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ABSTRACT

The paper deals with JET polarimeter measurements and in particular it presents a study of the Faraday rotation

angle, which is used as constraint in equilibrium codes. This angle can be calculated by means of the rigorous

numerical solution of Stokes equations. A detailed comparison is done of calculations with the time traces of

measurements, inside a  limited dataset representative of JET discharges: in general it is found that the Faraday

rotation angle and Cotton-Mouton phase shift measurements can be represented by  the numerical solution to Stokes

equations. To get this agreement in particular for Faraday rotation, a shift of the magnetic surfaces must be included.

This results in improvement of the position of the magnetic surfaces as calculated by EFIT equilibrium code. The

approximated linear models normally used can be applied only at low density and current. The Cotton-Mouton is

calculated at high plasma density including the contribution by Faraday rotation angle. For high plasma current the

non-linear terms in the propagation equations can be important. These conclusions have some impact on the

mathematical form of the polarimetric constraints ( Faraday and Cotton-Mouton) in equilibrium codes.

1. INTRODUCTION

The measurements of polarimetry in tokamak plasmas can give important information on plasma current

and density [1]. In a plasma, in presence of a magnetic field, the polarization plane of a laser beam

propagating along the magnetic field rotates (Faraday effect). Whereas, if the laser beam is propagating

perpendicular to the magnetic field there is a change in the ellipticity of the polarization (Cotton-Mouton

effect). In a beam propagating vertically along a line in a poloidal plane of a tokamak , both effects are

presents:  the polarization becomes elliptical and the plane of the polarization rotates.

As a first approximation, it is possible to consider the two effects as being independent: the Faraday

effect depending only on the magnetic field parallel to the beam direction times the plasma density, while

the Cotton-Mouton depending on the plasma density and the perpendicular ( to the line of sight) magnetic

field squared. Since the structure of the propagation equations of polarization inside the plasma in the

magnetic field of a tokamak couples the Faraday and Cotton-Mouton, the two effects must be taken into

account at the same time, in a rigorous approach to calculate the change of polarization of a laser beam. 

In a previous paper [2], the analysis of Cotton-Mouton measurements was carried out and the consistency

of measurements with the Stokes equation models  was assessed. It was shown that the Cotton-Mouton

phase shift angle can be calculated by means of the rigorous solution of Stokes equations, which define

the spatial evolution of the polarisation of the laser beam inside the plasma.  The coupling between

Faraday and Cotton-Mouton was demonstrated important for large Faraday effects. In fact, to analyze the

coupling between Faraday and Cotton-Mouton a new approximate analytic solution (Type II)[2] was

introduced. Using the topology of tokamak magnetic fields, an ordering was found between the

components of the vector Ω
r

 appearing in the Stokes equations (see sec 2), leading to a simplified

analytic solution, which  exhibits i) a sensible dependence of the Cotton-Mouton phase shift upon the
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Faraday rotation angle, while  ii) the Faraday rotation is not depending on Cotton-Mouton (see comments

to [II.12] ).

In the present paper the analysis of Faraday rotation  measurements is carried out, following the same

method developed in [2],  using the Stokes equations and  their numerical and approximate solutions. The

coupling between Faraday and Cotton-Mouton is analyzed further, from the general point of view, using

a new set of non-linear equations derived from the Stokes ones. 

 The main questions, which are addressed in the present paper, are : i) which is the most suitable

model for  the Faraday rotation measurements on JET and the possible improvement to the equilibrium

calculation which can be obtained through the comparison between the measurements and the numerical

solution of Stokes equations ( see sec.3 and 4) ; ii) how the coupling acts on Faraday and Cotton-Mouton,

i.e. whether the dependence found using Type II solution is general (see sec 5 and 6). Both points are

relevant to the modelling of Faraday rotation and Cotton-Mouton effects to be used as constraints in

equilibrium codes.

To answer to the previous questions, the data from JET polarimetric system are used : few discharges are

studied representative of regimes where the polarimetric effects are reasonably  strong ( see Table I and

III).

This paper presents a comprehensive study of the following aspects: i) a detailed analysis of Faraday

measurements at JET and comparison with available models. It turns out that the Faraday rotation

measurements on JET can be reproduced in any condition  only by the numerical solution of Stokes

equations and by a suitable shift of the magnetic surfaces. A specific study shows that the comparison

between model calculations and measurements lead to a more refined identification of the positions of the

magnetic surfaces as predicted by EFIT equilibrium code[3] ;  ii) a rigorous approach to the interaction

between Faraday and Cotton-Mouton, ( studied in recent papers, see ref [2] for details):  it is

demonstrated that at high density and current, the Cotton-Mouton must be calculated including the

dependence by Faraday rotation.   

