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ABSTRACT

The Resistive Wall Mode (RWM) dispersion relation is analytically derived for a cylindrical

plasma surrounded by two walls: the first wall (facing the plasma) is assumed thin

(geometrically and magnetically) and resistive, while the second wall of larger radius is

ferromagnetic, but nonconductive. The predictions of this simplified model are verified on the

JET tokamak, by a comparison with the calculations of a linearized axisymmetric plasma

response model. In this case, it is found that, assuming all active and passive conducting

structures as short circuited, the presence of iron causes a constant increase of the n=0 RWM

growth rate of around 25 s-1, independently of the plasma configuration under study.

1. INTRODUCTION

The Resistive Wall Mode (RWM) is an ideal external kink mode that gets unstable, e.g. when the

plasma pressure exceeds a given threshold. Thanks to the presence of conducting structures

surrounding the plasma, the growth rate of the mode is typically of the order of the inverse of the

magnetic diffusion time in the conductors.

This mode is of particular concern for ITER [1], since for long pulse operation the RWM

instability, if not properly controlled, can pose a severe limitation in terms of the achievable

plasma pressure. Consequently, significant modelling efforts have been devoted to understanding

the present experimental results and to extrapolating the RWM behaviour to ITER. Several codes

have been developed in the last years [1]; here we mention the CarMa code [2], which can study

RWM by solving linearized ideal MHD equations in presence of three-dimensional volumetric

conducting structures. This code has been validated on experimental results [3], and includes

plasma flow and kinetic damping [4].

Available analytical and computational models for RWM studies usually do not allow the

treatment of ferromagnetic properties. One of the reasons is that they are based on the thin-wall

approximation (constant normal component wnb ⋅  of the perturbation b  across the wall) which

prevents proper incorporation of the permeability effects [5]. Studying the ferromagnetic effects

on plasma stability requires, therefore, a full volumetric treatment of the conducting structures,

such that can be done by the aforementioned code CarMa. Although the enhancement of the

electromagnetic formulation to ferromagnetic materials is already available [6], the overall

CarMa code, taking also plasma response into account, has not been upgraded yet in this respect.

The subject attracted attention because ferromagnetic materials can be in fact present in

existing devices, like the JET tokamak [8]. Furthermore, in ITER the presence of ferromagnetic

steel is envisaged [1] in test blanket modules in view of its high tolerance against neutron

irradiation and high heat conduction. Also, ferromagnetic inserts can be used (with an
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appropriate arrangement) for the toroidal field ripple reduction [1, 8]. On the other hand, there is

a concern about possible destabilizing effect of these ferritic elements on ITER plasmas [1]

which requires systematic study of the problem. 

The precise evaluation of these effects in realistic geometries is obviously very important for

the design of feedback control systems of present-day and future devices. To this purpose,

complex numerical tools are needed, e.g. the aforementioned CarMa code enhanced to take into

account ferromagnetic materials, which is not available yet. Anyway, analytical results in

simplified geometries can be extremely useful, not only for the trivial purpose of code

benchmarking, but especially for providing a deeper insight in the general features of the

phenomenon under study – in this case, the effect of ferromagnetic materials on the RWM

growth rate.

In particular, recently a cylindrical model has been developed [5], taking into account

ferromagnetic conducting shell circumventing the plasma; this model has confirmed their

destabilizing effect on RWM growth rate and gave parametrical dependencies and quantitative

estiamtes. In this paper, first of all we extend this model to the case in which there are two

separated walls, and the second ferromagnetic wall is non-conducting. Indeed, this is usually the

case, because the ferromagnetic materials near the first wall in tokamaks are laminated [8],

precisely in order to minimize eddy currents losses. Also, in ITER such materials will be

segmented in the toroidal and poloidal directions [1]. Thanks to this simplification, the RWM

dispersion relation derived here assumes a particularly concise form, predicting that the RWM

growth rate is augmented by a quantity which does not depend on the plasma configuration

under consideration. 

This analytical prediction is confirmed by several calculations made on the JET geometry

with CREATE_L [9], a linearized axisymmetric perturbed equilibrium code. This way, we also

quantify the destabilizing effect of iron on the growth rates of axisymmetric vertical instabilities

at JET, taking into account a very realistic (although axisymmetric) geometrical description of

the various metallic structures surrounding the plasma.

The paper is organized as follows. In Section 2 we introduce the cylindrical model and derive

the dispersion relation, which is discussed in Section 3. In Section 4 we present the results on the

JET geometry and, finally, Section 5 draws the conclusions.

