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ABSTRACT

Video cameras have recently become common diagnostic tools in Magnetic Confinement Nuclear

Fusion. They provide essential information for both the control of the experiments and the physical

interpretation of the results. Since these cameras can produce up to hundreds of kiloframes per

second and their information content can be very different, depending on the experimental conditions,

several new image processing tools had to be devised to fully exploit these diagnostics. New structural

pattern recognition algorithms have been developed to retrieve the required information from the

large reservoirs of video frames in an efficient and reliable way. Specific real time algorithms,

based on the computational paradigm of Cellular Nonlinear Networks, have been implemented on

FPGAs to identify hot spots on the vacuum vessel and therefore to protect JET plasma facing

components. Various machine learning tools, in particular Support Vector Machines, have been

given Hu moments as input to automatically identify plasma instabilities. The methodology of the

optical flow has allowed deriving information about the movement of objects in 3 dimensional

space even if they have been detected by a single camera. A new anomaly detector based on an

original interpretation of external support vectors is being tested with very positive results. Many

of the more innovative solutions are based on quite general methods and are therefore expected to

be applicable also in other fields of research.

1. INTRODUCTION

FOR human beings visual perception constitutes the main source of information. The part of the

brain devoted to image processing is significantly larger than the one of all the other senses. On the

other hand, only recently, with the advent of cameras and computers, it has become easy to capture

and store images on external supports and not simply on individual memories. Whereas up to the

end of the nineteen century only artists and illustrators had the privilege of producing images,

typically on some form of paper or canvass, nowadays it has become possible for everybody not

only to record individual frames but also entire videos. In particular digital video cameras have

improved and advanced so much that they are now found in a variety of devices, including cellular

phones, portable digital assistants, hand-held video game consoles and a whole host of other portable

devices Video cameras have therefore become a tool of convenience, they are being used regularly

to record, create and share information and they are now playing every day a greater role in society,

media and culture [1].

The continuous progress in camera technologies has resulted in commercial products with

performance that have become very appealing in many scientific applications. In Magnetic

Confinement Nuclear Fusion (MCNF), the number of cameras deployed on the various experiments

has increased steadily in the last decades. Nowadays they have become routine diagnostics with

multiple applications, ranging from protection of the first wall to the analysis of plasma instabilities

and even the characterisation of turbulence.

On the other hand, the widespread use of cameras has emphasized the need for advances and
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developments in image processing techniques. The main challenges to image processing for

MCNF can be grouped into four categories. First of all, the retrieval of the necessary information

from the repositories of images has become quite a challenge. JET database for example has

become quite large, exceeding 90 Terabytes, of which at least half is made of videos [2]. Some

JET cameras can produce hundreds of thousand of frames for a plasma discharge, for a total of

Gigabytes of data per shot. Analysing these amounts of data manually has become impossible

and therefore new methods of information retrieval, based on structural pattern recognition, have

been developed (see section 2) [3].

The second issue is constituted by the need to obtain at least a basic level of information from

the videos in real time. This is complicated by the fact that the typology of objects to be detected is

very wide and that the general appearance of the frames (from background luminosity to the level

of noise) can change dramatically from experiment to experiment. Moreover, since many plasma

events have time constants of ms or tens of ms, fast, flexible but at the same time robust algorithms

are necessary. Typical serial algorithms, even when optimised, are not adequate because their

computational time depends strongly on the content of the images to be analysed. To overcome this

difficulty parallel computation is required, which has been achieved at JET by implementing the

computational paradigm of Cellular Nonlinear Networks [4] on FPGAs (see section 3). Various

machine learning methods have proved also to be indispensable to properly classify the various

objects appearing in the frames particularly of the visible cameras (see also section 3).

The third major group of challenges is the need of providing various forms of information for

physical studies. A typical requirement is the velocity of objects, instabilities, pellets or others,

captured by the cameras. On the other hand, since accessibility for measurement is always problematic

in Tokamak devices, stereoscopic vision is rarely an option and therefore the required information

must be obtained collecting images from a single point of view. Under appropriate assumptions,

the method of the optical flow [5] has proved to be very effective in providing information of

objects in the 3D space from the images of individual JET cameras (see section 4).

