement

yp is modelled as:

(1)

where nl and αl are the unknown mode numbers and amplitudes, respectively, L the unknown

number of modes and εp corresponds to the noise on the data for the given p-th sensor. This problem,

which amounts to fitting multiple cissoids to the input data, is a very general signal processing

problem which arises in many fields of physics. However, it is particularly difficult in the case of

tokamak plasma physics as the data is unevenly sampled and sparse, because of unavoidable

installation constraints on the measurement devices. Such a spectral analysis problem from irregularly

sampled data is very common in A&A, where time series acquisition usually suffer from incomplete

temporal coverage, in particular periodic gaps caused by the Earth’s rotation and revolution, and a-

periodic interruptions due to the weather. Many methods have been proposed in the fields of A&A

to improve the analysis of such irregularly sampled time series; these are based on generalizations

of the Lomb-Scargle periodogram [2, 3] and Date-Compensated Discrete Fourier Transform [20],

involving iterative analysis [4, 5], generally used when dealing with a large number of data points,

or fitting periodic signals (Phase Dispersion Minimisation [21], string length method [22]) to short

data strings. Such methods, however, may all still fail when there are several spectral peaks (i.e.

temporal frequencies) and an insufficient number of measurement points to resolve them.

The mathematical problem described by eq.(1) can be expressed equivalently in the Fourier

spatial domain (i.e. using a Fourier transform with respect to the angular position φ) as:

(2)

where δ is the Dirac delta function, the “^” symbol indicates the Fourier transform of the data

(y(v))) and noise (ε(v))) samples, the symbol “*” is the convolution operator and W (v) is the

spectral window of the sampling scheme. It can be shown that the difficulty of the spectral analysis

problem is closely related to properties of the spectral window, such as the height of secondary

lobes. In A&A, when accounting for long times series, high secondary lobes are due to periodicities,

typically daily, of the temporal gaps in the measurement (see fig1, top frame), while in thermonuclear

tokamak plasmas these lobes are due to regularities in the sampling (for instance when using a

^ ^ ^

Σ
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spacing larger than the Nyquist condition) and to the low number of sensors (see fig.1, bottom).

When applied to thermonuclear plasma physics, the problem has some additional specificities.

First, the data are complex-valued, implying that the Fourier transform of the data does not satisfy

the Hermitian property  y(-v) = y* (v)  as in the spectral analysis of real-valued data. Second, the

modes numbers nl can only take positive or negative integer values, while in the general spectral

analysis problem frequencies takes real values. Third, in the real time applications we consider for

JET, a set of data is acquired every 1ms, therefore the spectral analysis must be completed in an

unsupervised manner in the short time between each measurement acquisition. From an estimation

viewpoint, evaluating the amplitudes al and the modes number nl is a very difficult problem. For

example, consider the best lest-square (LS) fitting: even if the number of modes is known, the LS

criterion has many local minima in case of real valued spectral peaks [23] and requires a combinatorial

exploration for integer-valued mode numbers nl. A way to circumvent the problem is to estimate

the amplitudes of all mode numbers in the range {K, …, K} (where |K| is the maximum mode

number), but to enforce the fact that most of these modes have a null amplitude. This amounts to

approximating the data with the best linear combination of a small number of elementary known

signals, which is called a Sparse Approximation.

Formally, Sparse Representations of signals [24-26] are representations that account for all

information of a signal with a linear combination of a small number of elementary signals called

atoms. The atoms set does not form a basis as the number of atoms exceeds the dimension of the

signal space, so any signal can be represented by more than one combination of different atoms.

Among all these various possible combinations, the one with the smallest number of atoms is the

Sparse Representation of the signal. The Sparse Approximations of signals is the version of the

Sparse Representations adapted to noisy data. Theoretically, the Sparse Approximation problem

consists of minimizing the criterion:

(3a)

Here y=[y1, y2, …, yP]T is the vector of data taken at position φP; x=[x1, x2, …, xM]T is the vector of

complex amplitudes, W=[w1, w2, …, wM] is a matrix where the vector wk corresponds to the k-th

atom, the L0-norm of x: ||x||0 = #{k, |xk| ≠ 0} is the number of non-zero components of x and γ is a

penalization parameter. However, to minimize this criterion, one must sift through all possible

combinations of elementary signals, which is intractable for large M.

Hence, two kinds of methods have been proposed to get round this problem. The first one, often

called greedy pursuit algorithms, iteratively adds atoms to the approximation of the signal to improve

this approximation [27]. The second one, often called convex relaxation, replace the L0-norm in

criterion (3a) with another penalization term such that the criterion may be minimized more easily.