2. DISPERSION RELATION IN THE CYLINDRICAL MODEL

For analytical evaluation we consider the plasma surrounded by two walls as a cylindrical

configuration. The first wall (facing the plasma) is assumed thin (geometrically and
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magnetically) and resistive, while the second wall of larger radius is ferromagnetic, but

nonconductive. 

Similar configuration with two walls was treated in [10, 11, 12], but in those cases both

conducting walls were considered nonferromagnetic. In [5] a single resistive ferromagnetic wall

was considered to analyze the RWM experiments in the Wisconsin rotating wall [13]. Neither of

these models can give us the result for the case we study here. However, we can substantially

base our derivations here on the results and procedures from the previous works, so that only

most important and new elements of the model will be presented below.

In the model, the radial component of the magnetic perturbation b  is expressed as a set of

harmonics,

)exp(),( ζθ inimtrbb mnr −=∑ , (1)

with Rz /=ζ  staying for the ‘toroidal angle’ ( Rπ2  is the length of equivalent torus), r , θ , and

z  being the cylindrical coordinates related to the axis of symmetry. 

If the first wall can be considered as a thin resistive shell of radius 1wrr = , the dynamics of

the magnetic perturbation can be described by the equation [10, 14, 15, 16]

101 ext
mmm

w
m

m
w BB

t
B

Γ−Γ=
∂
∂τ , (2)

where (assuming no currents between the plasma and the first wall)
11

1 ),( ext
m

w
m

pl
mwmnm BBBtrbB ++=≡ (3)

is the amplitude of the ),( nm  harmonic of the radial perturbed magnetic field at the first wall,
pl

mB  is the contribution to )(tBm  from the plasma, 1w
mB  is the field produced by the currents in the

first wall, and 1ext
mB  is the part of mB  created by all possible sources behind the first wall (in the

region 1wrr > ). The other symbols:

drww 10σµτ =  (4)

is the ‘wall time’ in the thin-wall approximation, 7
0 104 −⋅= πµ  H/m is the permeability of

vacuum, σ  is the wall conductivity, d  is the thickness of the first wall,

)/1(01
m

pl
mm

w
m BB−Γ≡Γ (5)

is a complex quantity describing the plasma response to the applied perturbation ( 01 =Γw
m  if

pl
mm BB = , which means no external sources), 

mm 20 −≈Γ (6)

for 0≠m  and 20 −≈Γm  when 0=m . In the following we assume 0>m .
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The parameter 1w
mΓ  introduced by (5) can be can be experimentally measured [17, 18] by

means of magnetic spectroscopy diagnostics. It can also be related to the solution for mnb  inside

the plasma as described in [15, 18, 19, 20]. Indeed, in the plasma-wall vacuum gap we have 

)1(2
2)1( 21

21

mw
m

mw
m

mn

mn

xm
xmm

b
br

−Γ+
Γ

−+−=
′

, (7)

where the prime means the radial derivative ( 0>m  here and below). It follows from (7) that 1w
mΓ

can be expressed through mnmn bbr /′  at the outer side of the plasma surface plS , 1/ wp rrx =  where

pr  is the plasma minor radius. This formula was obtained using the vacuum solution for mnb . If

there are no surface currents at the plasma boundary, mnmn bbr /′  must be continuous there, so that

both solutions for mnb , in vacuum ( prr > ) and inside the plasma ( prr < ), give the same

mnmn bbr /′  at prr = . Very often, however, the plasma is described by the ideal or resistive MHD

equations with sharp boundary plasma-vacuum. This implies a jump in mnmn bbr /′  at plS , which

calculation is an important part of MHD approaches. Such a jump occurs, for example, when

there is a finite current density at the plasma edge. For uniform current density in the plasma we

obtain with account of this jump:

α+−−
−−

−=Γ
1

121

nqm
nqmmw

m , (8)

where m
wp rr 2

1)/(≡α . This corresponds to Eq. (27.13) in [21], Eq. (6) in [22], Eq. (33) 12] and

Eq. (38) in [23]. This formula proved to be useful in analytical studies and for testing the codes.

The field from external sources can be represented in the form
21 w

m
CC
m

er
m

ext
m BBBB ++= (9)

with CC
mB  describing the pre-programmed field produced by the active (correction) coils, er

mB  the

amplitude of the ),( nm  error field harmonic, and 2w
mB  the contribution from the second wall (in a

general case, from all other sources at 1wrr > ). It is 2w
mB  in (9) that makes our analysis different

from the cases considered earlier.

Our purpose here is evaluation of the second (nonconducting ferromagnetic) wall effect on

the plasma stability, so we assume constBB CC
m

er
m =+ , in which case this quantity will not affect

the dispersion relation provided that constw
m =Γ 1 . The latter condition means a linear plasma

response, which can be seen from (5), and constant CC
m

er
m BB +  will only affect the stationary
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level of mB . With these assumptions, the varying part of 1ext
mB , which we need in (2) to get a

dispersion relation, is 2w
mB .