Since the solutions to the Stokes equations were discussed in [2],  the names and classification of the

solutions are retained in the present paper, and only a short introduction to Stokes equations and solutions

will be presented,  the details are given in ref[2]. 

The paper is organized  as follows: in sec.2, a short summary of the measurements of JET polarimetry

system is given, together with  the Stokes equations and  their approximate solutions; in sec. 3, the

analysis of Faraday rotation measurements is presented  comparing measurements and solutions of the

Stokes equations for few typical JET discharges, where to reconcile the measurements with the

calculations a shift of the magnetic surfaces is needed; in sec.4, a statistical analysis on large databases of

the determination of the shift is presented; in sec.5, the  mutual interaction between Faraday rotation and

Cotton-Mouton for a high density shot is presented; in sec.6, a theoretical analysis of the coupling

between Faraday and Cotton-Mouton effects and its application to study shots with high density and high
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plasma current is presented. The coupling between Faraday and Cotton-Mouton is analyzed  using a new

set of equations (derived from the Stokes equations) which are useful to understand how the coupling

acts; in sec.VII, comments  are presented on the mathematical models of Faraday and Cotton-Mouton to

be used as constraints in equilibrium codes; in sec.VIII, the conclusions are presented. 

Hereafter a plasma discharge is named also using ‘shot’; and ‘numerical solution’ is always referred to

the numerical solution of the Stokes equations ( see equations [2.2.]) , using as input to the equations, the

density profile measured by Thomson scattering and the magnetic fields calculated by the EFIT

equilibrium code[3], (see sec.II ); the terms 'Faraday'  ( 'Cotton-Mouton' ) will be used often, meaning

'Faraday rotation angle' ( 'Cotton-Mouton phase shift angle')  measurements.  In the paper the symbols φT

and ψT  are used for the Cotton-Mouton  phase shift and Faraday rotation angle respectively obtained by

numerical solutions of Stokes equations.

2. STOKES EQUATIONS AND THEIR APPROXIMATE SOLUTIONS.

The considered geometry includes the propagation of a laser beam along a vertical chord (taken as z-axis)

in a poloidal plane of a Tokamak. The toroidal magnetic field ( tB
r

) is perpendicular to this plane and the

angle of the electric field vector of the input wave with tB
r

 is 450. The polarisation of a beam can be

described using the Stokes vector sr , whose components are expressed in terms of the ellipticity angle (χ)

and Faraday angle (ψ), or in terms of the ratio of the components of the laser beam electric field (α) and

their phase shift angle (φ ). 

The equations defining the Stokes vector ),,(= 321 ssss  are :

1=++

)sin()2sin(=)2sin(=
)cos()2sin(=)2sin()2cos(=

)2cos(=)2cos()2cos(=

2
3

2
2

2
1

3

2

1

sss

φαχs
φαψχs

αψχs

                                                                                   [2.1]           

It is worth remembering that the JET polarimeter system measures primarily i)  two components of the

electric field ( Ex and Ey, in a plane orthogonal to the propagation direction) of the laser beam emerging

from the plasma as well as ii) the phase shift (φ) between these components. So the primary

measurements are 

and
Ex
Ey

α =  φ

In principle the JET polarimetric system gives the possibility of  determining directly the values of the

components of the Stokes vector, using the measurements of α and φ and the definitions [2.1].
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The Faraday rotation is  obtained using the relation :

φαψ cos2tan=2tan

and the ellipticity , defined as  χε tan= , is  obtained by the formula :

2
3

3

-1
=2tan

s
s

χ

The spatial evolution along the z-axis of the polarization of a beam is given by the Stokes equation :

s
dZ

sd rv
r

×Ω=       [2.2] 

where 

( )321 Ω,Ω,Ω=Ω ka
r

, and ztxxt nBCBnBCBBnC 3312
22

11 =Ω;2=Ω;)(=Ω                 [2.3]

Bt is the toroidal magnetic field (Tesla), Bz the component of the poloidal magnetic field along the

propagation axis, Bx the component of poloidal magnetic field orthogonal to the propagation axis       ( the

ratio Bx/Bt ≤ 10-1 , so neglecting Bx implies an error ≤1% in the evaluation of Ω1), n is the electron density

