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ABSTRACT

A lumped parameter model for tokamak plasma current and inductance time evolution as

function of plasma resistance, non-inductive current drive sources and boundary voltage or

Poloidal Field (PF) coil current drive is presented.  Having in mind its application in a tokamak

inductive control system, the model is expressed in state space form, the preferred choice for the

design of control systems using modern control systems theory. The choice of system states

allow many interesting physical quantities such as plasma current, inductance, magnetic energy,

resistive and inductive fluxes etc be made available as output equations. 

The model is derived from energy conservation and flux balance theorems, together with a

first order approximation for flux diffusion dynamics. The validity of this approximation has

been checked using experimental data from JET showing an excellent agreement.

1. INTRODUCTION

Tokamaks are pulsed devices modelled as a toroidal transformer with one turn secondary R,L

plasma ring circuit coupled with a primary transformer circuit. 

The inductance of a conventional electrical system is a parameter depending solely on

geometrical factors, but at high frequencies non geometrical effects arise as a result of the slow

flux penetration inside the conductor, or skin effect [1],[2] . These are taken into account by

decomposing the inductance into a geometry dependent part, the external inductance, and a

frequency dependent part, the internal inductance. External and internal contributions also

account for energy stored in the magnetic field outside and inside the conductor. 

Due to the small size of conventional circuits conductors, the skin effect  in conventional circuits

starts to be taken into consideration at relatively high frequencies. 

The time for flux penetration in tokamaks, however, ranges from a fraction of a second to

several seconds, due to the large machine size (several meters) and high temperature (several

keV).  A further difference is that inductance in conventional circuits is analysed in the context

of AC excitation and frequency response, while Tokamaks are operated in just half a cycle, and

state space time domain model is more appropriate for the analysis. 

In a Tokamak, an internal inductance accounts for the energy stored in the poloidal field

created by the plasma current and external poloidal field currents, while a mutual inductance

accounts for the flux linkage between primary inductive coils and the secondary, which is the

plasma ring itself. An equivalent ohmic resistance accounts for the Joule losses in the plasma



[3],[4] .The internal inductance in a tokamak evolves as the magnetic flux and associated internal

current density distribution diffuses in the plasma, and also as the external equilibrium field

imposed by external poloidal field coils evolves to maintain the plasma within the vacuum vessel

boundaries. 

Control of internal inductance at a low value is required to extend the duration of tokamak

plasma discharges with a limited amount of flux in the transformer primary circuit [5] , [6], to

reduce the growth rate of the vertical instability of elongated plasmas [7],[8],  and to guarantee

access to advanced tokamak scenarios with limited amount of flux available at the transformer

primary circuit [9]. Tokamak Inductive control has  also been shown to be able to shape q

profiles and maintain internal transport barriers [10].  

The development of these control systems starts by obtaining a lumped parameter models that

approximate processes best described by distributed parameter simulations [11]. To be able to

use modern control theory, these models must describe the time evolution of the controlled

variables as function of the available actuator and disturbance inputs using the state space

formalism.  Having in mind its application in a tokamak inductive control system,  this work

develops such a lumped parameter state space model describing the dynamics of plasma current

and inductance as function of plasma resistance, non-inductive current drive sources and

boundary loop voltage / PF coil current time derivatives.

2. BACKGROUND

This section outlines the standard Poynting´s and flux balance analysis applied to a tokamak [3] .

The mathematical derivation used leads to some intermediate results are used later to derive the

internal inductance dynamic equation. 

A cylindrical coordinate system is used ( ), ,r zφ  and the plasma is assumed to be axis-

symmetric  around the z-axis. Only the time evolving components  ( )Zr BB ,  of the poloidal

magnetic field are considered in the analysis .   

The region of integration will be delimited by the region where there is a plasma. This will

correspond to a plasma volumeG , or a plasma cross section Ω.  

The magnetic energy stored in the plasma volume G  is obtained from poloidal magnetic field as 

( )2 21
2 r z

G

W B B dv
µ

= +∫ (1)

Where µ  is the vacuum magnetic permeability and a volume differential



dv rdrd dzφ=  (2)

This contains magnetic field created by the plasma current as well as magnetic field created by

external conductors. 