To make (2) an equation for mB , we have to find 2w
mB  as a function of mB . The second wall

of radius 12 ww rrr >=  is assumed nonconducting, but ferromagnetic. For its description we can

use, with proper reduction, the results of the paper [5]. In particular, equation (33) from [5],

which we rewrite here in the form (disregarding the time derivative since, by assumption here,

the conductivity of this wall is zero)

02)( 22 =+Γ−Γ −
ext
m

c
m

w
m mψψ , (10)

where mψ  is a function related to the magnetic perturbation by rimb mmn /ψ= , )( 2wm rψψ =− , 

−

−
++−∞ −

Γ=Γ
ψ
ψψ m

m
c
m

y (11)

with 

µ
µ

ˆ
1ˆ −

−≡Γ∞ mm (12)

and 0/ˆ µµµ ≡  (µ  is the magnetic permeability of the second wall), while )( 22 wwm dr +=+ ψψ

and 22 /1 ww rdy +=+  with 2wd  being the thickness of the second wall. The other quantities in

equation (10) are 2w
mΓ , defined by equation (27) from [5], which can be reduced to

−−

−=−≡Γ
2

1

2

1
2 22

wm

ext
m

wm

ext
mw

m b
bmm

ψ
ψ , (13)

where ‘ −2w ’ denotes the inner side of the second wall, 221 ext
m

w
m

ext
m ψψψ +≡  with 2w

mψ  being the

contribution to mψ  from the second wall, and 2ext
mψ  the part of mψ  produced by the external

sources behind the second wall.

Here we assume 02 =ext
mψ , then we have from (10)

c
m

w
m Γ=Γ 2 , (14)

while c
mΓ  for this case and with 02 =wσ  (which means no induced currents in the second wall) is

given by equation (53) from [5]:

)1ˆ(1ˆ
1

ˆ
1ˆ 2

−−+
−−

−≡Γ
µεµ

ε
µ

µ

w

wc
m m , (15)

where
m

ww

wm
w dr

ry
2

22

22
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=≡ −
+ε . (16)
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The latter equations show that, in the case considered, 2w
mΓ  is a constant depending on m , wε

and µ̂  only.

Now we can use equation (13) to find 1ext
mB . This can be done with account of

111 −−− += mext
m

min
mm xBxBb , (17)

which describes mb  between the two walls. Here 1/ wrrx ≡ , in
mB  and 1ext

mB  are the time-dependent

constants (amplitudes at 1wrr = ) describing, respectively, the contribution to mb  from the inner

region, which means here 2wrr <  (plasma and the first wall), and from the outer, 2wrr ≥  (the

second wall). By definition, the amplitude of the total perturbation is 1ext
m

in
mm BBB += . Therefore,

(17) can be rewritten as

)( 1111 −−−−− −+= mmext
m

m
mm xxBxBb . (18)

With this relation and 111 −= mext
m

ext
m xBb  (here it is the contribution to mb  from the second wall) we

transform (13) to

)1(
2 2

2
1

2
2

1
2

−+
−=Γ mext

mm

mext
mw

m xBB
xBm , (19)

where 122 / ww rrx ≡ . Since mm 20 −=Γ , this gives

m
f

m
ext
mm BB ∆Γ−=Γ 10 , (20)

where

m
m

mc
m

m
c
mf

m xx 2
2

02
2

0

)1( Γ−−Γ
ΓΓ

≡∆Γ , (21)

c
mΓ  stays for 2w

mΓ  since, for the case considered, c
m

w
m Γ=Γ 2 , as given by (14), and c

mΓ  is defined by

(15). 

With 10 ext
mmBΓ  from (20) the starting equation (2) turns into

m
f

m
w
m

m
w B

t
B )( 1 ∆Γ+Γ=
∂
∂τ . (22)

For )exp( tm γψ ∝  this gives us a dispersion relation

f
m

w
mw ∆Γ+Γ= 1γτ , (23)

where the second term on the right hand side describes a shift of the stability boundary due to the

second (nonconducting ferromagnetic) wall.
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3. DISCUSSION 

3.1. Asymptotic values

First of all, we consider several asymptotic limits and the respective dispersion relations.

When 1ˆ =µ , we have 0=∆Γ f
m , which provides the reference case with no ferromagnetic

wall. With 1ˆ =µ  and no currents in it the second wall is equivalent to vacuum. 

