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Abstract

Reliable and accurate estimates of the ion effective charge Zeff in tokamak plasmas are of key importance
with respect to impurity transport studies and the establishment of thermonuclear burn criteria. These issues are of
fundamental interest to ITER and reactor operational scenarios in general. However, Zeff estimates derived from
bremsstrahlung spectroscopy on the one hand and from the weighted summation of individual impurity concentrations
obtained via Charge Exchange Spectroscopy (CXS) on the other hand, often are not compatible. This is a long-
standing problem in fusion plasma diagnosis. A rigorous analysis of uncertainty sources and their propagation in
the experimental determination of Zeff can contribute significantly to the derivation of a Zeff value with reduced
uncertainty that is consistent with both the bremsstrahlung and CXS data sets. In the present work, Bayesian
Probability Theory is used in an integrated approach as a powerful tool for an advanced error analysis in the
derivation of Zeff , even in the presence of systematic errors on the data. A simple probabilistic model is proposed for
the estimation of Zeff , first assuming only statistical uncertainty, next taking into account also systematic deviations.
The obtained Zeff estimates have smaller error bars than the Zeff values derived from the individual bremsstrahlung
and CXS measurements, approaching ITER requirements. The estimates are shown to be consistent with all available
information. In addition, systematic errors on the data are quantized through the requirement of data consistency
between different time slices in the acquired measurements.

Index Terms

Bayesian Probability Theory, Integrated Data Analysis, ion effective charge, tokamak plasmas.

I. INTRODUCTION

LARGE amounts of plasma diagnostic data are generated in magnetic confinement experiments. This information
needs to be processed and validated in an efficient way in order to facilitate subsequent data interpretation.

Although over the years tremendous efforts have gone in the development of increasingly sophisticated diagnostic
techniques, the task of data analysis is often considered secondary. This is particularly the case for the systematic
analysis of diagnostic uncertainties and the validation of measurements in the light of underlying physical models
and complementary data sets. However, this consistent processing of diagnostic data can dramatically increase the
reliability and robustness of physics results, and can contribute significantly to the optimization of diagnostic design.
The process of the derivation of quantities of interest from the raw, unaltered measurements, is referred to as data
validation and analysis. It can involve complex analysis techniques and consistency checks among diagnostics, both
at the level of the raw and processed data. Since at both levels the data are affected by uncertainties of a diverse
nature, a probabilistic analysis of all available information is appropriate.

The task of data validation involves, in addition, the formulation of error estimates on derived quantities of interest.
The study of the propagation of uncertainty, or errors, is a well understood topic in statistics that is essential to
the correct interpretation of measurements in all branches of experimental science. Significance is attached only to
phenomena observed in the measured data—and derived quantities—that are unlikely to be caused by coincidence. In
magnetic confinement fusion research, the diagnosis of the hot plasma poses many challenges regarding experimental
design and measurement of the relevant plasma quantities. Not only the physics of the plasma itself is involved, but
also the interoperation of numerous optical, mechanical and electronic components, and control and computational
software (see e.g. [1]). Frequently, large error bars are associated with the physical plasma quantities of interest,
indicating a corresponding substantial uncertainty. In quantizing the uncertainty affecting plasma quantities it is
therefore essential to rigorously draw up an inventory of all root sources of uncertainty contributing to the total
error and to study the error propagation. Here, by root sources of uncertainty we denote those that can be quantized
directly, without requiring any prior analysis. However, there basically lie three difficulties in this approach. First,
the root sources of uncertainty are often of a very heterogeneous nature, resulting from many different causes. We
may roughly discern the following uncertainty classes:

• diagnostic design and measurement uncertainties,
• calibration uncertainties,
• physical model uncertainties,

each of which in turn can be subdivided in uncertainties of a very different origin. Model uncertainty can manifest
itself, for example, in uncertainty on physical constants such as atomic data. The root uncertainties combine,
often via a complex chain of calculations, in the compound errors on the quantities of interest. However, the
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application of standard error propagation laws can in some cases become particularly difficult and tedious. A
second difficulty is that most common studies of error propagation are conducted under the implicit assumption
that not only the statistical root uncertainties, but also the errors on derived quantities are the result of Gaussian
processes. An additional hypothesis of independence of the elementary observables then leads to standard Gaussian
error propagation laws. However, many cases exist where the Gaussian and independence approximations are not
justified [2]. A third problem in common error analysis that is frequently overlooked is the fact that usually only
statistical sources of uncertainty are considered, whereas systematic uncertainties may contribute substantially to
the overall error. This is an often made (silent) mistake that can sometimes be noticed implicitly in a case where
the experimentalist applies simple Gaussian error propagation laws. The existence of systematic uncertainties in a
particular data set is usually hard to discover. For instance, repeated measurements may help quantizing statistical
uncertainties but yield no information on systematic discrepancies. In general, a more advanced error analysis is
required that can handle statistical as well as systematic uncertainties, taking into account the complete error statistics
through general (possibly non-Gaussian) probability distributions. This can be accomplished in a systematic and
straightforward manner via Bayesian Probability Theory (BPT). In this paper we will use the BPT framework to
calculate probabilities associated to physical quantities. The idea is to model all uncertainties entering the analysis
in terms of a suitable probability distribution and from there construct a probability distribution of the desired
physical quantities. In a Bayesian context, there exists also the opportunity to include expert prior knowledge. It
is then possible to study the sensitivity of the physical quantity to the various uncertainties, and the most crucial
uncertainties can be identified.

The process of data validation can be aided substantially by considering complementary data sets, originating
from different diagnostics, each containing some information on the quantities of interest. Due to existing inter-
dependencies between different diagnostics or via the requirement of data consistency at different time instants,
this may contribute to the reduction of statistical uncertainty and the quantization of systematic uncertainties. This
leads into the realm of (Bayesian) Integrated Data Analysis, or IDA, an emerging field in fusion data processing
involving the combination of data from multiple diagnostics, possibly together with information on an underlying
physical model [2]–[6]. It is particularly useful in the event of inconsistency between physical quantities derived
from different diagnostic measurements. The redundant information present in the various measurements can help
determine the physical quantities with a higher accuracy. Of further interest are more data from other diagnostics
measuring quantities that bear a strong correlation with the quantities of interest. Then, through a detailed study
of error quantization and propagation, using BPT as a probabilistic framework, a most plausible value can be
deduced for the desired physical quantities in the light of all available information. This leads in many cases to
more reliable, more complete and more robust information about this quantity. On the other hand, the available
space for diagnostic set-ups at ITER and future fusion reactors will be restricted, and physical quantities will need
to be assessed from a limited data set. As such, any type of available information will have to be exploited. The
IDA concept provides an outstanding framework that can accomplish these tasks.

In this paper, BPT and IDA are applied to the estimation of the ion effective charge Zeff in the plasma core
from the combined data set comprising bremsstrahlung emissivity measurements as well as line intensity data
for individual impurities obtained from Charge Exchange Spectroscopy (CXS) [7], [8]. Bremsstrahlung and CX
spectroscopy are two popular diagnostic techniques for determining Zeff . Since the two methods rely on a different
measurement principle, many of the sources of uncertainty on Zeff are of a very different nature when comparing
both methods. Unfortunately, this leads in most cases to a systematic inconsistency between the Zeff value assessed
from bremsstrahlung measurements (which we will call the continuum Zeff ) and the Zeff calculated from CX
impurity density measurements (which we will refer to as the CX Zeff ). This provides the motivation for the
present work regarding the estimation of Zeff using IDA.

