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ABSTRACT.

A strong toroidal rotation braking has been observed in plasmas with application of an n = 1 magnetic

perturbation field on JET tokamak. Calculation results from the momentum transport analysis show

that the torque induced by the n = 1 perturbation field has a global profile. The maximal value of

this torque is at the plasma core region (ρ < 0.4) and it is about half of the Neutral Beam Injection

(NBI) torque. The Neoclassical Toroidal Viscosity (NTV) torque is calculated in different

collisionless regimes. This observed torque profile agrees well with the predicted NTV torque in

the v regime with the collisional boundary layer effect included.

1. INTRODUCTION.

Helical magnetic perturbation field with a toroidal mode number up to 3 have been applied for

either active control or suppression of the Edge Localized Modes (ELMs) in H-mode plasmas on

several tokamaks [1,2,3], and it are planed to be applied on ITER [4]. However, both, resonant [5]

and non-resonant [6,7] components of the perturbation field can influence on the plasma rotation. It

was well known that the plasma rotation is a significant concern for the control of the MHD

instabilities in a tokamak, because of its stabilising effects on Resistive Wall Modes (RWMs) [8]

and Neoclassical Tearing Modes (NTMs) [9]. Therefore, understanding of the plasma braking

mechanism with a helical magnetic perturbation becomes an important issue for an optimisation

for the application of magnetic perturbations.

The Neoclassical Toroidal Viscosity (NTV) theory has been developed by Shaing to describe

the effects of the non-axisymmetric magnetic perturbations on the plasma rotation in the collisionless

[6] and plateau [10] regimes. The collisionless regime can be further divided into two main regimes:

the  regime and the v regime [6]. The breaking of the toroidal magnetic symmetry due to application

of the non-axisymmetric magnetic perturbations causes a non-ambipolar radial particle flux and

hence the NTV. A generalized analytic result of NTV has been presented by Park [11]. The influence

of the NTV torque on the field penetration process has been investigated by Cole [7]. A neoclassical

‘offset’ rotation has been predicted by the NTV theory [6, 7].

Recently, a good agreement between the calculated torque from NTV theory in the 1/v regime and

the observed torque induced by the n = 3 magnetic perturbation has been reported on NSTX [12]. The

observed rotation damping time on DIII-D was close to the NTV damping time in the 1/v regime, and

NTV damping time in the v regime is at least two orders of magnitude larger [13]. However, it was

shown that the plasma in DIII-D was mainly in the v regime. The plasma in ITER is also expected to

be in the v regime. The enhancement of the NTV torque in the v regime has been predicted by including

the collisional boundary layer effect [14]. The NTV torque from the boundary layer contribution

scales like   v.  The bounce resonance can also enhance the transport [11]. The existence of the

neoclassical ‘offset’ rotation with n = 3 perturbation field was observed on DIII-D [15]. Strong global

magnetic braking effect has been observed in ELMs control experiment with magnetic perturbation

field generated by the Error Field Correction Coils (EFCCs) on JET [16].
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The torque induced by the n = 1 magnetic perturbation on JET is analyzed and compared with the

torque predicted by the NTV theory in this paper. The paper is organized as follows: The torque with

application of the n = 1 magnetic field perturbation on JET, TEFCC, is determined by momentum

transport analysis using the JETTO code [17] in Sec.2. The NTV torque profile is calculated and

compared with TEFCC in Sec. 3, followed by the discussion and summary of the main results in Sec. 4.

2. DETERMINATION OF THE TORQUE INDUCED BY THE MAGNETIC

PERTURBATION ON JET.

The torque with application of the n = 1 magnetic field perturbation on JET is determined by

momentum transport analysis using the JETTO code and the least-square fitting technique in this

part.

2.1 MOMENTUM TRANSPORT EQUATION

The angular momentum transport equation in the JETTO code can be written as

(1)

where R is the major radius, 〈...〉 denotes the flux surface average, Σ denotes the sum over all ion

species, nj and mj are the density and mass of the ion species, respectively. ω = Vφ /R is the angular

rotation frequency and Vφ is the torodial rotation velocity, f = RBφ and Bφ is the toroidal magnetic

field, A = 〈1/R2〉 is a geometrical quantity, ρ ≡     ψT/πB0 is the flux-surface label, ψT is the toroidal

flux, Tφ is the source torque, Γj
p and Γj

ω are the ion particle flux and angular momentum flux,

respectively, defined as

and

Dj and Vp,j are the ion particle diffusion coefficient and pinch velocity profiles, respectively, χM and

Vinwm are momentum diffusion coefficient and pinch velocity profiles, respectively. The particle

flux is neglected in the following analysis. Then, the momentum transport equation can be written

as:

                                      (2)
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simulated using Equation 2 with known χM, Vinwm and all the momentum sources S.