Using the vector potential  with Coulomb gauge 

( ) ⎟
⎠
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⎝
⎛== 020 rAAA zr π

ψ
φA (3)

where ψ  is the flux through an arbitrary circle of radius r centred at  the torus symmetry axis,

the magnetic field can be obtained from a vector potential, as

= ∇×B A  (4)

This renders the usual expressions for magnetic field components in a tokamak
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Similarly, the toroidal current density is obtained from magnetic field as

µ = ∇×j B  (6)

Using the vector identity 

( )2B µ= ∇ ⋅ × +A B Aj   (7)

the magnetic energy   (1) can then be written as 
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(8)

or in terms of flux [11]

2

BjdS I
W

ψ ψ
Ω

−
=
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  (9)

where  dS drdz= , j  is the toroidal current density, Bψ  is the flux at the plasma boundary Ω

and I  is the total plasma current enclosed by this boundary. 

I jdS
Ω

= ∫  (10)

Using Lenz´s law, the voltage at any location is obtained from flux as

dt
dV ψ

−=  (11)

And in particular, the boundary loop voltage is 

dt
dV B

B
ψ

−= (12)

Time derivative of   (9) leads to the Poynting´s theorem

B
dW jVdS V I
dt Ω

+ =∫ (13)

To obtain (13) we have used the identity
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and an integration over the plasma volume to obtain
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∂ ∂∫ ∫ (15)

The toroidal current density can be written in terms of ohmic and non inductive current drive

components. Define η  and ĵ  as effective plasma resistivity and non-inductive current density in

the toroidal direction. Then, ohms law is written as 

( )ˆE j jη= −   (16)

Where Define plasma resistance as

2
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(17)

Define non inductive current drive fraction as

2

ˆ
ˆ j jdS
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η

η
Ω

Ω

=
∫

∫
(18)

And define an ideal non inductive voltage source equivalent 

ˆ
ˆ ˆ

j jdS
V RI

I

η
Ω= =
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(19)

These definitions lead to the circuit equation 



R B
dW V I V I
dt

+ = (20)

The resistive voltage drop can be written in terms of the total plasma current and an equivalent

non-inductive current Î  or voltage V̂  equivalent source.

( )ˆ ˆ
RV R I I RI V= − = − (21)

Following electrical engineering standards, the internal inductance is defined from the magnetic

energy W stored in the poloidal field  in the region enclosed by the plasma boundary 

2

2
i
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I

= (22)

Leading to 

21 1
2B R i

dV V L I
I dt

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

(23)

The inductive voltage is defined as 

21 1
2ind B R i

dV V V L I
I dt

⎛ ⎞= − = ⎜ ⎟
⎝ ⎠

(24)

 Time integration of (23) leads to 

B R indψ ψ ψ= + (25)

Where the inductive and resistive fluxes in (25) are identified from (23) as [3] 

( )
0 0

ˆ
t t

R RV dt R I I dtψ = − = − −∫ ∫ (26)
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The sign criteria in the above equations differs from the one given in [3]. In our case, is given by

Lenz’s law  (11) and Ohm’s law (21) written in cylindrical coordinates. With this sign

convention a boundary flux that increases in time will generate a negative boundary loop voltage

and a negative plasma current.  The applied boundary flux is invested according to (25) in

inductive (27) and resistive (26) flux components . 

Finally, the flux at the plasma boundary can be written as the sum of the flux due to the plasma

internal current density and the flux due to the external PF system [14]

ψ b = LeI + M j I j∑ (28)

where  Le is the plasma external inductance and M j   are the mutual inductances between PF coils

and plasma. 

The mutual inductance M j  is function of the coil and plasma boundary geometry. It is defined

from the line integral of the  vector potential jA  due to the coil system j along a field line

covering the plasma boundary: 

j
j

j

A dl
M

I N
Ω= ∫ (29)

Where N the number of turns of the field line around the machine symmetry axis. 

The external inductance is similarly defined from the line integral of the vector potential A  due

to the plasma current distribution along a field line covering the plasma boundary.  

e

Adl
L

IN
Ω= ∫ (30)

The external inductance is mainly a function of the plasma boundary geometry, with a weak

dependence on the flux gradient at the plasma boundary [15]. 