Another category of challenges for image processing in MCNF is linked to image interpretation

and in particular to the need to identify anomalous behaviour in the discharges. A new event detector,

based on Support Vector Machines (SVM) [6], has been recently developed at JET and it is being

applied to this problem of anomaly detection.

The challenges and difficulties in image processing for MCNF have the positive implication

that the margins for innovation are quite substantial, particularly in the perspective of the next

generation of devices: the main future prospects of image processing in MCNF are briefly described

in the last section of the paper.

With regard to the videos, which have been used to obtain the results shown in this paper, they

are obtained by JET most interesting cameras for image processing applications. These are cameras

installed on a dedicated endoscope providing a wide-angle view (field of view of 70 degrees) in the

infrared range (3.5 to 5µm) and in the visible. The wide angle view of the system includes the main
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chamber and the divertor [7]. The diagnostic consists of an endoscope formed by a tube holding the

front head mirrors, a Cassegrain telescope, and a relay group of lenses, connected to the camera

body. To increase the reactor-relevance of the project, mainly reflective optical components have

been installed, since they can better cope with high neutron radiation. In the infrared the global

transmission of the endoscope is higher than 60% and the diagnostic is designed to measure from the

JET typical operating temperature of 200oC up to a maximum temperature of 2000oC. The diagnostic

spatial resolution is diffraction limited and, assuming a 10% error in the measured photon flux, an

overall spatial resolution of 2 cm at three meters has been estimated.  A frame rate of 100 Hz at full

image size (496x560) can be achieved and it can be increased up to 10kHz by reducing the image size

to 128x8 pixels, located on any position in the field of view. A typical frame acquired by JET infrared

wide angle camera is shown in Figure 1. The fast visible camera located on the same endoscope has a

1024x1024 CMOS pixel detector, which can be acquired full frame up to 3kHz. The maximum frame

rate of the camera is 250 kframes/s (for a reduced frame of 128x16 pixels).

2. INFORMATION RETRIEVAL BASED ON PATTERN RECOGNITION

Traditionally computer databases are address based and therefore the location in memory must be

known to retrieve the required information. This is different from human memories which are content

based, i.e. somehow people manage to retrieve the information on the basis of its content. Content

based databases would be very useful in science. In MCNF in particular, the first approach to the data

is certainly based on the content of the signals or the images acquired during an experiment and this

requires in principle to scan the whole traditional database until the required information content

(typically a signal of a specific form) is found. As mentioned, the cameras located on JET wide angle

endoscope have the potential to produce terabytes of data per JET discharge (30-40 discharges per

day are normally performed). Exhaustive manual searches of hundreds of thousands of frames per

discharge or per day are not an option and therefore automatic techniques are required. The first step

in data analysis for fusion typically consists of a visual screening of the signals or the images. Since

this is a very high level visual process, the methods developed to help the physicists in this respect are

based on structural pattern recognition. This approach is based on a concept of similarity between

images which is based on the structure of the image and not on involved mathematical concepts, such

as correlation or covariance, which are difficult to appreciate intuitively. Indeed the main objective of

the proposed method is to help the user during the first screening phase of the data. In more detail, the

Haar transform is applied to the images first. Then the coefficients of the transform are grouped in

different classes depending on their value. To each of these classes a letter is associated, transforming

a matrix of pixels (the original image) into a bidimensional array of letters. The obtained matrix of

letters can be codified using a relational database (PostgreSQL for the results presented in this paper)

and therefore searched very efficiently. The patterns to be retrieved are bidimensional. The strategy of

the search consists of looking for the first rows in the pattern. Once a match for this first row has been

found, it is then determined whether also the other rows of the bidimensional pattern coincide.
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An example of the results is presented in figure 2, which shows the user interface available to the

users. A particular region of interest of a visible camera image, basically the divertor, has been

selected (part within the square in the central frame of figure 2) and then the pattern recognition

routines manage to identify the frames in the database where the same or a similar pattern is present.

