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ABSTRACT
The problem of plasma current density and safety factor reconstruction using magnetic field
measurements is considered. In the traditional formulation, the problem is strongly ill-posed. In
particular, substantially different current densities and safety factors can be equally well
attributed to the same set of measurements. The paper presents an accurate mathematical
formulation of the inverse problem and its variants. A numerical algorithm is given, which
allows to find all substantially different solutions or to prove the absence of multiple solutions.
Examples of very different current density and safety factor reconstructions for measurements
with finite accuracy are presented. Cases of MAST, JET and ITER-like plasmas are considered.
It is shown that including the Motional Stark Effect (MSE) measurements as constraints,
provided the accuracy of MSE measurements is sufficient, allows identifying one solution. The
approach of the paper can be used for a wide range of inverse problems in physics and help in
selecting additional conditions, which can identify the most likely solution among several.

1. INTRODUCTION
The development of methods for the reconstruction of plasma characteristics inaccessible for
direct measurements is an important direction of research in controlled fusion. Such methods
allow obtaining valuable information about processes inside the plasma, comparing theoretical
forecasts with real experiment, understanding plasma behavior and producing reliable control
techniques.

 In this paper the problem of toroidal plasma current density reconstruction is considered. It is
known that this problem is strongly ill-posed [1-4]. For example, ref. [4] shows that substantially
different current densities can be compatible with measurements and proposes a technique for
finding these different densities. Nevertheless several methods and codes have been developed
for equilibrium and current density reconstruction, such as EFIT [5] or SCoPE [2,3], which are
commonly used in practice.

Typically, methods for current density reconstruction search for some solution of the inverse
problem and do not address the question about the existence of other solutions. However, for the
correct interpretation of a plasma discharge it is very important to find all substantially different
solutions and then, using additional information, select the one appropriate to the real physical
process under study. This paper is devoted namely to the analysis of this problem: the
identification of all possible solutions and the selection of the most likely one.

With regard to the organization of the paper, section 2 presents an accurate mathematical
formulation of the inverse problem for the reconstruction of the poloidal flux and the
components of the toroidal current density. Some different alternatives are discussed. In the
traditional formulation the problem reduces to finding three functions, which satisfy the elliptic
equation with non-linear right-hand-side in the plasma and some additional conditions at the
plasma boundary. The traditional formulation can be modified with different constraints. One of
them is based on the Motional Stark Effect (MSE) measurements. Account of MSE gives
additional information about the magnetic field inside the plasma and helps reducing the freedom
in constructing a solution.

Section 3 describes a numerical method for determining all substantially different solutions of
the inverse problem. The method is based on solving the set of direct problems constructed with
the theory of ε-nets. The numerical solution is complicated by the non-circular form of the
plasma cross-section, specific additional conditions and it is typically very heavy in terms of
computational resources.

Examples of substantially different solutions for MAST, JET and ITER parameters are given
in section 4. It is shown that the inclusion of the MSE constraints in the problem, provided the
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accuracy of the MSE measurements is sufficient, can allow identifying one solution among
several.

2. MATHEMATICAL FORMULATION OF THE PROBLEM
The problem of toroidal axially symmetric plasma equilibrium reconstruction can be expressed
in terms of the following equations
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Equation (1), (2) constitute the well known Grad-Shafranov equation, which is a two-
dimensional elliptic equation with non-linear right-hand side. Here the notation of ref. [6] is
used, where various symbols indicate: (R, ,Z)η - the usual system of cylindrical coordinates with
the Z -axis oriented along the tokamak axial symmetry axis; (R,Z)ψ  - the poloidal flux function,

equal to the covariant component Aη  of the vector potential of the magnetic field B A= ∇ ×
rr r

; Γ  -

the known, e.g. from optic measurements [2] or the solution of other problems, plasma boundary
in the  meridian section of the tokamak; S  - the area bounded by Γ ; I  - the toroidal plasma
current; jη - the toroidal current density; ( )p ψ  - the kinetic pressure; ( )F ψ  - the poloidal current

function, related to the toroidal magnetic field tor /B F R= ; n
r

 - the external normal unit vector
with respect to S ; Φ  - the derivative at the plasma boundary Γ  in the direction of vector, 0µ  -
the vacuum magnetic permeability coefficient. n
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and contains information about the external magnetic measurements. δ  is related to the
inaccuracy of the magnetic measurements and it is introduced in the problem because values of

/ nψ∂ ∂r  can be found from experiments only with limited accuracy.
In a typical, though not the most general, direct problem, one function ψ  is to be determined

from known functions p and F using equations (1)-(4), preset plasma boundary Γ  and total
current I . In the case of the inverse problem, considered in this paper, a triplet ( , , )p Fψ  is to be
found from conditions (1)-(5) subject to a given Γ , I  and the normal derivative Φ  with
inaccuracyδ .