Combining  (25), (28),(27) we obtain

( )
0

1
2

t
i

e i j j R
dLL L I M I I dt
dt

ψ+ + = +∑ ∫ (31)

Which is a transformer equation in which the plasma secondary has a equivalent plasma

inductance 

p e iL L L= + (32)

This transformer equation is more easily recognised if we fix constant the plasma inductance and

take time derivatives

( )ˆj
j P

dI dIM R I I L
dt dt

− = − +∑ (33)

The change of flux produced by external coils generates a voltage that compensates the resistive

drop and builds up the plasma current. 

3. STATE SPACE MODEL

We are after a state space description of the plasma with current I and internal inductance iL  as

output variables and plasma resistance, non inductive current drive, and boundary loop voltage

as inputs.  

We start by introducing the current density weighted flux average

C

jdS

I

ψ
ψ Ω=

∫
(34)

This flux  depends on the particular plasma flux and current profile shapes, or equilibrium. We

will refer to the equilibrium flux surface as the flux surface corresponding to Cψ .

Using  (9),(34) the poloidal field magnetic energy can then be written as 
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And using (22)

( )i C BL I ψ ψ= − (36)

This implies C Bψ ψ<  for negative plasma current.  

Time derivative of (34) leads to

( )C C R
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ψ ψ
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∂
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Where the voltage at the equilibrium flux surface is

C
C

dV
dt
ψ

= − (38)

And using (15), (20) and (23) we finally obtain

( )2i
R C

dLI V V
dt

= −  (39)

2i B C R
dIL V V V
dt

= + −  (40)

These are exact equations not found in previous literature. They govern plasma current and

internal  inductance dynamics as function of the applied boundary voltage, plasma resistive

voltage and voltage at the equilibrium flux surface.  

Internal inductance reaches steady state conditions when C RV V= . The steady state solution

for the full set of equations corresponds with C R BV V V= = , or a constant loop voltage profile

across the plasma. 



To complete the model we must find a third equation for the equilibrium voltage CV  as function

of the applied boundary voltage and resistive drop changes. Flux diffusion evolves to achieve a

constant loop voltage profile that equals the boundary loop voltage. A first order approximation

for this process is obtained by  writing 

( ) ( ) ( )C B C B
R B

d V V V V k V V
dt τ τ
− −

≅ − + − (41)

Where ,k τ  are a gain and a time constant. The validity of (41) will be checked in a later section.

Regardless of the approximation used, the inductance evolves as result of the competition

between resistive drop voltage and voltage at the equilibrium flux surface, according to (39).

The approximation (41) can be incorporated in the state space model by making the change of

variables

C BV V V= −  (42)

( )2 2i
R B

dLI V V V
dt

= − − (43)

( )2i B R
dIL V V V
dt

= − +  (44)

( )R B
dV V k V V
dt τ τ

≅ − + −  (45)

The equations  (43),(44), (45) define a 3th order state space system as function of the inductive

voltage B RV V−  . Making use of (21), a closed set of equations as function of boundary voltage,

plasma resistance and current drive is obtained. The model parameters { },k τ  can then be found

by running an optimization algorithm that search in the parameter space to find the best match to

experimental data.  This will be shown in a later section. 



4. ALTERNATIVE STATE SPACE MODEL FORMULATION

The model can be written in an alternative form if we integrate (41) from an initial time 0t t=  

( ) ( )C B
C B R B

kV V C
ψ ψ

ψ ψ
τ τ
−

− ≅ − − +  (46)

Where the integration constant C is 

( ) ( )( ) ( ) ( )( )( ) ( ) ( )( )0 0 0 0 0 0C B R B C BC t t k t t V t V tψ ψ ψ ψ τ= − + − − −  (47)

Relative to the initial conditions we can write 

( ) ( )
( )

R B C B
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V V k
ψ ψ ψ ψ

τ ψ ψ
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Which is just the integral formulation of the derivative approximation (41)  

To obtain the model in compact form,  we introduce the state space vector 

( )1 2 3, , Tx x x x=  (49)

with

( )
( )BR

BCx
ψψ
ψψ

−
−

=3   (50)