For a database of 26000 frames and a total of more than 6 Gigabytes of data, the additional space in

memory is less than 0.5% of the original images and is therefore negligible. The search takes a

matter of minutes and therefore, even if of course this is orders of magnitudes better than a manual

search, parallelisation techniques are being developed to improve this aspect.

3. REAL TIME IMAGE PROCESSING FOR PROTECTION AND CONTROL

3.1. INFRARED THERMOGRAPHY FOR PROTECTION OF THE FIRST WALL

The capability of materials to withstand the power loads induced by thermonuclear plasmas constitutes

one of the major issues on the route to a commercially viable nuclear fusion reactor. Therefore a

significant part of the scientific and technological efforts on present day Tokamaks is devoted to

identifying the best combination of materials capable of withstanding the power and particle loads of

high temperature plasmas without spoiling their performance. This problem, very significant for ITER,

is already important on JET and will constitute one of the central aspects of both the operation and the

scientific activity after the installation of the new Be wall and the W divertor. Since high temperature

plasmas do not emit infrared radiation, InfraRed thermography (IR) is a very useful tool to determine

the surface temperature of the plasma facing components. For protection and in general for feedback

applications, the analysis of the images must be performed in real time.

A series of serial codes, implementing traditional image processing algorithms based on linear

algebra, have been developed at JET to identify the hot spots on JET internal surface of the

vacuum vessel. Hot spots are regions of the plasma facing components which during a discharge

reach temperatures above a certain threshold determined on the basis of machine protection

requirements. These traditional algorithms have a very high accuracy and indeed manage to

identify the hot regions with practically 100% of success rate. These results have been verified

using a database of 11300 frames of JET wide angle IR cameras, which have been all analysed

manually by the experts to determine the hot spots. An example of detection of hot spots is given

in the bottom picture of figure 1.

The main weakness of this solution is that these serial algorithms present a computational time

which depends strongly on the contents of the images. If the number of pixels to be processed

increases so does the computational time. This is illustrated in figure 3 in which the frames of a

video acquired during a discharge are analysed and the computational time required for each one

has been calculated. In general, for the more typical parts of the video, the algorithm manages to

process about 55 frames per second but in some special cases, the required time can even exceed 9

seconds. This is not a very satisfactory situation because anomalous frames are the ones that typically

indicate that something is not right with the discharge and an urgent decision must be taken.
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To overcome this problem, the Cellular Nonlinear Network (CNN) paradigm has been tested [4]. A

CNN usually consists of a bidimensional array of cells, the evolution of which is modelled by a

nonlinear dynamical system and depends on the current state of the cell and on the states of the cells

in its neighbourhood (usually, a 3x3 submatrix surrounding the target pixel). The evolution of the

states also depends on a set of values called a template, which consists of two 3x3 matrices – called

A, the feedback operator, and B, the input synaptic operator–– and a bias constant, zij. CNN are

therefore powerful tools for local image processing, provided the size of the array is equal to the

size of the input images and pixel values are mapped on state values. The most commonly used

model for image processing is the full-signal range (which means the output of the cell is equal to

the state value) space-invariant CNN, whose governing equation for an individual cell becomes:

                (1)

where the indexes k and l vary on the 3x3 of neighbours of cell C(i,j); xij is the state of the cell; akl

and bkl are the elements of the feedback and input synaptic operators respectively; ukl is the input of

cell C(i,j), that is the grey level value of the pixel in the input image corresponding to target cell.

Leaving aside the mathematical details, a CNN can therefore be considered basically a matrix of

differential equations modelling the evolution of the state of each matrix cell, each pixel in our

case. From an implementation point of view, it is important to notice that the task accomplished by

the CNN (i.e., the filter to be applied to the image) is specified by the two 3x3 matrices of coefficients

and a constant. Therefore, it is possible to easily vary the kind of filter implemented by the CNN

just by modifying these coefficients. In the application described in this paper, the CNN system of

equations, which has been implemented on the FPGA, is based on the Falcon architecture [8],

which allows for easy parallelization and overlapped execution of subsequent filters. The Falcon

architecture consists of an array of processing cores, among which the input image is divided to

increase parallelism. So each operation is carried out in parallel by the cores for the various columns

of the image whereas each row of cores performs subsequent algorithm iterations.