We also obtain from (21) 0→∆Γ f
m  at ∞→2x  for arbitrary µ̂  and finite c

mΓ , which means

that the second wall at infinity gives no effect. 

When ∞→µ̂ , from (15) we have mc
m −=Γ . Then (21) reduces to

1
2

2
2 +

=∆Γ m
f

m x
m , (24)

and the dispersion relation (23) turns into

1
2

2
2

1

+
+Γ= m

w
mw x

mγτ . (25)

Here the second wall effect depends only on the position of this wall relative to the first wall.

The last term here gives m  when 12 =x  (the second wall is placed just behind the first wall) and

zero when ∞→2x . 

If the second wall (with arbitrary µ̂ ) is placed just behind the first wall, which means

12 =x , equation (21) is reduced to 
c
m

f
m Γ−=∆Γ . (26)

Then (23) yields 
c
m

w
mw Γ−Γ= 1γτ . (27)

Expression (15) gives c
mΓ  as a function of µ̂  and the wall thickness, 22 / ww rd . Note that 0=Γc

m

for 1ˆ =µ , while for ∞→µ̂  we have mc
m −=Γ .

The thickness of the second wall enters the problem through wε  defined by (16).

According to (15), c
mΓ  is small when the wall is very thin ( 22 /21 www rmd−≈ε ) and increases to 

µ
µ

ˆ
1ˆ −

−=Γ mc
m (28)

when 0→wε  (very thick wall).

3.2. Growth rate 

The dispersion relation (23) let us conclude that the presence of a ferromagnetic non-conducting

shell always enhances the RWM growth rate (hence is always destabilizing):
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γγγ ∆+= 0 (29)

f
mw

w
mw ∆Γ=∆Γ= γττγ ,1

0 (30)

where γ0 (resp. γ) is the growth rate without (resp. with) the ferromagnetic shell, and ∆γ is the

related growth rate increase. Destabilizing influence of the resistive ferromagnetic wall on the

plasma was also found in analytical studies [13, 24, 25] reviewed in [5], all for simpler

geometries than the considered here.

In our case the growth rate increase normalized with the wall time ∆γτw depends on the

following four physical parameters:

• the poloidal mode number m;

• the relative ferromagnetic wall thickness 22 / ww rd ;

• the second wall position 12 / ww rr  relative to the first wall;

• the magnetic permeability µ̂  of the ferromagnetic wall.

We stress explicitly that the quantity ∆γτw does not depend on the plasma response details, nor

on the toroidal mode number – these quantities influence only γ0. We stress that these qualitatively

very concise results depend crucially on the assumption that no current density can be induced in

the ferromagnetic shell, since it is not conducting, so that no time dynamics is involved there.

Otherwise we would obtain second-order equation [10, 11, 12], while (23) is linear. 

4. VERIFICATION ON JET GEOMETRY 

Due to the generality of the above considerations, we verify these findings on the JET tokamak.

We concentrate on n=0, m=1 RWM (axisymmetric vertical instability), that we describe with the

CREATE_L axisymmetric linearized plasma response model [CL]. This model solves linearized

Grad-Shafranov equations around a given reference equilibrium configuration, providing a state-

space model from which the growth rate of the vertical instability can be easily derived.

The JET tokamak [JET] has a non-linear ferromagnetic structure circumventing the plasma.

Its main purpose is to facilitate the transformer action of current inducing PF coils. Fig. 1 shows

the reference geometry in the poloidal plane, reporting the iron cross-section as well as the

various active and passive conductors and one of the plasma configurations considered. A rather

accurate description of the geometry is implemented, and the resulting CREATE_L model has

been successfully validated against experimental results [26]. This model is also extensively used

during JET experimental campaigns for the derivation of the so-called eXtreme Shape Controller

(XSC) [27] and for vertical position stabilization [28].

We notice that the n=0 RWM growth rates predicted by the CREATE_L model are in

excellent agreement with the experimental findings, over a very wide range of values, as
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reported in [26] and [29]. In particular, in [29] the experimental growth rates have been

measured in dedicated experiments, in which the plasma evolved with no vertical control active,

giving rise to an exponential vertical movement till the termination of the shot.

We consider five equilibrium configurations, corresponding to plasmas with rather different

parameters, which is reflected in very different growth rates of the vertical instability – see Table

1 for details. For each of these configurations, we compute the reference equilibrium including

the non-linear B-H curve of the ferromagnetic material, reported in [26]. Then, we calculate the

linearized plasma response around these equilibria, first including the ferromagnetic material (of

course linearizing the iron characteristic), and then assuming fictitiously that no magnetic

material is present. The first calculation provides the quantity γ and the second one γ0, the

difference giving precisely ∆γ. In doing these computations both the active coils and the passive

conductors (vessel, mechanical structure etc.) shown in Fig. 1 have been assumed as short-

circuited.