In our work, we follow this convex relaxation approach, using the classically used L1-norm (see for

instance [24-26]) as it leads to the convex criterion:

^ ^

J0 (x) = ||y - Wx||2 + γ||x||0
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(3b)

It can then be easily shown that the criterion of eq.(3b) is convex, therefore has no local minima,

but, as the number of unknowns may be larger than the number of data, this criterion is not strictly

convex, i.e. the solution cannot be a-priori guaranteed to be unique. In practice, minimizing this

L1-norm penalized least-square fitting criterion is easiest than minimizing the original L0 one, and

many computationally efficient algorithms can be used, compatible with a real-time system for the

problem considered in this paper. However, minimizing eq.(3b) does not lead to the same solution

than minimizing eq.(3a). Theoretical conditions guaranteeing the equivalence of both solutions

have been established, which are based on properties of the matrix W, so depend on the specificities

of the problem being considered.

The choice of the family of atoms is critical in the Sparse Representations of signals as, with an

appropriate choice, these atoms might be well adapted to the signal to be analyzed and might lead

to a matrix W with good analytical and numerical properties. For example, it can be shown that if

the signal can be represented with ||x||<(1+1/µ)/2 components, with µ=maxk≠l (|wk
Hwl|), where WH

is the Hermitian transposition of W, then minimizing eq.(3b) will lead to select the same atoms than

the solution minimizing eq.(3a) [28]. For these reasons, the matrix W is often chosen as a union of

incoherent basis, such as wavelets, Diracs, pure sine waves, or other mathematical approaches.

In our case, the atoms are imposed by the model setup in eq.(2) to be pure complex exponential

waves, W={exp(inkφp)}p,k, for p={1, …, P} and k={1, …, M}, with nk=k-K+1 and M = 2K+1. Due

to the irregular sampling, the atoms are strongly correlated. Indeed, it can be shown that  |wk
H wl| =

W (nl-nl), so that it corresponds to regular samples of the spectral window. As W (v) may take values

greater than 1/3 (as shown in fig.1), the previous condition guarantees exact detection only if the

signal consists of a single mode number. Nevertheless, it has been shown from many simulations

and analysis of measurements using comparison between different numerical methods that such a

solution generally gives very satisfactory results in terms of detection, even in the case of multiple

modes. Moreover, for irregular sampling, uniqueness of the global minimizer is almost surely

guaranteed if it has less than P/2 non-zero components, where P is the data size [29].

In terms of amplitude estimations, it has been shown that minimizing eq.(3b) leads to an under-

estimation of the amplitudes of the detected mode numbers due to the L1-norm penalization term of

eq.(3b) [17, 29]. Thus, an a posteriori least square estimation of these amplitudes is performed in a

second step within the calculations, after the modes are actually detected. The amplitudes of the

detected modes are computed, minimizing the least square criterion ||y-WDETxDET||2 where only the

non-zero amplitudes of the optimization step are preserved in xDET.

A real-time implementation of the proposed modes detection method requires not only an efficient

optimization algorithm to minimize eq.(3b) but also, and even more importantly for a frequency-

degenerated spectrum, an efficient unsupervised tuning of the penalization parameter λ. Note that

^ ^

J0 (x) = ||y - Wx||2 + γ||x||1
K

k=-K
= ||y - Wx||2 + λ |xk|Σ
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the a posteriori amplitude estimation step is not an absolute necessity for the real-time analysis, as

its main objective is to detect the actual modes, their mode numbers and frequency width, and not

to precisely estimate their absolute amplitudes. Many numerical algorithms are available to minimize

criteria such as those of eq.(3b) for Sparse Approximations. While for real-valued unknowns xk this

problem can be written as a classical Quadratic Program, for complex-valued unknowns xk it

corresponds to a Second-Order Cone Program [30]. An algorithm based on an Iterative Block

Coordinate Descent procedure has been previously proposed [17, 29], and implemented in the

SparSpec code. This procedure consists of performing successive one-dimensional minimization

steps with respect to each complex-valued unknown xk, where each one-dimensional minimization

has an explicit solution. This algorithm is very efficient and a correct solution can be typically

found in less than 1ms using the rather modest computational resources available to process real-

time JET data.

Tuning the penalization parameter λ, which is related to the noise level, is still an open question

for Sparse Approximations. For spectral analysis, this parameter has interesting physical meanings.

Indeed, it can be shown that (a) for λ>λMAX = max (|W Hy| = maxk (|y (nk)|), the minimizer xMIN of

(3b) is identically zero, i.e. the unique solution is the zero solution (no detected modes); and (b) for

a given λ, the minimizer xMIN of eq.(3b) satisfies  max (|W H (y-WxMIN)|) = maxk (|r (nk)|) ≤ λ,

where r=y-WxMIN is called the residual (data minus the model corresponding to the estimated

modes). Hence λ can be interpreted as the maximum peak amplitude allowed in the periodogram of

the residual. An intuitive description of λ is that, since it increases the penalty for those solutions

which invoke a large number of modes, it influences the detection ability of SparSpec (hence its

predominant role when analysing frequency-degenerated spectra). Smaller values of λ will call

upon a larger number of modes to fit the data, while larger values have the effect of making the

method more immune to the effects of noise, however at the expense of disregarding “true” modes

whose amplitude is much lower than the dominant one(s). The precise optimum value for λ depends

upon the dataset and the level of noise, the number and the spacing between the sensors and, finally,

the maximum mode number contained in the data. Hence, knowledge of the noise level (noise

variance) in the measurements helps to determine this parameter. An “L-curve” technique described

in [17, 29] can also be used to choose the optimum value of λ for a given data set. As |WHy|

corresponds to the periodogram of the data, it can be concluded that choosing λ to be a fraction