The results obtained with the implementation of the CNN on the Virtex-4 XC4VSX35 FPGA

mounted on an ML402 evaluation board are very positive. The accuracy is extremely good and

comparable to the serial algorithm; practically the success rate is 100%. Moreover, the computational

time is absolutely deterministic and a speed of 100 frames/s has been achieved with just one column

of cores. This frame rate is already completely adequate for hot spot detection at JET but increasing

the number of cores to 10 would easily allow performing image processing of kHz frequency.

3.2. IMAGE PROCESSING OF VISIBLE VIDEOS FOR INSTABILITY IDENTIFICATION

The results of the hot spot detection are quite positive but they have been obtained using frames of

xij = -xij +              akl xi+k, j+l +

+              bkl ui+k, j+l + zij 

Σ
l

k=-1 l=-1
Σ

l

Σ
l
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Σ

l

.
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JET IR camera. Since high temperature plasmas do not emit in the IR, these images are relatively

clean and in any case much less complex than the ones of the visible, which can present a much

more involved phenomenology. The videos detecting radiation in the visible can indeed be much

more affected by reflections, emission due to plasma instabilities, emissions due to objects, dusts or

flakes, dropping into the plasma etc. Also the general level of background luminosity can vary

significantly from one experiment to the other. Therefore even a simple thresholding step cannot be

performed in the usual simple way. To obtain the results presented in this sub section, the first

extraction of the high luminosity pixels has been performed by first blurring the original image.

This is achieved by replacing the grey level of each pixel with an average over a suitable area

surrounding it. Then the blurred image has been subtracted from the original one and then the

thresholding is performed on the difference. This is the only robust way identified to perform even

this seemingly simple preprocessing step. One important objective of image processing for visible

cameras in JET has been the real time identification of Multifaceted Asymmetric Radiation from

the Edge (MARFE) events [9]. These instabilities manifest themselves as ribbons of radiations

moving up and down the vacuum vessel on the high field side, as shown in figure 4.

To automatically identify these instabilities a classifier based on Support Vector Machines has

been trained. More than 4000 frames have been analyzed manually to provide the training and the

test sets (60% and 40% of the frames respectively). Since the objects to be detected change position

and rotate during the time evolution of the discharge, the simple barycentres of the ribbon like

regions due to the MARFEs are not enough to guarantee a sufficiently high rate of success. To

improve the success rate additional information is required, which has been provided as the first

two Hu moments. The Hu moments are a combination of central moments of an object in an image,

which are practically invariant under rotation, translation and rescaling [10].

Combining the centre of mass of the MARFE with the first two Hu moments as inputs to an

SVM classifier has proven to provide the maximum success rate. The kernel of the SVM classifier

more suited to this application is the radial basis function. The error rate obtained with this solution

is of 1.5% false negatives and 0.97% false positives over the aforementioned database. A pictorial

example of a MARFE highlighted by the algorithm with a red contour is shown in figure 5.

4. IMAGE PROCESSING FOR PHYSICAL UNDERSTANDING

The estimation of motion information from image sequences is a recurrent problem in computer

vision. In fusion the poor accessibility of the devices makes very difficult the deployment of more

than one camera with the same field of view. Therefore stereoscopic methods are not applicable

and the optical flow approach has been adopted. The objective of the analysis consists of finding

the vector field, which describes how the image is changing with time. Under certain assumptions,

this information about the optical flow can be translated into knowledge about the movements of

the objects in the 3D space covered by the camera.

The basic assumption of all optical flow techniques is that the emission of objects in subsequent



7

frames does not change over time, which allows writing:

(2)

where f is the intensity and Dx and Dy are the two displacements from one frame to the next. For

small displacements, the Taylor expansion of equation (3) can be used to reformulate the optical

flow constraint as:

 (3)

where subscripts denote partial derivatives and u and v are the two components of the optical flow.