2.2. METHOD TO DETERMINE THE MOMENTUM DIFFUSION COEFFICIENT AND

PINCH VELOCITY PROFILE

The toroidal plasma rotation velocity, measured by Charge eXchange Recombination Spectroscopy

(CXRS), shows a 50% reduction with an n=1 magnetic perturbation for JET Pulse No: 75342 in

Figure 1. The spatial profiles of the plasma angular rotation, ion temperature, electron density and

electron temperature (with (triangles) and without (circles) perturbation field) are shown in Figure

2. During the application of the magnetic perturbation, there is a slightly change of the ion temperature

in the plasma core region. There is no significant change of the other parameters, such as the

electron density and temperature, the normalized plasma beta (the ratio between the thermal pressure

and magnetic pressure), and q95 (the safety factor at normalized poloidal magnetic flux of 0.95) as

also shown in Figure 1 and Figure 2. The maximal amplitude of the perturbation field for this pulse

is only about 0.1-0.2% of the toroidal magnetic field strength. The Fourier spectrum of the n=1

Resonant Magnetic Perturbation (RMP) [18] is shown in Figure 3. The dashed line shows the

resonant condition m=nq. It shows that there are strong non-resonant (m≠nq) components in the

perturbation field induced by the EFCCs.

By using Eq. (2), the χM and Vinwm profiles are obtained by fitting the observed velocity evolution

after the switch-off of the EFCC current. At this stage, the only source term is the NBI torque,

which is calculated by the PENCIL code [19]. The Polynomial functions are used as base functions,

0

N
n

M n
n

χ α ρ
=

≡ ∑ , here 
0

M
m

inwm m
m

β ρ
=

≡ ∑V   α, β are the unknown free parameters to be fitted, N and M are

the orders of the Polynomial base functions.

3.3. CALCULATION OF THE TORQUE INDUCED BY THE N=1 MAGNETIC PERTURBATION

With the application of the magnetic perturbation from the EFCCs, an additional torque will be

exerted on the plasma. The torque during the flat top phase of the EFCC current, TEFCC, is calculated

by solving Eq.2 with the other terms determined by momentum transport analysis above.

Figure 4 shows the obtained TEFCC (-TEFCC is plotted in the figure) profiles by using different χM

and Vinwm profiles fitted from different base functions described above. Two of them do not consider

the pinch velocity in momentum flux with N = 4 (triangles) and N = 6 (diamonds), and the other

two consider the pinch velocity with M = N = 4 (circles) and M = N = 6 (pentacles). In these

calculations the pinch velocities changes in a large range (0~20 m/s).  However, the obtained torque

profile does not show a significant change.

The obtained torque profile is not very sensitive to the selected set of base functions, because it
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is mainly determined by the change of the total momentum flux due to the magnetic perturbation.

To separate the individual effect of  χM and Vinwm is beyond the discussion of this paper.

The obtained torque in the plasma core region is about half of the NBI torque. The maximum

torque is in the plasma core region (ρ < 0.4), while it is found to be closer to the edge on NSTX [12]

and DIII-D [15], both using a higher n perturbation field. dL/dt (dashed dotted line) at the time just

after the switch-off of the EFCC current, where L is the angular momentum density, is also shown

in Figure 4. It is a first order estimation of the torque profile with the application of the magnetic

perturbation, which is similar to the method used on NSTX [12] and DIII-D [15]. The profile has

similar shape to the obtained torque profile, but different by 40-50% in absolute values.

The obtained TEFCC has a global profile. It is not localized at certain magnetic surfaces. The

evolution of the plasma rotation is obviously different from the mode locking process as also found

on NSTX [12] and DIII-D [15]. This suggests that this torque may not be caused by the resonant

electromagnetic braking. The NTV torque may be a good candidate to explain this observed torque.