(m-3), C1 = 1.8×10-22 and C3 = 2×10-20, calculated for the laser wavelength of λ = 195 µm, and Z = z/ka is

the normalized coordinate along a vertical chord, where k is the elongation and a the minor radius. The

relations between the Faraday rotation ψ and the Cotton-Mouton phase shift φ  angles and the

corresponding components of Stokes vector follow from [2.1]:    

 s2
s1

= tan2ψ       [2.4]

s3
s2

= tanϕ        [2.5]

Equations [II.2] are solved , with the initial condition :

)0,1,0(=0sr                                                                                                                                 [2.6]

corresponding to 450 angle between the electric field vector of the input wave and tB
r

.

In the present work data related to the channel #3 ( corresponding to the vertical line with coordinate R=

3.04 m, r/a~0.04) and channel #4 ( a vertical line with coordinate R=3.74m, approximately tangent to the

last closed magnetic surface)  are presented: the data exhibit a reasonably good signal to noise ratio and

the geometry to be analyzed  is relatively simple. 

The values of the vector ( )321 Ω,Ω,Ω=Ω ka
r

  are obtained [2] using the values of B  as calculated by

the EFIT equilibrium reconstruction  and the LIDAR Thomson Scattering  measurements of plasma

density (n) projected along the line of sight of the vertical channels on the basis of the reconstructed

equilibrium. 
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The type I solution [2], to the Stokes equations [2.2], is found if the quantities W3 = Ω3dz∫ = C3 neBzdz∫
and W1 = Ω1dz∫ = C1 Bt

2nedz∫  satisfy to the conditions Wi
2<<1 ( in the definition of W1, the component

Bx has been neglected, see [2.3]), and W2 <<W1 .

The type I solution is obtained as the first term of a series expansion to the solution of the system of

ordinary differential equations [2.2], together with the initial condition [2.6].   In this approximation the

relations between the Stokes vector, the Faraday rotation ψ and Cotton-Mouton phase shift angle φ are

given by:

 s1    =- ∫ 2tan/1== 33 ψdzBnCW ze    [2. 7]

1≈2/)+( -1= 2
3

2
12 WWs     [2.8] 

s3 = W1 = C1 Bt
2nedz = tanϕ∫     [2.9]

Relations [2.7] and [2.9] are the key equations used  for evaluating the polarimetric measurements linking

the Faraday rotation to the component of the poloidal magnetic field along the direction of propagation of

the laser beam ( and then to the plasma current profile),  and the Cotton-Mouton phase shift angle to the

line–integral of the electron density.  The expressions in [2.7] and [2.9] are valid only  for Wi
2<<1:  for

large Faraday and Cotton-Mouton angles ( see also in the following the discussion on Type II

approximation)  other methods must be used to find solutions to the Stokes equations.  The term of 'linear

approximation' will be used in this paper with reference to formulas [2.7-9].

The physical meaning of the type I approximation can be appreciated,  if we consider the situation

where the transverse components of the magnetic field are not present , ( i.e. Bt=Bx=0 in [2.3], and  Ω1=

Ω2=0),  and there is a magnetic field Bz in the direction of beam propagation. This is the case of a 'pure'

Faraday rotation. Solving the Stokes equations  [2.2] with the initial conditions [2.6]  leads to the

solutions : 

0=2sin=
)+2sin(=2sin=
)+2cos(=2cos=

03

302

301

χs
Wψψs
Wψψs

the Faraday rotation  is  then obtained from the previous equations :

30 +2=2 Wψψ
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It can be verified that the previous formula leads to the 2.7](Type I) at the same level of the

approximation ( i.e. W3<<1, in practice W3<<π/6=0.5) .  The 'pure ' Faraday rotation is represented by

W3/2.

The 'pure Cotton-Mouton' can be derived from the solutions of Stokes equations considering the case  of

Bz=Bx=0, i.e. 23 Ω=0=Ω  :

)+sin(=)+sin(2sin=sin2sin=

)+cos(=)+cos(2sin=cos2sin=
0==

1010003

1010002

011

WφWφαφαs

WφWφαφαs
ss

The 'pure Cotton-Mouton ' is then represented by W1,  in fact  from the previous equations we obtain:

10 += Wφφ

In  the ideal conditions  0=0φ , so 1= Wφ . 

The physical meaning of W1 and W3 is related with 'pure' Cotton-Mouton and Faraday rotation

respectively, in a context where the two effects can be considered separately and possibly independent.