Unfortunately in practice solving equation (4) is an ill posed problem since small perturbations in

the signal can create large fluctuations in its derivatives. A typical method to alleviate this drawback

consists of implementing image smoothing techniques which can reduce the effect of noise and

stabilize the differentiation process. The smoothing of the image sequence is typically performed

prior to differentiation by convolving each frame with a Gaussian function (called Kr in the following).

Smoothing can be extended also to the temporal dimension. However, from the mathematical point

of view, even after proper smoothing is applied, the problem of finding the flow field solution of

equation (4) remains ill-posed and a single equation is not sufficient to uniquely compute the two

unknowns  (the so-called aperture problem). The most widely used techniques to tackle with this

problem are differential methods. They can be classified into local methods such as the Lucas–

Kanade technique [11] and into global methods such as the Horn/Schunck approach [12]. Local

and global differential methods have complementary advantages and shortcomings. Local methods

assume a small neighbourhood of constant flow. For a neighbourhood of size ρ, the optic flow (x,v)

can be determined at the location (x,y,t) from a weighted least square fit by minimizing the function:

                                    (4)

A sufficiently large smoothing is very successful in rendering the method robust against noise. The

problem remains severe in flat regions of the emission, where the image gradient vanishes and,

consequently, the aperture problem persists and the method is unable to produce dense flow fields.

In order to avoid this drawback, global methods supplement the optical flow constraint with a

regularizing smoothness term. The optical flow (u,v) is determined as the minimizer of the global

energy functional:

        (5)

where α > 0 determines the amount of smoothness. Larger values for α result in a stronger

f (x, ∆x, ∆y, t + l) - f (x, y, t) = 0

f xu + f xv + f t = 0

ELK (u, v) = Kρ∗ ((fxu + fyv + ft)
2)

EHS (u, v) =    ((fx u + fyv + ft)
2 + α(|∇u|2 + |∇v|2) dxdy

Ω
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penalization of large flow gradients and lead to smoother flow fields. Unfortunately global methods

have been observed to be more sensitive to noise than local differential methods.

Brun et al. [13] noticed the similarity between equation (5) of the Lucas-Kanade method and the

first term under the integral in the formulation (6) of the Horn-Schunck method. Based on this

observation they succeed to formulate a hybrid Combined Local-Global (CLG) class of methods,

which bring together the robustness of local methods with the density flow fields which characterize

the global approaches. These methods have been studied and optimized for the very specific case of

JET images as described in detail in [14]. A multi-resolution coarse-to-fine procedure was also

used in order to cope with large displacements of objects between consecutive frames, characteristic

of plasma images captured by JET fast visible camera. The pyramid of multi resolution images is

derived from the original frame by successive down-sampling and Gaussian smoothing steps. Optical

flow calculation starts at the coarse level, where the displacements are small and consequently the

linearization of the grey value constancy assumption is satisfied.  This estimate is then refined step

by step along the pyramidal structure.

The final results obtained for JET images are quite encouraging. It has for example been possible

to estimate the velocity of solid, cryogenic, hydrogen isotope pellets, which are injected in Tokamaks

for particle fuelling as well as for instability control (ELM triggering and mitigation). Their

importance resides in the fact, among other things, that they open access to operational regimes not

reachable by gas puffing. An example of the results is reported in figure 6, where it is shown how

the optical flow estimate is very close to the nominal speed of the injected pellets. The optical flow

method has been successfully used also for the evaluation of the speed of various plasma instabilities,

in particular ELM filaments and MARFEs. As an illustrative example Figure 7 displays the velocity

field for the MARFE in Fig.4 (top-right).