With the assumption that TEFCC ∝ B2
 ∝ I2

EFCC, where B is the magnetic field perturbation and

IEFCC is the EFCC current, the simulation of the momentum transport equation can well reproduce

the observed evolution of the plasma rotation as shown in Figure 5. This is also a check of the

correctness of the fitting process and the obtained torque profile.

3. COMPARISON WITH NTV TORQUE.

3.1 NTV THEORY

The toroidal symmetry breaking, induced by the non-axisymmetric magnetic perturbation, will

cause a nonambipolar radial particle flux. The radial currents of the nonambipolar diffusion will

cause a toroidal viscosity, which is called NTV [6]. This viscosity is equivalent to a torque which is

called NTV torque.

The magnetic field strength |B| can be written as

      (3)

where B0 is the magnetic field strength on the magnetic axis,  is the amplitude of the component,

n is the toroidal mode number of the helical perturbation, ζ0 = qθ-ζ, q is the safety factor, θ and ζ
are the poloidal and toroidal angles, respectively, in Hamada coordinate. The calculation of the

Hamada coordinates is discussed in Appendix A.

The relationship between (An, Bn) and (bnmc, bnms) can be obtained from Equation (3) as follows,
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The variation of the magnetic field strength should be evaluated on the distorted magnetic surface

[6], which means the Lagrangian variation in the field strength should be calculated [20]. This

Lagrangian variation in the magnetic field strength is given by

                       (5).

Here, δEB is the Eulerian variation in the magnetic field strength and δξB is the variation of the

magnetic field strength due to the displacement of the magnetic surface. The calculation of the

variation in the magnetic field strength is discussed in Appendix B. The results on NSTX showed

that the NTV torque due to the displacement of the magnetic surface is dominant [20].

The collisionless regime (ν/ε <    εωt, here v is the collisionality, ωt = vt /R0q is the transit frequency

and vt = (2T/m)1/2 is the thermal velocity) can be further divided into two main regimes according

to the relationship between the values of the collisionality v and E × B drift frequency ωE  =             (here

Eρ is the radial electrical field).  One is the 1/ν (qωE < ν/ε <   εωt) regime and the other is the (qωE

> ν/ε) regime. The names of the regimes indicate the dependence of the transport on the collisionality.

The reduction of the transport in the  regime comes from the electric drift effect. In the  regime, a

collisional boundary layer condition (the boundary between the trapped and untrapped particles) is

introduced to remove the singularity in the pitch angle integration [14]. By including this new

physics, it was found that the NTV contribution from the boundary layer, scaling as   ν, is larger

than the contribution from the main trapped particles in this regime as discussed in [14] and will be

shown in the following.

According to the NTV theory [6, 14], the NTV torque in the different collisionless regimes (the

1/ν regime, the v regime contributed from main trapped particles and the boundary layer) from the

ions (the ions viscosity is (mi /me)
1/2 times larger than the electron viscosity) can be rewritten in

                      (6)

 (7)

(8)

ωti = νti / R0q is the ion transit frequency and νti = (2Ti /mi)
1/2 is the ion thermal velocity,
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Λ=  is the ion collisionality, Iλ(defined in [6]), Gλ(defined in [14]) and  Hλ are

the pitch angle integrations (they are discussed in Appendix C), which are proportional to B and

mainly determined by the spectrum of the magnetic perturbation, γNC0 is defined as γNC0 ≡ ρi                =

ρi                              , VNC ≡ kc,iVNC0 and is the so called ‘offset’ neoclassical velocity, ν is the coefficient

of the neoclassical velocity, kc,i denotes the contribution from boundary layer in the  regime . In the

calculation of kc,i, one neoclassical coefficient 1.17 is taken for the contribution from the poloidal

flow [21]. The calculated kc,i for the boundary layer contribution is close to the observed value

(between 1 and 2) on DIII-D [15].

3.2. NTV TORQUE CALCULATION AND COMPARISON WITH THE OBSERVED

TORQUE TEFCC

The profiles of the transit (ε1/2 ωti, dotted dashed line), E × B drift (|qωE|, dashed line) and collision

(vi/ε, solid line) frequencies for ions are shown in Figure 6. The radial electrical field is calculated

from the radial force balance equation in the JETTO code by using the poloidal flow calculated by

the NCLASS code [22]. It shows that the plasma is mainly in the  regime near the plasma core

region, which is similar to DIII-D and ITER [13].