λNORM∈[0, 1] of the maximum of the periodogram of the data λ=λNORM×max(|WHy|), ensures the

periodogram of the residual r to be lower up to this fraction relatively to the maximum of the data

periodogram. The typical values for λNORM range between λNORM = 0.1 in A&A where the number

of time samples is very large (typically >103), to λNORM=0.95 when the SparSpec algorithm is

applied to the real-time detection of toroidal mode numbers in a JET experiment, as described in

this paper. In practice, and following very detailed simulations using various models and direct

estimates for the noise on each of the magnetic sensors used for real-time MHD analysis at JET, the

most suitable value for λNORM was determined to be λNORM=0.8. This value allows for a very rapid

^

^
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convergence of the optimization algorithm (typically within ~600microseconds) and is sufficient

to detect and discriminate multiple modes whose amplitudes are of interest for MHD diagnostic

purposes (physics, plant protection and control issues) at JET.

3. THE ACTIVE MHD DIAGNOSTIC SYSTEM IN USE AT JET

A key physics issue for a usable fusion reactor is the understanding and control of the burning

plasma regime, a situation in which the energy carried by the fusion produced alpha particles (αs)

exceeds that externally injected. One of the main elements of this regime is the interaction of the αs

with waves that are naturally excited in the plasma. Such interaction can be resonant, lead to efficient

energy and momentum exchange between waves and particles (hence to phase-space diffusion)

and drive instabilities, tapping the free energy contained in the as pressure gradient. If a significant

spatial redistribution of the αs occurs, then the overall plasma performance can be limited; moreover,

if this redistribution goes as far as the machine boundaries, causing net losses of the αs, then

damage to the first wall can also occur. Conversely, the knowledge of the mechanisms behind the

mode stability, the interaction of the modes with the αs and their redistribution can be turned into

tools for the control of their phase-space behaviour and, therefore, the plasma burn itself.

One example of waves that can interact resonantly with the αs is Alfvén Eigenmodes (AEs):

these MHD modes are particularly important as they are a natural Eigenmode of any magnetically

confined plasma, and also because the fusion-produced αs are born with a supra-thermal speed that

is typically super-Alfvénic in the usual thermonuclear tokamak plasma conditions. Therefore,

resonant interaction with AEs is the first wave-particle interaction that the αs encounter during

their thermalization: hence, this mechanism for phase-space and spatial diffusion needs to be controlled

appropriately to guarantee good confinement of the αs themselves. Fortunately, AEs occupy a rather

empty portion of the plasma electromagnetic fluctuation spectrum, which is well above the frequencies

related to gradient-driven drift instabilities, and well below the gyro-frequencies of all plasma species.

Hence, AEs constitute a “unique and very clean way to communicate” with the plasma, which allows

them to be used as a powerful diagnostic tool, not only for the αs, but also for the background plasma.

This measurement technique using MHD waves that are naturally supported by the plasma is known

as MHD spectroscopy [31], and a simple active method to drive and detect low amplitude modes in

the plasma was pioneered and used in many different plasma conditions in the JET tokamak [32].

This is the so-called Alfvén Eigenmodes Active Diagnostic (AEAD) system, and fig.2 shows a

very simplified schematic overview to illustrate its main features. The AEAD system principally

consists of:

1. the AE exciter, built upon a function generator and a (high-power) amplifier connected to a

set of in-vessel antennas (up to 8 in our case), whose aim is to send power into the plasma in

order to drive a very small magnetic perturbation at the plasma edge, with maximum intensity

max(|δBDRIVEN|)~1G, i.e. 104 times smaller than the typical value of the toroidal magnetic

field in JET, BTOR~(1-3)T;
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2. a receiver, built upon synchronous detection units, which is collecting signals from a set of

in-vessel detectors for electro-magnetic fluctuations, such as magnetic pick-up coils, electron

cyclotron emission and reflectometry measurements; this receiver is also connected to the

real-time AE Local Manager (AELM) to allow for the detection and tracking of antenna-

driven plasma resonances.

The AE exciter is built upon a 5kW class-B power amplifier capable of delivering up to a maximum

IANT~10A-peak and a maximum VANT~1kV-peak in the frequency range 10kHz→500kHz to each

of the 8 in-vessel antennas. The antennas are installed in two groups of four closely-spaced units

located at two toroidally opposite positions but at the same poloidal location. This allows the magnetic

fluctuations to be driven with a sufficiently high |δBDRIVEN|>10-3G at the plasma edge for a spectrum

of toroidal mode number extending up to |n|~30.