More general approximate solutions[2] to the equations [2.2] can be found, observing that the following

inequalities between the components of the vector Ω
r

  hold for Tokamak plasmas: 

 213 Ω>Ω≥Ω [2.10]. 

As consequence of the condition [2.10], the terms with component Ω2 can be neglected in the Stokes

equations [2.2] and terms in 31sΩ  neglected with respect to 13Ω s , in this approximations the Stokes

equations can be integrated analytically, and the expressions (Type II solutions) for the Faraday angle and

Cotton-Mouton phase shift can be obtained [2]:

s2
s1

(z)  = tan 2ψ = - 1
tan(W3)

    ; s3
s2

(z)  = tan φ =   
dyΩ1(y) cos(W3(y))

− z

+ z

∫
cos(W3(z))

  [2.12] 

A clear trend present in the formulas [2.12] is that the Cotton-Mouton phase shift increases with W3, ( for

values correspoding to JET data), (see sec 3 and fig.6). In practice for Faraday rotation angles ψ≤12o,

1≥cos (W3)≥0.9 and  tanφ≈W1, within an approximation of 10%, whereas for Faraday  angles   higher

than 12o  the  Cotton-Mouton  increases due to the enhancement  linked with Faraday rotation(

W3≥π/15=0.2).
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In the following discussion concerning the comparison between measurements and model calculations,

the Guenther ModelA [4] will be cited as well : a discussion of the details of this model is given in [2,5].

3. FARADAY ROTATION MEASUREMENTS AND COMPARISON WITH MODELS.

Examples of the calculations of the Faraday effect can be produced  by starting from data of shots

representative of JET typical operational space. Table I gives a choice of three shots  with parameters

from low density/low current , to high density/ high current. Table II summarizes the values of the

experimental errors in the measurements used in the Stokes equations.

Figure1 shows the numerical solution of Stokes equations( 1/tan2ψ T), together with the Faraday

measurements(1/tan2ψ ex) for the shot# 60980: the numerical solution agrees with measurements within

the errorbar, which for Faraday rotation angle is ∆ψ=0.004rad(0.22o). 

Figure 2 shows the comparison between Faraday measurements and the approximate solutions         (

Type I [2.7-9] ,  Type II [II.11] and Guenther ModelA (W3G)). All the models are  in agreement with the

measurements. In particular Type I reproduces the data and this is expected due to the low value of  the

Faraday angle and corresponding W3. This is the case of 'pure' Faraday effect.

Moving to the high density shot #67777 , fig.3 shows  the calculations for the Faraday rotation

corresponding to channel#3. The values of the spatial profile of Bz(z, Rchannel) ( Rchannel is the radial

coordinate of the vertical chord, z the coordinate along the chord) is critical for the determination of the

Faraday rotation: we find that the equilibrium in agreement with the measurements of polarimetry

corresponds to a shift of 0.035m of the magnetic surfaces  in the direction of high field side. In this

conditions we find that all the models ( also the 'linear' model W3)  are in agreement  with the

measurements.

The equilibrium used in the previous calculations is evaluated including only magnetic measurements,

the question araises to whether an equilibrium evaluated using constraints from polarimetry could

improve the prediction of Faraday rotation as calculated by the Stokes equations, without needing a shift.

To answer to this question an equilibrium was generated by EFIT where the minimization was obtained

including the constraint  of Faraday rotation, but  a shift of 0.035m was still needed to reconcile the

measurement with the calculations.

To study further this problem the comparison between data and calculations were carried out for a

shot#76846(BT/Ip=1.7T/1.4MA, ne=5.5 1019m-3,Te=4.5keV), with two types of equilibria: i) EFIT

equilibrium  obtained using only magnetic measurements (IEFIT); ii) EFIT equilibrium obtained using

constraints which include MSE( Motional Stark Effect) measurements and pressure measurements (

performed by the High resolution Thomson scattering system) (EFTM) . Fig.3a shows the comparison

between calculations and data using IEFIT, and fig.3c shows the results of comparison when the shift

DR=0.045m is introduced, using IEFIT equilibrium. Fig.3b shows the comparison ( between Faraday data

and calculations)  using the constrained  equilibrium EFTM: it can be noted that using EFTM an
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improvement is obtained, but this is not enough to obtain an agreement between measurements and

calculations. The agreement is found only introducing a rigid shift of the magnetic surfaces of DR=0.02m

when EFTM is used(see fig.3d). The figures 3  are corresponding to measurements of channel #3.   