The vacuum field superposition is used in the NTV torque calculation. The calculation of the

variation of the magnetic field strength is discussed in Appendix B. The calculated NTV torque

from the Eularian variation in the magnetic field strength is shown in Figure 7. The triangles are the

NTV torque in the 1/v regime, the diamonds are the torque contributed from the main trapped

particles in the v regime and the circles are the torque contributed from the boundary layer in

the regime. The calculated NTV torque profile in the 1/v regime agrees well with the observed

torque profile TEFCC. In the v regime, the NTV torque contributed from the boundary layer is the

dominant component as pointed out by Shaing [14]. The NTV torque in the regime without boundary

layer contribution is much smaller the observed torque, which is similar to the results from DIII-D

[13]. The NTV torque contributed from the boundary layer in the regime is closer to the observed

torque than the NTV torquecontributed from the main trapped particles in the regime. However, it

is still smaller than the observed torque.

The calculated NTV torque from the Lagrangian variation in the magnetic field strength is shown

in Figure 8. It shows that the NTV torque from the Lagrangian variation in the magnetic field

strength is much larger than that from the Eularian part. In the plasma core region, the NTV torque

in the 1/v regime is about 4 times larger than the observed torque, while the NTV torque contributed

from the boundary layer in the v regime is much closer to the observed torque. There is one peak at

about ρ = 0.53 in the NTV torque profile. This peak corresponds to the location of the q = 2 surface.

With the vacuum field assumption, there is a big 2/1 island inside the plasma. Because the NTV

torque near the island region is proportional to B [23], the islands will give a larger contribution to

VNC0
Rq

eiρB0

dTi

dρ

→→→→→ →→→→→

~
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the NTV than that from the non-resonant component (proportional to B2). However, the resonant

components of the perturbation field strongly depend on the plasma response.

With the assumption that all the resonant components of the perturbation field are screened by

the plasma response, the NTV torque contributed from the non-resonant component is shown in

Figure 9. It shows that there is a significant reduction of the NTV torque near ρ = 0.53 region,

which means that the large NTV torque in that region is mainly due to the island.  In the plasma

core region, there is no significant change of the NTV torque, which means that the NTV torque in

this region is mainly contributed from the non-resonant components of the magnetic perturbation.

In the plasma core region, the NTV torque contributed from the boundary layer in the v regime

agrees well with the observed torque.

   Figure 10 shows the neoclassical ‘offset’ angular momentum density (dashed) in Eq. 5. It is

determined by the ion temperature gradient. It shows that the ‘offset’ rotation is comparable to the

plasma rotation in the plasma core region. Therefore, it should not be neglected in this calculation.

Figure 11 shows the contributions from different harmonics of the magnetic perturbation to the

pitch angle integration . The contribution from the n = 1 magnetic perturbation is dominant. This is

mainly determined by the characteristics of the EFCC coils. It is different from the result on NSTX

[12], in which the contribution from n = 5 has been found to be dominant.

5. DISCUSSION AND CONCLUSION.

The torque profile with the application of the n = 1 magnetic perturbation on JET, TEFCC, is determined

by momentum transport analysis using the JETTO code. The NBI torque is calculated by the PENCIL

code. The perpendicular diffusion coefficient and pinch velocity profile are determined by fitting

the evolution of the velocity after the switch-off of EFCC current.

The TEFCC has a global profile. The maximal torque is in the plasma core region, which is

different from the observations on NSTX and DIII-D with higher n perturbation field. This torque

is not localized at a certain rational surface and the velocity evolution is obviously different from

that in the mode locking phase as also observed on NSTX. Therefore, it seems not to be induced by

resonant electromagnetic braking effect.

With the assumption that TEFCC ∝ B2, the simulation of the momentum transport equation can

well reproduce the observed evolution of the plasma rotation. This B2 dependence is in agreement

with the non-resonant NTV theory.

With the vacuum field superposition, the NTV torque profiles in different collisionless regimes

are calculated and compared with the observed torque TEFCC. The contribution from n = 1 magnetic

perturbation to the NTV torque is dominant in this n = 1 EFCCs configuration.