The normal derivative Φ  can be determined either from the solution of the Grad-Shafranov
equation outside the plasma using measured values of ψ a and B

r
 at some specific points or from
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the solution of the direct problem (1)-(4) for given p and F . The total toroidal current I  can be
expressed through the normal derivative Φ  with a curvilinear integral using the Green formula

0

1
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So equation (4) also gives a normalization for Φ .
Here we consider a relatively novel inverse problem, which consists of finding all substantially
different solutions ( , , )k k kp Fψ  satisfying conditions (1)-(5), given the inaccuracy of the available
measurements δ . The meaning of “substantially different” depends on the particular plasma
characteristics of interest. Usually noticeably different qualitative and quantitative behaviors of
the toroidal current density jη  or safety factor q , especially near the magnetic axis, are

considered.
One of the most interesting applications of the developed method is a somewhat simplified

variant of the considered inverse problem, when one of its solutions ( *, *, *)p Fψ  is known
together with * / nψ∂ ∂r , for example from an equilibrium reconstruction code, such as SCoPE or
EFIT. In this case the problem reduces to finding all substantially different to ( *, *, *)p Fψ
solutions ( , , )k k kp Fψ , which satisfy conditions (1)-(5).

For the extraction of the unique triplet ( , , )k k kp Fψ  in case of the existence of substantially
different solutions, it is necessary to add to equations (1)-(5) other constraints provided by some
additional data. A number of papers, for example [7,8], indicate that important additional
information about the magnetic field inside the plasma can be obtained from Motional Stark
Effect (MSE) measurements. Such measurements allow determining the angle MSEχ , relative to
the toroidal torB  and the vertical ZB  components of the magnetic field, at MSEN points
( , )i iR Z inside the plasma with accuracy MSEδ . Appropriate constraints to the problem (1)-(5) have
the form

MSE MSE MSE( , ) ( , ) ,    1,..., ,i i i iR Z R Z i Nχ χ δ− ≤ =  where (6)
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An important element in the formulation of the problem is choosing the class of functions p  and
F , from which a solution ( , , )p Fψ  is searched. It is desirable to narrow the class of functions
sought for as much as possible. We apply the approach normally used for solution of the direct
problem (1)-(3). In the direct problem functions p  and F  are considered as input parameters
and should be preset. The main interest in the direct problem is to find ψ  appropriate to the fixed
ranges of ( )p ψ  and ( )F ψ  values. In this case it is necessary to consider functions ( ( ))p ρ ψ  and

( ( ))F ρ ψ *, in which ρ  always runs over all given values, e.g. the segment [0,1], for any bounded
ψ . Otherwise p  and F  may not fall in the required range, since the values of ψ  become known
only after the solution of the direct problem (1)-(3). Assuming ψ  to be bounded and non-
negative 0ψ ≥  the simplest form of  ρ  convenient for differentiation is

                                                
* Here the new functions ( ( ))p ρ ψ  and ( ( ))F ρ ψ  are denoted with the same letters p  and F , already used for

functions ( )p ψ  and ( )F ψ , since further it does not lead to collisions of notations.
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Thus usually, in the direct problem (1)-(3), the functions ( ( ))p ρ ψ  and ( ( ))F ρ ψ  are considered,
because their range is known beforehand, since [0,1]ρ ∈ . The geometrical interpretation of the
reformulation of ( )p ψ  and ( )F ψ   in terms of ( ( ))p ρ ψ  and ( ( ))F ρ ψ  is that it consists of a
transition from setting p  and F  as functions of ψ  level lines with unknown numeration to
functions of ψ   with the known in advance level lines numeration ( ) [0,1]ρ ψ ∈ . The substitution
represented by (7) does not change the differential properties of the problem, but the considered
class of functions p  and F  is restricted, in particular functions growing to infinity with ψ  are

discarded.
Functions p  and F  in case of ( ( ))p ρ ψ  and ( ( ))F ρ ψ  become invariant with respect to the ψ

normalization, i.e. for any constant 0C >  we have ( ( )) ( ( ))p p Cρ ψ ρ ψ=  and

( ( )) ( ( ))F F Cρ ψ ρ ψ= . Therefore the free parameter ( ) 2

(R,Z) S (R,Z) Smax minλ ψ ψ
−

∈ ∈≡ −  appears in

equation (1) of the direct problem (1)-(3), which is usually chosen from the condition (4) of
given total current I .