Thus using a more refined equilibrium like EFTM, which includes internal measurements ( MSE and

pressure profiles ) as constraints, leads to a reduction of the shift of the magnetic surfaces             (

DR=0.02m instead of  DR=0.04m) needed to reconcile polarimetry model and measurements. 

In more detail, the previous figures show that : i) the comparison between the calculations and

measurements of Faraday rotation can give important informations about the accuracy of equilibrium

calculations; ii) the comparison can be used to improve the calculations of the position of the equilibrium

surfaces: in practice the calculation of the Faraday rotation angle using Stokes model is useful to evaluate

how to shift the flux surfaces to improve the evaluation of the equilibrium.

The same procedure must be applied to the calculations related to the channel#4 which is the

outermost vertical channel with coordinate R=3.74m, leading to a shift  DR=0.04m ( for the shot #67777).

This is not expected because the equilibrium is supposed to be accurate at plasma edge, where the

magnetic sensors are placed. Data related to channel#4 are shown in the fig.4 from the top : the first plot

shows a comparison between the numerical calculations and measurements, the second plot the

measurements compared with Type II model, and the third the comparison between the measurements

and the Type I and Guenther Model A.  

In practice the numerical model and the Type II are in agreement with data, while Type I and

Guenther Model A  underestimate the Faraday measurements. The Faraday measurements give a rotation

quite large ( as it can be expected ) on channel#4 of the order of 23o , and a value of W3≈1: we find in

fact that Type I  (which is a measurement of 'pure Faraday ' rotation) is not a good approximation. This

experimental finding confirms the conclusions drawn from the TypeII model in sec.II.  

4. STATISTICAL ANALYSIS OF THE 'SHIFT' OF THE MAGNETIC SURFACES.  

A statistical analysis on a large database of shots including measurements of years 2003-2007 confirms

the procedure outlined for the shot# 67777.  In particular a database  was built ( see table III) to study the

dependence upon the main plasma parameters ( plasma density, current and toroidal magnetic field),  of

the shift of the magnetic surfaces needed to reconcile the Faraday measurements with the calculations .

The study was limited to data of channel#3. The equilibrium used was EFIT with magnetic measurements

only.

For each shot ( see Table III), the shift was determined by  the minimization of the χ2,  build using the

Faraday measurements and the corresponding  values obtained by solving the Stokes equations.

The result of the analysis is shown  in figures 5a-5c: fig.5a  is a plot of the shift  versus the maximum

line averaged electron density measured by LIDAR Thomson Scattering ; fig.5b is a plot of the shift

versus the plasma current ; and fig.5c  shows the shift versus the ratio BT/IP ( toroidal magnetic field /
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plasma current). The calculated shift, ranging in the interval DR=0.01-0.05m, does not exhibit any strong

dependence upon plasma parameters. 

An extensive statistical analysis ( based on validated shots belonging to campaigns of years 2007-

2009) on the shift was carried out for the measurements of channel #4 (the outermost vertical channel

with coordinate R=3.74m).  In the calculations of the Stokes equations the density profile used were

measured by the HRTS(High  Resolution Thomson Scattering) , which has a spatial resolution at edge of

the order of 0.015m. The average shift  calculated was of the order of DR=0.02m.

The shift needed is likely due to the accuracy of the EFIT equilibrium calculations, in terms of space

resolution. This is limited by the dimension of the elements of the grid used by EFIT [6]: the element has

a dimension  dZ X dR = 0.126 X 0.075 m2,( dZ (dR) is the dimension in the vertical(radial) direction),.

The shift found then in the study presented in this paper is consistent with the radial space resolution of

the EFIT calculations.

From these data it is important to realize that the comparison between calculation and  measurement

of Faraday rotation lead to a strong improvement of the evaluation of the position of the magnetic

surfaces. 

To confirm that the EFIT calculations can be affected by a certain systematic uncertainty, a

comparison of  the average radial location of the lower outer strike point  as predicted by EFIT and

XLOC was done, using a large database of  460 shots chosen in 2003-2007 years.

The code XLOC[7] is a simplified equilibrium code which is used for the determination of the X-point

location and strike points of the open field lines derived from the X-point on the divertor tiles. 

The result obtained after this comparison is that EFIT predicts  a position of the lower outer strike point

systematically in excess of 0.06 m with respect to XLOC calculations , confirming the shift in the same

direction detected using the polarimetry analysis.