2 3x x I=  (51)

1 2
3

iLx
x

=  (52)

With these new variables the magnetic energy is 
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And the inductive flux is

( ) 1 2ind R B x xψ ψ ψ= − − = − (54)

Differentiation of the states using (39), (40), (11) and recursively writing the result as function of

the states leads after some algebra to the following  state equations 

( )31 2

2 3 3
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( )33 3 2

1 2 3

ˆ
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k xdx x RxV RI
dt x x xτ

− ⎛ ⎞
≅ − − +⎜ ⎟

⎝ ⎠
(57)

The first two equations  (55), (56) are exact. The last equation (57) is obtained by writing the

approximation (48)  as function of the state variables

3 1 2( )
C B

x k x xV V
τ

−
= +  (58)

 and then substituting the result in the exact differential equation for the state 3x . 
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The system of equations (55), (56) and (57) responds to an inductive voltage input encompassing

external boundary voltage stimuli, plasma resistance changes and non inductive current drive

sources. 

( ) 2
1

3

ˆ ˆ, , ,b b
Rxu V R I x V RI
x

= − + (60)

The state space equations  (55), (56)  and (57)  can be integrated in time starting from some

given initial conditions for the states, and together with the output equations 

( ) ( )1 2, ,T T
iy y y L I= = (61)

2
1 3iL x x= (62)

2

3

xI
x

= (63)

constitute an alternative formulation that is equivalent to the one given by (43), (44), (45). Both

models produce identical results.The difference is that the approximation for flux diffusion is

given in differential form in one case, and in integral form in the other. 

Following the standards in non linear state space formulation for non-linear systems [16], the

model can be written in a more compact form as

( ) ( ) ( )1 1 1
ˆ, , ,

( )

b
dx f x g x u V R I x
dt
y h x

= +

=
(64)

With ( )3
1( ) 0,0,

T
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τ
−⎛ ⎞
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⎛ ⎞
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(67)

This model has the inductance and plasma current as output variables by choice. Using the state

space formalism, any function of the states and inputs can be made available as an output

equation. For instance magnetic energy (53), (54) voltage at the equilibrium flux surface (58)etc,

can be made available by writing the corresponding functions of the states and inputs as model

outputs. 

Also, augmenting the model with new states such as 

4
b

dx V
dt

= − (68)

The boundary and resistive fluxes can be also be made available as output equations 

4

1 2 4

B

R

x
x x x

ψ
ψ

=
= +

(69)

and from here, the Ejima coefficient [3],[5] can also be obtained as an output equation

( )1 2 4 3

0 0 0 0 2

R
E

x x x x
C

r I r x
ψ
µ µ

+
= = (70)

where 0r  is the magnetic axis coordinate. 

 Also, an output equation for the dimensionless internal inductance [17] could be made available

as

2
1 3

2
0 0 0 0 0 0

2 24 i
i

L x xWl
r I r rµ µ µ

= = =  (71)

This last normalization is the standard used for the ITER design [6].



5. STATE SPACE MODEL AS FUNCTION OF POLOIDAL FIELD CURRENTS

Finally, we have to write the model as function of the PF coil currents surrounding the plasma. 

For constant M j , Le  (fixed plasma geometry), Lenz´s law applied to the boundary flux balance

(28) leads to 

j
B e j

dIdIV L M
dt dt

= − − (72)

Which combined with (40) leads to 

( ) ( ) ( )2ji e
B j C R

i e i e

dIL LV M V V
L L dt L L

⎛ ⎞−
= − −⎜ ⎟⎜ ⎟+ +⎝ ⎠

(73)

And using (21) (58) (62) (63) the inductive voltage (60)can be written as 

( ) ( )
2

3 1 2 1 32 2
2 2

13 31 3 1 3

( )ˆ ˆ
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N
je
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je e

dIL x k x x x xRx RxV RI M RI
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∑ (74)

The validity of this expression is conditioned to the validity of the approximation (58). The

inductive voltage (74)can then be incorporated into the state equations  (55), (56) and (57) , and

the state space  model can then finally be written in compact form as 

( ) ( ) ( )2 2 2
ˆ, , ,

( )

b
dx f x g x u V R I x
dt
y h x

= +

=
(75)