In the inverse problem, by analogy with the direct one, we will search functions p  and F

from the class ( ( ))p ρ ψ  and ( ( ))F ρ ψ  with [0,1]ρ ∈  (7), and function ψ  from the class of
bounded non-negative functions. More precisely, we consider the problem (1)-(5) or (1)-(6) with
additional equation (7), used only for functions p  and F  in the right hand side (2) of equation
(1).

Up to now, the question about the uniqueness of the solution of the inverse problem (1)-(5)
with 0δ =  is studied analytically only in some particular cases [9]. The answer depends on the
form of the area S and the form of the right-hand side (2) in (1). It is shown that the problem can
have either one or several solutions. The areas S  and functions p , F , Φ  and 0δ ≠  met in
practice, require numerical solution of the problem (1)-(5).

3. Numerical method for construction of substantially different solutions
We rewrite relation (2), the right-hand side of (1), in terms of the normalized flux (7). Equations
(1)-(3) become
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Due to absence of the restriction in the sign of ψ in the algorithm, the definition (10) contains

(R,Z) S
minψ

∈
.

Equation (5) gives
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By substituting (11) in (8) we get an equation for ψ , given the total current I .
Note that, assuming convexity and non-negativity of ψ (in this case  1ρ =  is satisfied at the

plasma boundary) the direct problem (8)-(10) in terms of 1ρ ρ= −  becomes an eigenvalue

problem for  ( ) 2
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Substituting /d dρ ψ λ= −  in equation (11), one can conclude that the set of possible λ
determines the set of allowable total currents I  for given ( )p ρ  and ( )F ρ . However, for typical
practical direct problems, not all but only one value of λ  is required, which provides the
condition of the given total current (11).

The numerical method proposed below does not require neither convexity nor non-negativity
of ψ , since at each iteration the operator at the left-hand-side of equation (8) is inverted with the
boundary condition (9) and the condition 1ρ =  at the plasma boundary is not used. Function ρ  is
needed for setting up the right-hand-side of equation (8) through ψ  obtained in the previous
iteration.

Assume that functions /dp d ρ  and 2 /dF d ρ can be presented as polynomials in ρ
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The method for determining all substantially different solutions is based on special enumerative
technique for values of coefficients iα  and iβ  in equation (14).

The right-hand side of equation (8) with fixed coefficients iα  and iβ  becomes known and
provides the possibility of solving the direct problem (8)-(11). We search for the numerical
solution by iterations over 1,2,...s =  analogously to [10]
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Here Λ is the difference operator, which approximates the left hand side of (8) taking account of
the boundary condition (9). The coefficient α  ensures validity of (4) for ( 1)sψ ψ −= .

The values of ρ  are calculated with ( 1)sψ −  according to (10). However, when determining
( 1)sρ − , one should keep in mind that unfortunate initial approximations, peculiarities of the
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iteration process, finite accuracy of computer arithmetic operations and etc, can change ( 1)sψ −

during the calculations. In order to always have ( 1) 0sρ − = in equations (14) appropriate to the

magnetic axis, i.e. to ψ  extremum in plasma (excluding the boundary), we set ( 1)sρ ρ− =  using

(10) when ψ  extremum in plasma is non-negative and ( 1) 1sρ ρ− = −  in the opposite case.
A modern effective method for solution of this discrete problem is presented in the book [2],

for example. Iterations continue until a steady state or achievement of some maximum number.
If the steady state solution exists, we denote it as ψ ∞ . Inequality (5) is checked for ψ ∞ . If it is

valid then ψ ψ ∞=  is taken as the solution of the problem (1)-(5), (10), (14). While selecting
solutions, it is possible to check additional constraints, such as  0ψ ≥ , or (6) or fit to some
required pressure p range, etc. with the aim to narrow the set of different solutions ( , , )p Fψ .