 

5. COTTON-MOUTON VERSUS FARADAY ROTATION IN A HIGH DENSITY SHOT.

Since for shot#67777 the Faraday rotation angle is significant, it is instructive to see whether for

calculating the Cotton-Mouton phase shift the Type I approximation would be enough. The level of

disagreement between the Type I approximation and the measurement can be considered as an

'interference'  of the Faraday rotation on the Cotton-Mouton effect (in the sense already discussed in

sec.II, in relation to the Type II approximation). A comparison between the Cotton-Mouton phase shift

measured ( for shot#67777, ch#3, blue line), the numerical solution (green star) and the calculation of W1

( red circles) is  given in fig.6: the Type I approximation ( where W1max ≈0.35 )  is not enough to evaluate

the Cotton-Mouton measurements , since  it underestimates the value of tanφ by 30%. In this case there is

an interference of the Faraday  effect which results in a contribution of 30% to the Cotton-Mouton effect:

the measurement of the Cotton-Mouton effect cannot be reconciled in the case of high density to a 'pure'

effect. 
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The effect of Faraday rotation on Cotton-Mouton can be observed also in fig.7: the ratio tanφT /W1 (

for the shot #67777, channel#4) is plotted  versus W3 to detect the departure of Cotton-Mouton phase

shift angle from linearity, in relation with the level of Faraday rotation, which is measured by W3.  It turns

out that the Cotton-Mouton phase shift exceeds substantially the ‘linear’ evaluations already for values

W3>0.4. This finding is in agreement with the general trend predicted by the Type II approximation.

6. THEORETICAL ANALYSIS OF THE COUPLING BETWEEN FARADAY AND COTTON-

MOUTON EFFECTS AND APPLICATION TO STUDY SHOTS AT HIGH DENSITY AND

HIGH PLASMA CURRENT.

In the previous section a demonstration of the coupling between Faraday and Cotton-Mouton was shown

comparing the Type I approximation (which represents 'pure' effects) with measurements.

We have found that for a high density shot the Faraday as well as Cotton-Mouton measurements cannot

be obtained using the 'linear formulas' (Type I).  In this section a short theoretical discussion will be

presented about the coupling.

In this section a short theoretical discussion will be presented about the coupling.

Moving to a more general analysis , we start from the Stokes equations [II.2] to derive equations

where the coupling terms between Faraday and Cotton-Mouton can be clearly  identified. 

Defining  

φ
s
s

Cand
ψs

s
F tan==

2tan
1

==
2

3

2

1  

from the Stokes equations [II.2]  the following system can be derived :

=
dZ
dF

- CCFF 21
2

33 Ω+Ω+Ω-Ω                                               [3.1]

2
11 Ω+Ω= C

dZ
dC

- CF3Ω - F2Ω                                            [3.2]

The system [III.1-2] can be considered as a generalized Volterra-like problem, with non-constant

coefficients. The propagation of polarization in a plasma  can be described using a first order non-linear

differential system in two variables: plasma polarimetry is intrinsically described by a bidimensional

dynamical system, so chaotic behaviour cannot be realized.

The magnitude of the terms at the right hand side of [3.1-2] can be estimated  solving directly the

Stokes equations. The fig.8a and b show how the non-linear terms play in the determination of Cotton-

Mouton effect: the values of dC/dZ and Ω1 are plotted together versus the normalized coordinate along

the beam path for the channel #3 ( fig.8a) and channel#4(fig.8b) at the time t=18s , for the high density
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shot #67777: it appears that the non-linear terms become important for Z>0. The fig.9a and 9b show a

similar plot for the Faraday rotation angle, the values of dF/dZ and  Ω3 are plotted together for

shot#67777 : it appears that the non-linear terms are negligible for the channel#3( fig.9a), while the non-

linear terms are important for channel#4( fig.9b). 

It has been verified that the most important non-linear term for Faraday  is the term 2
3Ω F , while

for Cotton-Mouton is the term Ω3 FC, in eq.[3.1-2].

Figure10a and 10b  and 11a and 11b simulate a high current , high density shot (#75238): the same

trend ( as for shot#67777, channel#3 and 4)  is detected. In particular for the Cotton-Mouton (fig.10)  the

non-linear terms are important for Z>0: this is evident for channel#3( fig.10a), but it is remarcable for

channel#4 ( fig.10b). For the Faraday rotation angle,  the fig.11a shows that for Z>0 a small difference

appears, in channel#3, between the exact value of Faraday rotation derivative and the value of Ω3, the

fig.11b shows that for channel#4 the non-linear F2 term is dominant. 