The results are reported in Table 1. Evidently, despite the fact that the geometry is very far

from a cylinder, nevertheless the qualitative result that ∆γ does not depend on the plasma

configuration is clearly confirmed. Indeed, even with a variation of growth rate of a factor more

than two (i.e. with very different plasma configurations) the quantity ∆γ varies only around 15%.

These small variations of ∆γ can be mainly attributed to the fact that the relative position of the

plasma centroid varies in these cases, hence modifying the equivalent radius of the vessel

(conducting wall) and of the iron (ferromagnetic shell).

To sum up, we can quantify the (constant) growth rate increase due to the presence of iron in

JET, as around 25 s-1, assuming all active and passive conducting structures as short circuited.

This increase is evidently relatively less important for the most unstable plasmas, i.e. the most

dangerous configurations from the stabilization point of view. However, we stress that it would

be not correct to conclude that the presence of iron can be neglected in stabilization studies at

JET and in other devices. Indeed, it is fundamental to properly take into account the presence of

ferromagnetic materials for at least two aspects: equilibrium calculation and feedback studies. In

particular, in the first case it is crucial even to correctly treat the non-linear magnetic

characteristic, e.g. properly considering the saturations. In the last case, we may argue that in

general both the dynamical response of an active coil used for feedback control and its magnetic

field pattern are in general significantly affected by the presence of ferromagnetic materials.

5. CONCLUSIONS

In this paper we have derived the dispersion relation of RWM, for a cylindrical plasma

circumvented by a thin resistive shell and an outer, non-conducting, ferromagnetic wall. We
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demonstrated that the resulting growth rate is always greater than that in absence of ferromagnetic

materials, hence always providing a destabilizing effect, which is consistent with previous results

similarly obtained for somewhat different arrangements [5]. In the case considered here the

growth rate increase does not depend on the plasma configuration, but only on the poloidal mode

number and on physical and geometrical properties of the ferromagnetic shell.

We have verified these findings with several calculations of the axisymmetric vertical

instability growth rates on the JET tokamak with the CREATE_L code. Although the JET

geometry is very different from the simplified case treated analytically, nevertheless the main

qualitative conclusion is absolutely confirmed. This shows once again, in addition to the ITER-

relevant cases [1], the importance of analytical results on RWM, which are able to highlight

some features that cannot be easily extracted even with detailed numerical tools.

We have quantified the constant growth rate increase due to iron in JET as around 25 s-1,

assuming all active and passive conducting structures as short circuited. Note that 1/ <<∆ γγ  for

the JET shots shown in Table 1 well agrees with a general conclusion [5] that the ferromagnetic

destabilizing effect in tokamaks must be a small negative shift of the stability boundary, just

several percent. With known γ∆  it can be, in principle, easily counteracted by the feedback

system, especially when γ∆  remains constant in a wide range of plasma parameters. 

Our analytical and numerical results also explain and confirm the results of the dedicated

experiments in the JFT-2M tokamak where no adverse effect of ferritic steel on the plasma

operation and stability was observed [30, 31, 32]. We prove that the encouraging conclusions

[30, 31, 32] on the compatibility of reduced activation ferritic steel wall with high performance

plasma, based on the JFT-2M experiments, must be valid in a case with ITER-like structures of

resistive and ferritic materials.

Further work will be addressed in enhancing advanced RWM codes (like CarMa), in order to

allow the treatment of ferromagnetic materials in tokamaks operating with high-beta plasmas

near or above the MHD stability limits.
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Shot# Centroid position [m] Shape Plasma parameters Growth rates [s-1]

R0 Z0 κ δ Ip [MA] βp li γ γ0 ∆γ

66263 2.900 0.260 1.744 0.462 1.435 0.032 1.030 490 463 27

72147 2.915 0.229 1.677 0.382 1.432 0.051 1.150 317 293 24

75967 3.001 0.355 1.689 0.392 1.960 0.742 0.945 171 146 25

78379 2.911 0.334 1.612 0.182 1.484 0.100 1.166 324 299 25

78415 2.952 0.223 1.654 0.349 1.439 0.091 1.178 210 187 23

Table 1. JET configurations analysed: shot number, centroid position (R0, Z0), elongation (κ), triangularity (δ),

plasma toroidal current (Ip), poloidal beta (βp), internal inductance (li), and resulting growth rates.



Figure 1: JET geometry and sample equilibrium. The red line shows the poloidal trace of the magnetic surface
corresponding to the plasma boundary.
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