The plasma response to the antenna-driven perturbation is principally measured on a selected

subset of signals using synchronous detection [32]. Looking at any electro-magnetic turbulence

measurements, such as the signals from the magnetic pick-up coils, we would see that we measure

a multitude of mixed frequencies. Conversely, for real-time use of the AEAD diagnostic, we need

to measure only the plasma response at the frequency corresponding to the antenna excitation, i.e.

the synchronous component. The purpose of the synchronous detection system is to select only the

portion of the input signal which is at the same frequency as the one chosen for the function generator:

this also correspondingly reduces the required bandwidth of the data acquisition system (which has

a 1.25kHz sampling rate for 12sec of each JET pulse, compared to the 1MHz sampling rate typical

for the other JET fluctuation measurements), and also filters-out all other unwanted frequency

components. The measured signal is then directly in relation (i.e. it is synchronous) to the launched

antenna signal. The synchronous detection hardware works conceptually by applying a mixer with

the synchronous in-phase (I) and quadrature (Q) components to the incoming differential signal,

and then applying a low-pass filter with a <100Hz bandwidth to generate the output [cosine (I), sine

(Q)] DC components. A schematic diagram of the synchronous detection hardware is shown in

fig3. Synchronous detection is essential for the real-time applications (with plant protection and

control using 24 channels, data analysis using 8 channels) to reduce the bandwidth required for

data acquisition (a total of 48 channels in our case) and avoid the need for computationally expensive

FFT-type algorithms. Post-pulse analysis can obviously still be performed using the much larger

set of raw signals (between 32 and 80 additional channels depending on the operational setup)

having the required sampling rate (at least 1MHz) via software-based synchronous detection. Further

technical details on the active MHD diagnostic system used at JET can be found in [31-35] and the

references provided therein.

The AELM is a digital VME plant control system, used to control the AE excitation in real

time, with a 1kHz clock-rate. The AELM crate contains:

     1. a VME Crate Service Module: this is a “home grown” module and acts as the VME system

controller and provides timer and trigger synchronisation with the plant systems; it also
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monitors the VME crate voltages, temperatures and airflow for operational control (plant

failure);

     2. a Real-Time Processor (RtProc): this is an Emerson Network Power MVME5500 card with a

1GHz PowerPC and 512MB RAM; this card executes software running under the Wind River

VxWorks operating system, but during a JET pulse the main real-time process is “locked”, so

that context switching is disabled and most interrupt sources are masked;

     3. a Communications Processor (CommsProc): this is an Emerson Network Power MVME5100

card with a 400MHz PowerPC and 64MB RAM. It is linked to both the JET real-time ATM

and Ethernet networks and isolates the RtProc from asynchronous events that might disrupt

its deterministic 1kHz calculation cycle time; the CommsProc also executes software running

under VxWorks and is used to setup pre-pulse information, synchronise the RtProc with

important time points within the pulse and finally communicates data recorded during the

pulse for archiving;

     4. four Pentland Systems MPV956 analogue and digital input/output cards (VAJ1): these cards

are configured to use differential analogue inputs and sample 32 input signals (8 for mode

detection, 24 for plant control); these cards are also used to send calculated analogue signals

to control the power and frequency of the AEAD plant in real time.

The CommsProc can basically be thought of as a synchronisation module that has four

available states:

a) waiting for the next experiment to start: the CPU performs basic periodic environment and

systems checks to ensure that all hardware and software are running correctly and the networks

are able to send and receive “keep alive” data packets;

b) initialisation for the next experiment: the CPU receives all the parameters for the experiment

and configures the hardware and software accordingly;

c) pulsing/performing the experiment: the CPU synchronizes the sending and receiving of data

over the real-time ATM network and triggers the RtProc based upon a 1kHz clock interrupt

from the Crate Service Module; the CommsProc also ensures that the AEAD plant ceases to

operate if there is either a CPU failure or an external systems failure that terminates the

experiment prematurely;

d) data collection: the CPU halts the RtProc and returns all the data collected to the JET database

archiving system for post-pulse analysis and simulation of plant operation.

The RtProc is only activated during an experiment (i.e. a JET pulse), otherwise it remains dormant.

In its active state the RtProc operates on a 1kHz cycle, and the sequence of this cycle is as follows:

a) read all the analogue signals from the I/O cards and convert them from complex numbers into

polar coordinates (taking usually ~70microseconds);

b) perform “shorted turn” arc detection calculations on the 8 antennas, so that if a faster-than-

normal change in the antenna impedance is identified then the AELM trips the amplifier to

suspend output for 20ms for plant protection (taking usually ~50microseconds); the user is
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able to configure the total number of trips tolerated before an antenna is permanently excluded

from the remainder of the pulse;

c) perform mode detection, discrimination and tracking using the selected algorithm; two options

are available (a user selection before the beginning of the pulse, which cannot be modified

during the pulse), described below in more detail: the “SimpleSum” mode takes usually ~100ms,

whereas the “SparSpec” mode takes usually ~650microseconds;

d) finally, the amplifier frequency is calculated and output back to the AEAD plant for the next

time step, together with the amplifier amplitude, which is either a constant or a specified

waveform (taking usually ~50microseconds).