It is worth mentioning that the real images provided by JET fast visible camera can be affected

by discontinuous movements in the objects, low grey-level in-depth resolution and too slow

acquisition rate. Therefore the basic assumptions of the optical flow model may not be always

satisfied. Therefore dedicated techniques able to prevent the calculation of an inaccurate velocity

have been devised. A procedure for the assessment of the uncertainties of the method has been

developed and applied. Extensive tests have also been performed on experimental data to fine tune

the parameters of the optical flow model for each of the various applications.

5. A NEW APPROACH TO ANOMALY DETECTION

Fusion diagnostics translate physical behaviours into reproducible structural shapes in the signals.

Studying the phenomena of interest typically requires building specific databases to focus the data

analysis process on the problem at hand. To this end, specific patterns (i.e. physical events) have to

be found inside massive databases.

In general, pattern location has been historically carried out in a manual way. This searching

process becomes intractable in large databases or under long pulse conditions. The proliferation of
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diagnostics that use cameras creates an even worse situation with regard to stored information and

pattern location.

The automatic search of physical events in signals has been recently considered for nuclear

fusion environments. A novel and universal technique, Universal Multi-Event Locator (UMEL),

allows the automatic location of events in waveforms and video-movies This approach is based on

support vector machines regression estimations to identify and locate particular signatures in the

signals such as edges, peaks or textures. These footprints allow the characterization of local

information either in the time (or space) domain or in the frequency (or spatial frequency/wave

number) domain or in both.

Simple linear regression consists of minimizing a regularized error function. To obtain sparse

solutions in the case of SVM regression, the quadratic error function is replaced by an e-insensitive

error function [15]. This defines a region which provides zero error if the difference between the

regression estimation and the target value is less than µ.

The SVM regression presents two different types of support vectors, the ones which are inside

the insensitive region and the ones which are outside this region. The support vectors which lay

outside the insensitive region are called external support vectors and can be interpreted as the

symptom of particularly abrupt changes in the behaviour of the signal. This is the interpretation

proposed in [6] for time series and applied to images in this paper. The number of external support

vectors is indeed an indication of significant changes in the appearance of an individual frame with

respect to the average frame in the same video. This is shown graphically in figure 8. The images,

which present features significantly different from the typical frames, are characterised by a high

number of external support vectors. The number of external support vectors allows therefore

identifying the frames in which something anomalous is present in the image.  The number of

external support vectors can be used as an anomaly detector. The advantage of this solution is,

among other things, its absolute generality. The approach can be applied to any type of image and

is equally useful in analysing other types of signals, such as time series.

Figure 9 top shows the temporal evolution of the number of external support vectors with an

infrared camera of JET (Pulse No: 70231). The bottom plot identifies the frames with higher IR

activity in an automatic way with UMEL.

CONCLUSIONS AND FUTURE PROSPECTS

New image processing tools are indispensable in MCNF to safety operate the next generation of

devices and to maximize their scientific exploitation. The peculiarities of videos of high temperature

plasmas require further developments. The suitable advances range from image processing (an

image as input to the analysis process to provide an image as output), to image analysis (an image

as input to provide a quantitative measurement as output) and image interpretation (an image as

input to achieve a high level of interpretation as output). Particular attention will have to be devoted

to the extraction of useful information in real time. Further progress would be also very desirable in
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the field of anomaly detection. From the point view of the hardware, parallel computation and

radiation hardness are certainly some of the major issues for the future.

ACKNOWLEDGMENTS

This work, supported by the European Communities under the contract of Association between

EURATOM/CEA/CIEMAT and ENEA, was carried out under the framework of the European Fusion

Development Agreement. The views and opinions expressed herein do not necessarily reflect those

of the European Commission.

REFERENCES

[1]. John C. Russ “The image processing handbook” CRC Press Taylor and Francis Group 5th

edition 2007.

[2]. Richard Layne, Martin Wheatley, “New data storage and retrieval systems for JET data”,

Fusion Engineering and Design, Volume 60, Issue 3, June 2002, Pages 333-339, ISSN 0920-

3796, DOI: 10.1016/S0920-3796(02)00029-7.