Thus finding all substantially different solutions of the problem (1)-(5), (7) or (1)-(7) reduces
to an accurate overhaul of the values of coefficients in polynomials (14). This can be done by
different methods. One is based on usage of the ε -net of the finite number of polynomials
[11,9], which cover a priori defined sufficiently broad class of functions ( ( ))p ρ ψ  and ( ( ))F ρ ψ
with given absolute accuracy ε . If the number of polynomials in the ε -net is large then only a
subset from a given layer can be considered. The details of theε -net construction are out of the
scope of this paper. Solutions ( , , )k k kp Fψ  appropriate to the elements of the ε -net give different
solutions of the inverse problem (1)-(7). Using one or other criteria one can select substantially
different ones from ( , , )k k kp Fψ .

The numerical algorithm is implemented in the code SDSS (Substantially Different Solutions
Searcher) in Fortran 95. The code has special graphic interface, written in JAVA, to help setting
up the input data, constructing ε -nets, visualizing and analyzing the results.

4. Examples of substantially different solutions
The solution of the direct problem (1)-(4) with MAST-like plasma parameters has been
considered. MAST parameters close to pulse number 9037 have been chosen: elongation 1.7,
minor radius 0.5 m, magnetic axis at R =  0.7 m, total toroidal current I  = 560 kA, mag.ax.B = 0.52

T. The functions * /dp dρ  and 2( *) /d F d ρ  have been calculated with code SCoPE [2,3,6] and

presented with polynomials of the 2-d order for * /dp dρ  and 3-d order for 2( *) /d F d ρ  with
≈ 1% accuracy, see dashed curves in figure 1, right. The normal derivative Φ  was calculated
using *ψ . The inverse problem (1)-(5), (7) has been considered initially. We searched for
solutions substantially different from ( *, *, *)p Fψ  in the sense of noticeable deviations in toroidal
current density (2) and safety factor q .

Two ε -nets with about 710  polynomials in each have been constructed. Selecting
polynomials   from the 30± % belts around * /dp dρ  and 2( *) /d F d ρ , we are left with 6000
variants of the right hand sides (2). The method, described in the previous section, gives several
hundred solutions ( , , )k k kp Fψ  of the inverse problem (1)-(5), (7) satisfying inequality (5) with
inaccuracy δ  < 2.5%. Figure 1 illustrates the given solution ( *, *, *)p Fψ (dashed) and an
obtained one (solid). It is clear that the various solutions present not just quantitative (up to 40%)
but also qualitative differences. In addition to the SCoPE solution with a hollow current density
and non-monotonic safety factor profile, the inverse problem has another solution with a non-
hollow current density and monotonic q profile. The fluxes ψ  in the two alternatives differ by
less than 5%. However, the two reconstructions have completely different interpretations of the
pulse and therefore should be identified and analyzed.
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It is important to note that a very similar result has been obtained for the inverse problem with
fixed plasma pressure *p p= .

Inclusion of MSE constraint (6) appropriate to ( *, *, *)p Fψ  in the problem (1)-(5), (7) with

inaccuracy 0
MSE 1.5δ <  of measurements in MAST allows rejecting all substantially different

solutions found for the inverse problem (1)-(5), (7). By increasing the inaccuracy MSEδ ,
noticeably differing current densities and safety factors appear as solutions of the problem (1)-
(7). The results also depend on the number of MSE measurements and the positions of these
measurements.

One should note, that the inaccuracy MSEδ of MAST MSE diagnostics can be less than
00.5 [13].  Measurements of high quality naturally help a lot in filtering out “false” solutions.
A similar study has been done for JET-like plasmas. Pulse 58837 has been considered:

elongation 1.7, minor radius 0.85 m, magnetic axis at R =  3.05 m, total toroidal current I  = 2.37
MA, mag.ax.B = 2.4 T. Over one hundred solutions of the inverse problem (1)-(5), (7) have been

found using ε -net technique. Figure 2 shows the solution ( *, *, *)p Fψ (dashed) produced by the
code EFIT and an obtained substantially different one with δ  < 8 % (solid). Again large
qualitative differences in current density and safety factor are present. Moreover, a solution with

1q > at the magnetic axis exists along with EFIT reconstructed one with 1q < . However, taking

into account the MSE constraints with 0
MSE 0.3δ < , achieved in JET measurements, eliminates the

solutions different from the original one ( *, *, *)p Fψ , which was produced with EFIT using MSE
and polarimetry constraints.