A schematic overview diagram for the AELM is shown in fig4.

To detect and track in real-time the individual resonances corresponding to antenna-driven, stable

plasma modes, the AELM linearly sweeps the antenna frequency around an initial guess for the AE

resonance. The tracking detection algorithm can use one of three references for the scanning

frequency: a user supplied waveform, a calculated waveform using real time toroidal field, current

and plasma density, corresponding to the AE frequency at the centre of the selected AE frequency

gap, or a waveform provided by an external signal. One of two algorithms can be selected to derive

a single amplitude and phase pair that will be used for mode detection and tracking: the original

(~10 years old) “SimpleSum” algorithm combines up to 8 real and imaginary pairs from the total 8

input data available, whereas the newly developed “SparSpec” algorithm can also accept up to 8

input real and imaginary pairs but produces many output amplitude and phase pairs. When using

the SparSpec tracking mode, the AELM has two methods, “highest” and “any”, for selecting the

pair to use for tracking: the highest method picks the pair with the greatest amplitude, whereas the

any method looks for a pair where the amplitude is above a given threshold; if a resonance is

detected, this pair will continue to be selected until tracking is lost when the search for a new pair

will commence. When the AE resonance is met, the exciter frequency is swept back and forth

around it. A very simple Lorentzian model fit of the complex antenna/plasma transfer function is

then used to obtain the mode frequency and quality factor in real-time, as well as the mode amplitude

at the different probe locations. As this simple estimate of the main frequency and damping rate

from the centre and width of the driven resonance closely follows the value obtained from a full fit,

these quantities can be evaluated in real time.

Figure5 is an illustrative example of the AEAD plant in the tracking mode of operation. In the

full-frequency spectrum (shown in the left frame, which was only measured during 4sec, i.e. from

t=13sec to t=17sec) we see a very narrow triangular waveform in an otherwise completely clean

portion of the fluctuation spectrum: this is the antenna frequency, which was set to look for resonances

around the frequency of an n=1 Toroidal Alfvén Eigenmode (TAE) as evaluated in real-time for

that shot (i.e. around 200kHz). In the right frame, we have the synchronous detected signal (|δBMEAS|)
from one magnetic pick-up coil, showing in red the real-time TAE frequency (fTAE) and in blue the

antenna frequency. This signal was measured during 12sec, i.e. from t=11sec to t=23sec. Narrow
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sweeps of the antenna frequency occur when the complex-valued δBMEAS (shown in the two inserts)

is sufficiently close to the pre-set resonant shape, i.e. it describes a circle in the complex plan

representation with a corresponding bell-shape in the |δBMEAS (ω)| representation. In these instances

we are in the tracking mode of operation, and the frequency (fMEAS) and damping (γDAMP) of the

detected mode (in this case an n=1 TAE) can then also be measured in real-time. Such narrow

sweeps occur in fig.5, for instance, between t=12sec and t=18sec. After t=21sec, a much larger

frequency sweep is seen in the right frame, indicating that no resonances close to the pre-set value

have been detected in real-time: we are then in the scanning mode of operation, and the AELM

looks for suitable antenna-driven plasma resonances in a different frequency range.

4. REAL-TIME, BLIND AND UNSUPERVISED DETECTION AND DISCRIMINATION

OF DIFFERENT TOROIDAL COMPONENTS IN A FREQUENCY-DEGENERATED

SPECTRUM OF MHD INSTABILITIES

One of the first results obtained with the AEAD diagnostic system in the most recent JET experimental

campaigns has been that, despite the very low magnetic field driven by the antennas for medium-n

AEs (in the plasma core we have |δBDRIVEN|~1×10-3G for n=5 compared to |δBDRIVEN|~5×10-2G

for the n=1 and n=2 modes), many modes with |n|~0-12 and very low-damping rate γ/ω<0.2%

were found to be simultaneously excited in plasmas without populations of resonant fast ions [30].

Correct real-time detection and n-number discrimination of these modes is particularly important

as their low intrinsic (i.e. without any drive from resonant fast ions) damping rate makes them very

prone to become unstable if resonant fast ions were present in the plasma. It is specifically this

experimental observation that has prompted the development of the more sophisticated real-time

algorithm for mode-number recognition based on the sparse representation of signals, which has

now almost completely replaced the ~10 years old original SimpleSum detection method.