The importance of non-linear terms  for Faraday rotation  is confirmed by a comparison between the

Faraday rotation measurements and the calculations as  shown in fig.12, where the experimental data(blue

line) are shown together with the numerical calculation ( red continuous line) and the linear formula (

green crosses): the value of W3  slightly underestimate the Faraday measurement for the high current shot,

while the numerical solution is in agreement with the measured Faraday rotation. 

7. REMARKS ON THE MATHEMATICAL FORMS OF POLARIMETRY CONSTRAINTS    

INSIDE THE EQUILIBRIUM CODES.

The previous sections  contain information on the correct mathematical form to be used inside the

equilibrium codes for the polarimetry constraints, for JET discharges.

In general the constraint on Faraday rotation cannot be expressed using the 'linear form ' [2.7]: the

example of the calculations related to the chord#4 for shot #67777  shows that the numerical model or

Type II are more adequate to describe the Faraday rotation at high density, and for shot#75238,  at high

current and density.

The introduction of Cotton-Mouton as constraint in the equilibrium code for an improved

determination of plasma density must be treated carefully, since for Cotton-Mouton the 'linear form' can

be used only  at low-medium density , while at high density the effect of Faraday rotation must be

included. The simplest form of a model for Cotton-Mouton, which includes the dependence upon Faraday

rotation is represented by TypeII approximation.

CONCLUSIONS 

This paper presents a detailed analysis of Faraday measurements at JET and comparison with available

models and a rigorous approach to the interference between Faraday and Cotton-Mouton, studied in
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recent papers. The Faraday rotation can be calculated from the Stokes equations and the comparison

between the calculations and the measurements can lead to information related to corrections of the

position  of the magnetic surfaces. Moreover  it turns out that the Faraday rotation cannot in general be

represented by the linear expression of the TypeI approximation ( expression [2.7], sec 2). The Cotton-

Mouton, at high density and current, must be calculated including the dependence from the Faraday

rotation angle.  The present paper suggests that the test of the new mathematical forms of Faraday and

Cotton-Mouton in the constraints of EFIT equilibrium code is necessary to obtain accurate equilibrium

reconstructions in all JET regimes of operations. 
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Shot # nemin (**)

(1019 m-3)

nemax (**)

(1019 m-3)

∫nedl

Ch3(*)

(1019 m-2)

Temin

(keV)

Temax

(keV)

BT IP

(MA)

W1 W3

60980 2 3.9 4-9 1.5 3.1 1.6/2.4 2/1.6 0.016 0.25

67777 2.7 12 6-28 2.5 3.5 2.7 2.5 0.11 1.4

75238 3 10 18-20 5 6 2.75 3.4 0.08 1.4

(*) Line integrated density interval as measured by the FIR interferometer, on channel 3.

(**) Measured values of electron density by LIDAR Thomson Scattering

Table I. Plasma parameters

Diagnostic System 

Measured Quantity 

Symbol Error bar 

   

polarimeter Faraday Rotation ψ 0.2o

polarimeter Cotton-Mouton

Phase shift φ 2o

   

LIDAR Thomson

Scattering

Line integral

plasma density ∫ dLne 10%

LIDAR TS Plasma density

profile ne 5%

LIDAR TS Plasma

temperature profile Te 10%

Table II. Error bars of measurements used  in the calculations
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nmax IP BT

70053 1.35 3.56 3.14

70222 1.22 3 2.99

70238 0.97 2.55 2.63

70646 0.93 2.28 2.18

70691 0.9 1.85 2.26

68515 0.9 1.73 1.83

68741 0.87 1.73 1.83

70004 0.63 2.52 2.55

70206 0.41 1.22 1.9

70275 0.5 1.95 3.09

70312 0.43 1.62 2.96

70084 0.38 1.8 3.36

70558 0.28 2 2.31

70336 0.6 1.9 3

70548 0.6 2 2.7

Table III-  Dataset used to study the dependence of the shift upon plasma parameters : nmax =maximun electron density in units

of 1020m-3;IP=plasma current in MA; BT=toroidal magnetic field in tesla.
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Figure 1: Faraday rotation measurement (blue
continuous line, Pulse No: 60980, channel #3) is plotted
together with the calculated values (‘*‘ symbol) using
the numerical solution of Stokes equations. Plasma
parameters are given in Table I. Agreement within the
error bars.