The calculated NTV torque profile caused by the Eulerian variation in the magnetic field strength

in the 1/v regime agrees well with the TEFCC profile. The NTV torque contributed from the boundary

layer in the v regime is still smaller than the observed torque, although it is much closer to the

observed torque than the NTV torque contributed from the main trapped particles in the v regime.

~

~

~
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However, the calculation shows that the plasma in the core region is mainly in the v regime.

By including the effect of the displacement of the magnetic surface, the NTV torque in the core

region caused by the Lagrangian variation of the magnetic field strength contributed from the

boundary layer in the ν regime agrees well with the observed torque. Therefore, the NTV theory

agrees very well with the experimental observation with n=1 magnetic perturbation on JET.

Even if all the resonant components of the perturbation field are assumed to be screened, the

NTV torque in the core region does not change much, which means that the NTV torque in the

plasma core region is mainly caused by the non-resonant components of the perturbation field. The

plasma response may change both resonant and non-resonant components of the perturbation field.

However, the non-resonant components of the perturbation field are not so sensitive to the plasma

response as the resonant components. Therefore, the results will not significantly change, even if

we consider the plasma response. The perturbed 3D equilibrium calculation with real plasma response

is necessary to get accurate magnetic perturbation on distorted flux surfaces in the future. How to

get the real plasma response is under investigation elsewhere.

The plasma response, such as Resonant Field Amplification (RFA) effect of the external kink

modes and the screening effects of the plasma rotation, should be included in future investigations.

The resonant braking effects from the NTV or electromagnetic torque strongly depend on the plasma

response. It should also be investigated, after the plasma response is obtained.
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APPENDIX A. CALCULATION OF THE HAMADA COORDINATES

Hamada coordinates are calculated by using two methods described in [24,25]. These two methods

are essentially equivalent.

      The magnetic field can be written in

                                            (A1)

here (ψ, θ, ζ) is a right-handed straight field line coordinate system. According to the calculation in

[24, 25], the Hamada coordinates (θ, ζ) can be obtained by

                                         (A2)

here α(ψ) = 2π/ ∫
l   

        dl,BT is the toroidal magnetic field strength, and the integrations are taken

along the  poloidal contour l of the magnetic surface.

       The calculated Hamada coordinates for JET Pulse No: 75342 at t=24s are shown in Figure A1

and A2. Figure A1 shows the equally spaced grid (ψ, θ) in Hamada coordinates. Figure A2 shows

the (θ, ζ) in Hamada coordinates on the surface.    ψ = 0.95 The directions of the covariant coordinates

(eθ, eζ) and contravariant coordinates (eθ, eζ) are marked in this figure.

R
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APPENDIX B. CALCULATION OF THE VARIATION OF THE MAGNETIC FIELD

STRENGTH WITH THE VACUUM SUPERPOSITION

The magnetic field perturbation profile induced by EFCCs is calculated by using Biot-Savart laws.

      The variation of the magnetic field strength along the perturbed magnetic field lines is called

Lagrangian variation in field strength and is given by [20],

                                                                        (B1)

The first term in the right-hand side of Eq. (B1) is the Eularian variation

                                                       (B2)

here B is the perturbation field induced by the EFCC. The second term is the contribution from the

displacement of the magnetic surface due to the perturbation field,

(B3)

here ξR is the magnetic surface displacement in the major radius direction.

With vacuum field superposition, the displacement of the magnetic surface in the major radius

direction due to the perturbation field can be written as:

(B4)

here

From Eqs. B3 and B4, it is obtained

(B5)

here B1 = -         .  The variation of the magnetic field strength due to the displacement of the

magnetic surface can be obtained by integrating Eq. B5 along the magnetic field line.