[3]. Chen, Pau & Wang (Eds.) Handbook of pattern recognition & computer vision. World

Scientific. pp. 163 - 209. ISBN 981-02-1136-8

[4]. L. Chua, T. Roska, “Cellular neural networks and visual computing: Foundations and

applications”, Cambridge University Press, Cambridge, 2004.

[5]. M.Sonka, V.Hlavac, R.Boyle “Image processing, analysis and machine vision” Thomson,

London, 2008 Third edition.

[6]. J. Vega, A. Murari and S. González. “A Universal support vector machines based method for

automatic event location in waveforms and video-movies: Applications to massive nuclear

fusion databases”. Rev. Sci. Ins. 81, 023505 (2010) 11pp.

[7]. E.Gauthier et al. Fusion Engineering and Design, Volume 82, Issues 5-14, October 2007,

Pages 1335-1340.

[8]. Z. Nagy, P. Szolgay, “Configurable Multi-Layer CNN-UM Emulator on FPGA”, IEEE Trans.

on Circuits and Systems I: Fundamental theory and applications, Vol. 50, pp. 774-778, 2003.

[9]. B. Lipschultz, J. Nucl. Mater. 145-147 (1987) 15.

[10]. M. K. Hu, IRE Trans. Info. Theory, vol. IT-8, pp.179–187, 1962.

[11]. B. Lucas, T. Kanade, “An iterative image registration technique with an application to stereo

vision”. In Proc. Seventh International Joint Conference on Artificial Intelligence, Vancouver,

Canada, 1981, pp. 674–679.

[12]. B. Horn, B. Schunck,–“Determining optical flow”, Artificial Intelligence, vol. 17, pp.185–

203, 1981.

[13]. A. Bruhn, J. Weickert, C. Schnorr, “Lucas/Kanade meets Horn/Schunck: combining local

and global optic flow methods”, Int. J. Comput. Vision, vol. 61-3, 211-231, 2005.



11

[14]. T. Craciunescu, A. Murari, A. Alonso, P.T. Lang, G. Kocsis, I. Tiseanu, V. Zoita., “Application

of Optical Flow Method for Imaging Diagnostic in JET”, Journal of Nuclear Material, to be published

[15]. C.M.Bishop “Pattern recognition and Machine Learning” Springer, Singapore 2009

Figure 1: Top-Example of images acquired by JET IR wide angle camera. The white pixels indicate regions of high
surface temperature. Bottom- Example of hot spots detected by the serial algorithm.
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Figure 2: An example of retrieval of patterns within images using the structural pattern recognition approach described
in the paper. The object to search for is selected with the cursor by the user (central image) in a generic frame. The
pattern recognition algorithms identify the frames in the database, which contain the same or similar objects. An
example of these frames with similar patterns and their list is shown on the right part of the figure).

Figure 3: Computational time of the serial algorithm in C++ tested on 11300 frames of JET wide angle cameras. Top
- the dependence of computational time from the number of hot pixels (pixels whose temperature is above the alarm
threshold); the experimental value and theoretical model expressed as a four order polinomial are compared Bottom
- evolution of the computational time per frame in the IR video of one JET discharge.
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Figure 4: Sequence of frames taken by JET fast visible camera showing the MARFE evolution along the inner wall of
JET vacuum vessel.

Figure 5: Examples of a MARFE properly identified by the described algorithm.
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Figure 6: Top: view of the pellet ablation cloud as seen by JET fast visible camera Bottom: the field of view of the fast
camera with an arrow indicating the pellet nominal trajectory. Right: a top view of JET vacuum vessel giving the
topology of the pellet injector with respect to the field of view of the fast camera. The pellet speed estimated with the
optical flow is of 215 ± 12 m/s: the nominal speed of the injected pellets is 240 ÷ 262 m/s.

Figure 7: Optical flow calculation of the speed of the MARFE in Fig.4 top-right. Horizontal speed component (left),
vertical speed component (middle) and speed modulus (right).
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Figure 9: Frames with a greater Number of external support vectors denote higher IR activity
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Figure 8: In these two images it appears very clearly how the external support vector crowd around the regions of
high gradients in the pixel intensity.
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