With  ( )h x given by (67) , and  

( ) 2
2

1 3
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N

j
j j

j

dI Rxu I R I x M RI
dt x=

= − − +∑ (76)
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2 12
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x x L

=
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(77)
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L x k x xf x g x f x
x x L τ
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(78)

 Where the new input to the state space equations is now a function of the PF coil drive, plasma

resistance and non inductive current drive.  Same procedure can be applied to the case where

external and mutual inductances are function of time, resulting in an additional input to (76)

( ) 2
2

1 13

ˆ ˆ, , ,
N N

j j e
j j j

j j

dI dM dLRxu I R I x M RI I I
dt x dt dt= =

= − − + − −∑ ∑ (79)

6. STATE SPACE MODEL VALIDATION

To validate the state space model we use the actual readings of real time diagnostics at the JET

tokamak. Plasma resistance and boundary voltage are inputs the state space model given by

equations  (55), (56), (57) with an initial guess for the initial conditions and the adjustable

parameters{ },k τ . The current and inductance outputs of the state space model are then

compared with the actual JET data and an optimization algorithm is used to search on the initial

conditions and parameter space to find the best match in the Akaike´s final prediction error sense

[18].  The figures below show simulation results for an optimized cases with fixed 0.98k ≅ and

1.25τ ≅ , for two discharges with step up/down on plasma current in the flat top and negligible

current drive. The first order approximation for the flux diffusion process along with the non linear

relationships in the state space model are sufficient to reproduce the experimental data with reasonable

accuracy. Of course running the optimization using data segmentation for the three distinct

phases (ramp-up, flat top and ramp-down) can increase the accuracy of the simulations providing

different sets of parameters for each segment. But the interesting point here is that a first order

approximation with two parameters { },k τ can reproduce most of the  experimental data with

reasonable accuracy. 

7. RELATIONSHIP BETWEEN INDUCTANCE AND PLASMA CURRENT RAMP-RATE

Taking the ratio between  (55) and (56) 

( )
( )

31 2

1 3 2

2 11 1
2
xdx dx

x dt x x dt
−

=
−

(80)



And using  (52), (51) and (50) we arrive to

( )
( ) ( )

3 3

3 3 3

2 1 2
2 2

i i ixdL L L dxdI
dt x I dt x x dt

−
= +

− −
(81)

A common misunderstanding or language abuse is to state that the internal inductance changes

are produced by plasma current ramp rates. Equation (81) quantifies a correlation between

plasma current ramp rates and internal inductance changes, but it does not imply a cause effect

relationship between current ramp rates and inductance changes. Both plasma current and

inductance have a common cause, which is the applied inductive voltage to the plasma. Because

they have a common cause, they exhibit a correlation. But the internal inductance evolves

depending of the competition between resistive drop voltage and voltage at the equilibrium flux

surface, according to (39). The existing correlation , however, has successfully been exploited to

control the internal inductance using the plasma current ramp rate as a virtual actuator  [6]. 

A more direct option is to use directly the transformer coil as the actuator. In any case, the

state space models presented can be used as the keystone for the design [19].  

CONCLUSIONS

Using a first order approximation for flux diffusion dynamics together with energy conservation

and flux balance theorems, a non linear model for plasma current and inductance time evolution

as function of plasma resistance, non-inductive current drive and boundary loop voltage / PF coil

current time derivatives has been obtained.  The model is expressed in state space form, the

preferred choice for the design of control systems using modern control systems theory. The

choice of system states allow many interesting physical quantities such as plasma current,

inductance, magnetic energy, resistive and inductive fluxes etc be made available as output

equations. The validity of this model has been checked using experimental data from JET

showing an excellent agreement.

Contrary to what is commonly believed, plasma current ramp rates are not the cause of

internal inductance changes, although both are strongly correlated under some circumstances. A

mathematical expression for this correlation has been derived from the state space model.  
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Figure 1: Comparison between experimental readings (black) and state space model outputs (red).  In top-down
order are shown the plasma internal inductance, plasma current, voltageVC at the equilibrium flux surface ψC, boundary
voltage and plasma resistance.
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