The selection between the SimpleSum and SparSpec detection method is performed by the user

via the AELM configuration panel, whose main operating window is shown in fig6. This panel

contains many tabs requiring user input for plant configuration and control; those related to the

selection of the mode detection algorithm are briefly described below (with a subset further

graphically illustrated in fig7a):

DetectorSignal selects the algorithm for real-time mode detection, either SimpleSum, or SparSpec

Mode if the SparSpec algorithm has been selected, defines the option used for selecting

which n-number mode has to be tracked in real-time (highest or any)

AmpCalc if the SparSpec algorithm has been selected, defines the option used for computing

the absolute amplitude of the mode via a LS estimation (yes or no)

N-selection if the SparSpec algorithm has been selected, defines the n-numbers that needs to

be detected and discriminated, in the range -15≤n≤+15; since the SparSpec

algorithm defaults to the lowest selected n-number if no mode is found within the
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maximum allocated CPU time, the value n = -15 is kept so as to easily notice

when no mode has been found in real-time, as the n = -15 mode is not usually

present in the plasma

polarity defines the signal polarity (+ or -) associated to the selected sensor

sensor defines which sensor is associated to that particular channel (can be “unused”)

T-entry defines the angular position of the sensor associated to that particular channel

filter cut-off frequency for a real-time low-pass filter applied to all the raw data

thresholds define the amplitude (d|δBMEAS|/dt) and speed (d(|δBMEAS|)/dIANT) thresholds at

the start/end of each frequency scan to recognise if a plasma resonance detected

via the SimpleSum or SparSpec algorithm is indeed associated to a mode of

sufficiently high amplitude (d|δBMEAS|/dt>AmpThresh) and sufficiently close to

marginal the stability limit γ/ω=0 (d(|δBMEAS|)/dIANT>SpeedThresh) to be of

interest for real-time detection and tracking (see also the illustrative sketch shown

in fig.7a)

MinimumTwist defines the minimum angle threshold d(imag(δBMEAS))/d(real(δBMEAS)) in the

complex plane representation to recognise if a mode detected using the amplitude

and speed thresholds defined above is antenna-driven and stable (γ/ω>0) (see

fig.7(a)

SS-nmax if the SparSpec algorithm has been selected, defines the maximum n-number to

be included in the calculation of the sparse spectrum; this value must be at least

twice the maximum |n| selected for tracking

SS-treshold if the SparSpec algorithm has been selected, defines the background noise level

threshold in the |δBMEAS| spectrum

SS-lambda if the SparSpec algorithm has been selected, defines the λNORM-parameter

CdampConstant defines the constant conversion factor for the real-time calculation of the damping

rate as estimated from the frequency width of the detected resonance (see [36])

This approach allows the detection and tracking of hundreds of individual resonances during one

single tokamak discharge, which are guaranteed to be the same mode, i.e. to have the same n-

number, if the SparSpec algorithm has been used imposing one single n for detection.

Figure7(b) shows a real-time time example of the twist and speed calculations for the n = 11

TAE mode in the JET Pulse No: 77790. All the digital signals shown at the bottom of fig.7(b)

indicate whether detection and tracking of a certain mode has been successful: if the flag is set to

high (=1) then the corresponding mode has been correctly detected and tracking is occurring,

otherwise the digital signal is set to low (=0). At the start of each real-time scan t, the global “mode”

value is initialised to a “bad” tracking value of n=-15 and its associated digital validity flag is set

to 0 (not shown in fig7(b), where we only shown the digital flags associated to certain specific n’s

to reduce cluttering). When a mode is successfully detected the “mode” graph is set to the n value
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identified and the validity flag set to 1.

Therefore, if no mode is detected the graph will record a “mode” value of n=-15 but the validity

flag will be 0. By comparing the status of the digital signals for the amplitude (SigAmp.11) and

speed (Speed.11) for the n=11 mode, we note that it is only when these two signals are concurrently

high that the corresponding digital flag for the differential twist (TwistRate.11) is also set to high,

hence the integrated twist is being calculated and tracking of the n=11 mode can occur (mode

signal set to =11) if the integrated twist exceeds the set threshold. Specifically, this mostly happens

in the time window 5.0<time(sec)<9.5 (and an highlight of this is shown in fig.7(c)), and only very

spuriously otherwise, indicating a very subtle dependence of the stability of this n=11 mode as

function of the background plasma parameters. It is also important to note that it is in principle

possible to have a valid n=-15 mode as long as the validity flag is true (i.e., it is =1): therefore, it

is the validity flag that denotes “good” or “bad” tracking for the n=-15 mode.

The capability to perform a blind and unsupervised real-time detection and tracking of the

individual n-components in the antenna driven spectrum constitutes an invaluable tool, which is

unique to the JET tokamak. It provides accurate testing for the code prediction for the damping rate

of Alfvén Eigenmodes (see for instance [37]), as it is paramount that the same mode be measured

throughout the parameter scan. The full implementation of the SparSpec algorithm in the AELM

software now allows a detailed quantitative analysis of the recent measurements made with the

AEAD system in JET. Mode numbers can be directly separated in real-time and individually tracked

to measure the changes in the mode frequency and g/w during the evolution of the plasma background.