Figure 2: Faraday rotation. A complete comparison (and
agreement) between the models and measurements is
presented for the Pulse No: 60980, channel #3. From the
top the comparison of measurements with the Type II
approximation, the ‘linear’ W3 approximation, and the
Guenther Model A.

Figure 3: Faraday rotation. Similar as fig.2 , but for the
high density Pulse No: 67777 and the third figure from
the top reports the calculation of W3 (the linear
approximation) instead of W3G (Guenther Model A): here
the agreement between data and models is obtained by a
rigid shift of the magnetic surfaces DR= 0.035m. The
data are in agreement with all the models , in particular
with the ‘linear’ W3 model.

Figure 3(a): Faraday rotation.Comparison between
measurements (continuous blue line) and results of
numerical solution of Stokes equations (continuous red
line) for Pulse No: 76846, where the shift of magnetic
surfaces DR=0. The EFIT equilibrium (which includes
magnetic measurements) is used without constraints( EQ
IEFIT).
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Figure 3(b): Faraday rotation.Comparison between
measurements (continuous blue line) and results of
numerical solution of Stokes equations ( continuous red
line) for Pulse No: 76846, where the shift of magnetic
surfaces DR=0. The EFIT equilibrium is used with
constraints including MSE( Motional Stark Effect) and
pressure profile measurements(EFTM).

Figure 3(c): Faraday rotation.Comparison between
measurements (continuous blue line) and results of
numerical solution of Stokes equations (continuous red
line) for Pulse No: 76846, where the shift of magnetic
surfaces DR=0.045m. The EFIT equilibrium is used
without constraints(EQ IEFIT).

Figure 3(d): Faraday rotation.Comparison between
measurements (continuous blue line) and results of
numerical solution of Stokes equations ( continuous red
line) for Pulse No: 76846, where the shift of magnetic
surfaces DR=0.02m. The EFIT equilibrium is used with
constraints including MSE (Motional Stark Effect) and
Thomson Scattering pressure profile measurements
(EFTM).

Figure 4: Faraday rotation. Comparison between models
and data for Pulse No: 67777, channel #4: from the top
the comparison of measurements with numerical solution
, the Type II approximation, the ‘linear’ W3 approximation
and the Guenther Model A. Agreement between data and
the Stokes numerical solutions and Type II approximation
is found operating a rigid shift of 0.04m of the line of
sight. The approximate values of W3 (and Guenther Model
A) slightly underestimate the measurement.
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Figure 5(a):  the shift (m) versus the maximum line
averaged electron density measured by LIDAR Thomson
Scattering in units of 1020 m-3.

Figure 5(b): the shift(m) versus the plasma current(MA).

Figure 5(c): the shift versus the ratio BT/IP ( toroidal
magnetic field / plasma current).

Figure 6: Cotton-Mouton.The phase shift versus time
(continuous line) is compared with the numerical solution
( star simbols), and the linear W1 approximation(red
circles).Pulse No: 67777, channel 3.
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Figure 7: Cotton-Mouton. The calculated (cross symbol) (s3/s2)/W1 versus W3 is shown for the Pulse No: 67777,
channel#3.

Figure 8: Cotton Mouton. The right member of equation [III.2] (blue continuous line) , and (‘cross’ symbols) the
values of Ω1 are shown, for the Pulse No: 67777, channel#3( fig.8a ) and channel#4 (fig.8b).
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Figure 9: Faraday rotation. The right member of equation [III.1] (continuous line) , and (‘cross’ symbols) the values
of Ω3 are shown, for the Pulse No: 67777, channel #3 (fig.9a ) and channel#4 (fig.9b).

Figure 10: Cotton Mouton. The right member of equation [III.2] (blue continuous line) , and (‘cross’ symbols) the
values of Ω1 are shown, for the Pulse No: 75238, channel#3 (fig.10a ) and channel #4 (fig.10b).
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Figure 12: Faraday rotation measurement (continuous
blue line, Pulse No: 75238, channel #3) is plotted together
with the calculated values ( continuous red line) using
the solution of Stokes equations. The calculated values
of W3 are shown by green crosses.

Figure 11: Faraday rotation. The right member of equation [III.1] (blue continuous line) , and (‘cross’ symbols) the
values of Ω3 are shown, for the Pulse No: 75238, channel #3 (fig.11a ) and channel #4 (fig.11b).
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