Finally ITER scenario 4 - like [12] has been considered with elongation 2, minor radius 1.8m,
magnetic axis at R =  6.4 m, total toroidal current I  = 9 MA, mag.ax.B = 5.3. About three hundred

differing solutions of the inverse problem (1)-(5), (7) have been found using ε -net technique for
a 20± % belts around * /dp dρ  and 2( *) /d F d ρ  of the target solution ( *, *, *)p Fψ  and δ  < 8 %.
Figure 3 shows the original solution ( *, *, *)p Fψ (dashed) and a substantially different one (solid)
obtained from the inverse problem. One can see over 20 % difference in current density and
safety factor. A more striking difference in jη  and q with δ  < 5 % was found by increasing the

width of the belts around * /dp dρ  and 2( *) /d F d ρ  (thin curves). However, the inverse problem

with the MSE constraint (6) and 0
MSE 0.3δ =  leave no solutions substantially different from

( *, *, *)p Fψ .

Conclusions
The results of this work confirm the fundamental statement that finding one solution is not
sufficient for some ill-posed inverse problems and that it is essential to explore the existence of
other substantially different solutions, which also satisfy the relations and constraints of the
problem. The presented approach, based on the theory of ε-nets, can be used in practice for the
determination of the existence or absence of substantially different solutions. The approach can be
applied also to other inverse problems of controlled fusion. It can also be used for theoretical
purposes to verify numerically the existence of at least one solution of the inverse problem (1)-(7).

The formulation of the constraints, required for obtaining the most realistic solutions of the
inverse problem for current density and safety factor reconstruction, is an unresolved theoretical
issue. The possible existence of multiple, substantially different solutions, as shown in this paper,
indicates the importance of being able to identify all of them. To avoid faulty interpretation of
experiments, caused by possibly very different reconstructions, it is advisable to supplement
equilibrium reconstruction codes with a module for searching for all substantially different
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solutions. Some previous results may require reexamination for studying the appropriateness of
reconstructed current density and safety factor.

The presented study suggests the following strategy for equilibrium reconstruction. Initially a
standard code, such as EFIT or SCoPE, can be used for finding a solution ( *, *, *)p Fψ  of the
inverse problem. Then the problem (1)-(5), (7) should be solved, with for example the technique
of section 3, to verify of the existence of reconstructions ( , , )k k kp Fψ substantially different from
( *, *, *)p Fψ . If these do exist then additional constraints, such as MSE (6), should be applied for
reducing the number of solutions of equations (1)-(5), (7). If the additional constraints leave only
one solution ( , , )p Fψ , which may not necessarily coincide with ( *, *, *)p Fψ , then it is possible to
state, that with the given inaccuracy ε  in the given class of functions, reconstructions
substantially different from ( , , )p Fψ  do not exist.

Such studies on existence of substantially different solutions should be done for every plasma
pulse under consideration, since no general theorems on the subject are available yet. However
the results of the paper indicate that MSE constraint (6) can help much in extracting one solution
among several different ones. A more accurate formula for χ can be used in (6) for the enhanced
analyses of real plasma pulses [13]

It is important to note that the technique of section 3 allows evaluation of the maximum
possible error in the MSE measurements for choosing one solution among substantially different
candidates.

The presented study reveals, that the inverse problem solvers, which allow using high order
polynomial expansions for /dp d ρ  and 2 /dF d ρ  or do not use polynomial expansions at all, such
as code SCoPE [2,14], are advantageous for current density and safety factor reconstruction in
complicated realistic scenarios, as in ITER for example, where /dp d ρ  and 2 /dF d ρ  cannot be
accurately approximated with low order polynomials.
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Figure 1: MAST-like plasmas. Left: current density in plane Z=0: dashed - given, solid – found. Right: components
of–jη: dashed - given, solid - found
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Figure 2: JET-like plasmas. Left: current density in plane Z=0: dashed - given, solid – found. Right: components of–
jη: dashed - given, solid - found.

Figure 3: ITER-like plasmas. Left: current density in plane Z=0: dashed - given, solid – found. Right: components of–
jη: dashed - given, solid - found.
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