               Using Fourier expansion 
( )
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mn

m n

B
b e

B
θ ςξ ξδ −= ∑  and ( )

1
,

R i m n
mn

m n

B b e θ ς−= ∑ ~
 , it is found

 (B6)

There is a singularity at the rational surface q = m/n, if bR
mn ≠ 0, if on the rational surface (there is

an island). This is valid outside the island separatrix. For the non-resonant component |       -n| O (1)

→→→→→

BR

R0B
ζ

~

L EB B Bξδ δ δ= +

→
→
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B B B
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0

0
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d B R B
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1B B

B B q
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q B
ξ
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δ
∂ + ∂ =

~R
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b
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m
i n

q

ξ =
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m
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bR
mn the scaling of the magnetic field strength variation will be δζ B∝ B and the resultant NTV

torque will be T∝ B 2. For the resonant component near the island region, the displacement will be

the island width, which is proportional to    B. Therefore, the scaling of the magnetic field strength

variation will be δζ B∝   B and the resultant NTV torque will be T∝ B, as shown in [23]. This torque

will be much larger than the non-resonant component NTV torque and it is localized near the island

region. However, this component will strongly depend on the plasma response.

Using Fourier expansion ( )

,0

i m nLL
mn

m n

B
b e

B
θ ςδ −= ∑ and

( )

,0

i m nEE
mn

m n

B
b e

B
θ ςδ −= ∑  the spectrum of the

Lagrangian variation of the magnetic field strength can be written in

(B7)

APPENDIX C. PITCH ANGLE INTEGRATIONS IN NTV TORQUE CALCULATION

According to the NTV theory [6, 14] the pitch angle integrations can be written in

                               (C1)

E(κ) and K(κ) are elliptic integrations,vD is the deflection frequency. Neglecting the energy

~
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Figure1: From top to bottom, the evolution of the plasma angular rotation frequency at different radii (R=3.19m
(ρ~0.09), solid line, R=3.48m (ρ~0.4) dashed line, R=3.69m (ρ~0.73), dashed dotted line, magnetic axis is R0=3.15m),
the EFCC current IEFCC, the plasma line-integrated density, the normalized β and q95 for JET Pulse No: 75342.

Figure 2: The spatial profiles of (a) the angular rotation frequency, (b) the ion temperature, (c) the electron density
and (d) the electron temperature with (circles) and without (triangles) perturbation field, respectively, for JET Pulse
No: 75342.
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Figure 3: The spectrum of the n = 1 resonant magnetic
field perturbation for JET Pulse No: 75342. The dashed
line shows the resonant condition m = nq.

Figure 4: The obtained TEFCC (-TEFCC is plotted) profile by
using the χM and Vinwm profiles fitted from different orders
(N = 4, triangles, N = 6 diamonds, N = M = 4, circles, N =
M = 6, pentacles) of polynomial base functions, the NBI
torque (dashed line) and dL/dt (dashed dotted line) at the
time just after the switch-off of the EFCC current.
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Figure 5: Comparison of the temporal evolution of the
plasma velocity (top) between that from the experimental
observation (dashed line) and the simulation (solid line).
The bottom shows the temporal evolution of the EFCC
current

Figure 6: The profiles of the transit (ε1/2 ωti, dotted dashed
line),E×B drift (|qωE|, dashed line) and collision (vi/ε,
solid line) frequencies for ions.
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Figure 7: Comparison of the NTV torque profiles from
the Eularian variation in the magnetic field strength (-
TNTV is plotted, the triangles are the NTV torque in the
1/v regime, the diamonds are that in the v regime, the circles
are the boundary layer contribution in the v regime) with
the observed torque profile TEFCC (-TEFCC is plotted, solid
line, averaged over the four profiles in Figure 4).

Figure 8: Comparison of the NTV torque profiles from
the Lagrangian variation in the magnetic field strength
with the observed torque profile TEFCC.

Figure 9: Comparison of the NTV torque profiles from
the non-resonant component of the perturbation field with
the observed torque profile TEFCC.  All the resonant
components are assumed to be screened.

Figure 10: The neoclassical ‘offset’ angular momentum
density (γNC0 ≡ ρiVNC0 /R, dashed) in Eq. 5 compared with
plasma angular momentum density with perturbation field
(γ ≡ ρiVφ /R, solid).
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Figure 11: Deferent harmonic’s contributions to the pitch angle integration  Iλ. The n=1contribution is dominant.

Figure A1: Equally spaced grid (   ψ, θ)in Hamada coordinates for JET Pulse No: 75342 at t = 24s.
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Figure A2. Equally spaced grid  (θ, ζ) on the surface    ψ = 0.95in Hamada coordinates for JET Pulse No: 75342 at
t=24s. The directions of the covariant coordinates (eθ, eζ) and contravariant coordinates (eθ, eζ) are marked in this
figure.
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