It is also paramount that the real-time detection matches the results obtained via the more complex

and accurate post-pulse analysis method, and this has been discussed and demonstrated in more

detail in [34, 35]. Figure8 shows an example of the blind real-time detection and tracking of individual

n=3, n=5 and n=7 TAEs for the JET Pulse No: 77417. We notice that the antenna frequency waveform

FTAE follows closely the real-time evolution of the reference TAE frequency FREF; the flag “mode”

is initialised to a tracking value of n=10 (“bad” since it appears in conjunction with a false validity

flag =0), so that when it shows in real time a value different from such flag (in our case being

“forced” to look for either n=3 or n=5 or n=7), it indicates that a “good” mode has been detected.

When this occurs, the AELM locks onto this particular mode (i.e. it discards everything else),

allowing the evolution of this mode to be tracked in real-time. The digital flags for the amplitude of

the n=3 and n=7 modes (SigAmp.3 and SigAmp.7, respectively) shown at the bottom of fig8, indicate

whether detection and tracking of a certain mode has been successful: if the flag is set to high (=1)

then the corresponding mode has been correctly detected and tracking is occurring.

A further example of the blind real-time detection and tracking of the individual n-number

components in the antenna-driven spectrum is shown in fig.9(a,b) for the JET Pulse No: 77788,

where the antenna were configured to predominantly drive an odd-n spectrum, peaked towards the

lower mode numbers |n|=3 to |n|=5, so as to have a negligible drive for components with |n|>10.

Here we show separately the detection of all modes with 3≤n≤£8 (fig.9(a)), and the detection of
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odd-n modes rotating in the co-current (positive n’s, the preferential direction for the usual tokamak

magnetic equilibrium) and counter-current (negative n’s) direction, with |n|=[3, 5, 7] (fig.9(b)).

From fig9a, we note that only very few even-n resonances (n=[4, 6, 8]) are detected in real-time

(and confirmed by post-pulse analysis), compared to the number of n=3 resonance; second, the

n=3 mode dominates the detected spectrum, as this is the one for which the antennas produce the

maximum drive. Finally, fig.9(b) demonstrate that not only co-and counter-rotating modes with the

same toroidal mode number can be perfectly distinguished in real-time, but also that the plasma

preferentially supports co-rotating modes (which are driven by the antennas with the same amplitude

as the corresponding counter-rotating modes). This result allows us to discriminate whether the

pressure profile of any resonant fast ion population is peaked on axis (reducing the damping rate of

co-rotating modes) or off-axis (reducing the damping rate of counter-rotating modes), with important

consequences for the control and optimization of the plasma discharge and burn scenario.

SUMMARY AND CONCLUSIONS

In this work we have reported on the application, to tokamak plasmas, of a new algorithm for the

real-time, blind and unsupervised detection and decomposition of a degenerate frequency spectrum,

where the frequency separation between the various components is less than their full-width at

half-maximum. This algorithm is based on the sparse representation of signals, as derived from its

original applications to astronomical data via the SparSpec code [17]. The development of this

method was prompted by the first measurements in the JET tokamak of such a frequency degenerated

spectrum of antenna-driven AEs, with toroidal mode numbers n~3-15 [34, 35]. The real-time (and

post-pulse) implementation of the SparSpec algorithm on JET has allowed a complete, accurate

and numerically efficient analysis of these measurements, which would have not been possible

otherwise. For post-pulse analysis, the antenna-driven spectrum can be decomposed and analysed

for one whole frequency scan typically within (2-3)ms of CPU time using the full (more complex

and more accurate) implementation of the SparSpec algorithm. With an SVD decomposition

algorithm similar to the one presented in [9], requiring a combinatorial exploration of all possible

solutions and an a-posteriori thresholding scheme to determine the correct ones, or using wavelet-

based schemes, such as those presented in [10], this analysis would require a CPU time usually in

excess of 150ms for each individual frequency scan. Such computational requirements make it

impossible to use these schemes for real-time analysis. Conversely, using the rather modest

computational resources allocated to the real-time analysis of the AEAD data within the AELM

hardware and software (a 1GHz PowerPC with a 512MB RAM running on a 1kHz clock-rate), the

multi-components antenna-driven spectrum can be fully resolved within typically ~650microseconds

for each 1ms clock-cycle.

For JET, and more generally fusion plasmas, further application of this new method based on the

sparse representation of signals opens interesting and very useful perspectives for the concurrent

real-time detection and control of different MHD instabilities, as they can be discriminated very
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accurately. This allows specifically tailored control schemes to be put in place for each individual

instability, hence improving the overall control of plasma operation. This will be particularly

important for future experiments approaching the burning plasma conditions, such as ITER, where

real-time control of the stability of the fusion born alphas in the background “sea” of MHD modes

that are expected to occur in such conditions, represents one of the key ingredients required to

achieve a net energy gain.

Furthermore, and while specifically applied for the analysis of astronomical data and mode

numbers in thermonuclear fusion plasmas in a tokamak device, the use of sparse approximations

methods are ideally suited for applications to all domains of data analysis and control engineering

where an efficient decomposition of a multi-harmonics degenerate spectrum is required from

irregularly sampled data. Moreover, the computational speed and accuracy of algorithms such as

SparSpec makes such a method ideally suited for real-time applications with a small number of

data. These domains range from the analysis/optimization of measurement devices (an example of

this being the work done for the ITER high-frequency magnetic diagnostic system [19]), to even

more sophisticated applications such as the processing of digital images for pattern recognition [1,

38] and the development of the numerous theoretical developments on the Sparse Representations

of signals and image processing for practical applications, possibly in real-time (see for instance

some examples: “http://nuit-blanche.blogspot.com/” http://nuit-blanche.blogspot.com/)
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Figure 2: A schematic overview of the active AE
diagnostic system in JET. The toroidal field, plasma
density and plasma current (Ip) are required to compute
in real-time an initial guess for the frequency of Alfvén
Eigenmodes. This value is then converted as a time-
dependent voltage V(t) and sent as a Voltage Controlled
Oscillator (VCO) input signal to the function generator
which, in turn, converts it back into a frequency freq(t).
This signal then drives a high-power amplifier connected
to in-vessel antennas and the synchronous detection units
via an optical transducer, so that only the portion of the
plasma response which has the same frequency of the
antenna drive (i.e. it is synchronous with them) is detected
in real-time, which avoids the need for computationally
expensive FFT algorithms.

Figure 1: The spectral windows corresponding to an
example of astronomical observations during five nights
(top frame) and to the actual positions of the only seven
JET magnetic sensors that are sufficiently reliable to be
used in the real-time data processing algorithm for the
analysis of MHD instabilities (bottom frame).
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Figure 3: A schematic illustrative diagram of the AEAD synchronous detection hardware. This hardware is conceptually
based upon first removing any DC common mode from the input AC differential signal (with a full frequency spectrum),
which is then amplified, and then applying a low-pass filter to extract only the component in the input signal which is
at the desired (i.e. synchronous) frequency.

Figure 4: A schematic illustrative diagram of the AELM hardware.
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Figure 6: The main AELM configuration panel for selecting the algorithm used for real-time detection, discrimination
and tracking of the antenna-driven plasma resonances. All the tabs must be configured by the user and loaded to the
plant before the start of the experiment.

Figure 5: An example of real-time tracking of a resonant Toroidal Alfvén Eigenmode.
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Figure 7(a): A schematic diagram to illustrate the basic ideas of the real-time tracking algorithm. At the beginning of
a frequency scan, if a mode has been detected (either via the SimpleSum or SparSpec methods), we check that the
amplitude and speed are above the set thresholds (see the bottom left plot: in this case AmpThresh=0.65×10-9[T/s]
and SpeedThreshStart = 5×10-13[T/A]); if these conditions are satisfied, we start computing the integrated twist (see the
bottom right plot) using the complex plane representation of δBMEAS(w) (see the top plot); when the integrated twist
exceeds the set threshold =2π and if the speed is below SpeedThreshEnd (in this case SpeedThreshEnd = 6×10-13[T/A]),
we estimate that we have fully identified the antenna-driven plasma resonance, hence the direction of the frequency
sweep is reversed (as shown in the insert in the top plot) in an attempt to follow the evolution of the same mode as the
background plasma conditions change.
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Figure 8: An example of real-time tracking of the individual n=3, n=5 and n=7 TAEs; the digital signal SigAmp.3 (.7)
shows the amplitude of the n=3 (n=7) modes as detected in real-time (note that these signals are available also in
analogue format for all modes selected via the AELM configuration panel); similar plotting conventions as in fig.7
have been used here for FTAE, FREF and the “mode” flag; the n=10 mode corresponds to “bad” tracking because its
digital validity flag is false (=0).

Figure 7(b): (left). A real-time example of the twist and speed calculations for the JET Pulse No: 77790 and the n=11
TAE mode; in green the antenna frequency FTAE, in brown the reference frequency FREF, corresponding in this case to
the centre of the n=1 TAE gap, and in yellow the twist signal (only shown on the digital trace); in blue the flag
“mode”, which indicates the n-number that has been detected.  Figure 7(c): (right). A zoom of fig7b to show in more
details that the tracking of the n=11 mode only occurs when all the resonance conditions on the mode amplitude,
speed and twist are concurrently above the set thresholds.
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Figure 9(a): (left). An example of real-time tracking of the individual n=3-8 TAEs for the JET Pulse No: 77788, where
the antennas were configured to drive predominantly an odd-n spectrum with max(|δBDRIVEN|) for n~3-4: indeed the
n=3 mode is the one which is most detected; similar plotting conventions as in fig.7 have been used here for FTAE,
FREF and the “mode” flag.
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