The precision of the Zeff estimates (continuum or CX), or any other experimentally determined plasma quantity,
can be enhanced by reducing the sources of uncertainty, which in all cases should be the diagnostician’s first
approach. However, in many instances it is not obvious at all how to further increase ones knowledge about the
involved uncertainties. For instance, current technological limits may prevent improving hardware or calibration
accuracy and reliability. In some cases we might simply not be prepared to spend a—possibly disproportionate—
amount of effort and time to decrease the error on the measurements. This may be the case, for example, when trying
to specify and quantize hard to discover systematic uncertainties in the data. Indeed, often the experimentalist is very
much aware of systematic uncertainties in his data, but he has no clear idea about where exactly this uncertainty
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enters the data descriptive model (forward model), let alone that he is able to quantize the uncertainties. A way
out of such a situation can be provided by the requirement of consistency between measurements performed in
different time slices during data acquisition. This mode of operation will be demonstrated in the present work. In
any case the diagnostician should realize that some root sources of uncertainty will always be present and that
these should be dealt with effectively. At least he should be able to state a reliable error margin together with
the value of the physical quantities of interest. But it would be even better to model the uncertainties in such a
way that the overall error on the final quantity is reduced. Both of these possibilities lie within the reach of the
IDA framework. Nevertheless, we would like to stress that the use of IDA should definitely not be regarded as a
compensation for careless experimental work. Rather, the IDA approach is very useful for a proper error analysis
in a well conceived experiment, considerately implemented, where a trustworthy quantitative estimate of the main
root sources of statistical uncertainty is available. In addition, another important feature of the IDA framework is
its transparency. IDA is by no means a black box tool that converts uncertain or inconsistent data to the ‘correct
numbers’ in some obscure way, with a single push of a button. Instead, there is a clear recipe that needs to be
followed, requiring well thought-out input on behalf of the diagnostician. Changes in the free parameters of the
probabilistic model have a well-defined influence on the results of the analysis regarding the physical quantities of
interest.

This paper aims at illustrating some of the basic IDA concepts and techniques through the estimation of a Zeff

value consistent with all available data. Thus we demonstrate the potential and the benefits of an IDA approach
for increasing the reliability of a Zeff estimate in tokamak plasmas. We advocate a stepwise approach, starting
from a simple probabilistic model for the estimation of Zeff (and the electron density) from continuum and CX
measurements. We show that this model, together with some minimal assumptions about systematic uncertainties
in the data, already allows useful inferences on a consistent Zeff . In a later stage the uncertainties can be gradually
modeled in more detail, which is likely to lead to a yet enhanced level of intrinsic data consistency. In our present
analysis, for demonstration purposes we first do not take into account the influence of statistical nor systematic
uncertainties, i.e. we perform a deterministic model inversion. Next, we model the statistical uncertainties and study
the consistency of the total data set. Posterior distributions for the quantities of interest are derived via Bayes’
theorem. Finally, motivated by the observed important systematic deviation between the continuum and CX Zeff ,
we provide a basic modeling of the systematic uncertainties as well. We present a method for inferring information
on systematic discrepancy in the case where no informative prior information on the corresponding systematic
uncertainties is available. This is accomplished through the demand of consistency between different time slices
during a single or multiple discharges. The marginal posterior distributions are estimated through a Markov Chain
Monte Carlo simulation. Our approach leads to a substantial increase of the intrinsic consistency of the data. Thus,
we obtain values for Zeff that are in agreement with both the bremsstrahlung and CX measurements, characterized
by smaller error bars than those for either the continuum or CX Zeff , while obtaining a quantitative estimate for
the systematic errors as well. We hope that the illustration of IDA provided in this paper will contribute to the
dissemination throughout the fusion diagnostics community of the application of IDA for enhanced data analysis.

The remainder of the paper is organized as follows. In Section II, a brief account is given of the experimental
determination of Zeff from continuum measurements and individual CX line intensity data. An overview of the main
sources of uncertainty in the derivation of Zeff is presented. Section III contains some preliminaries on Bayesian
Probability Theory, Bayesian computation and Integrated Data Analysis. These are necessary for the understanding
of the application of IDA to the consistent determination of Zeff , as described in Section IV. Section V briefly
discusses some considerations for the application of IDA at ITER, focusing on the estimation of Zeff . Finally,
Section VI presents some conclusions and a discussion on future work.

II. EXPERIMENTAL DETERMINATION OF Zeff

The ion effective charge Zeff provides a local measure for the impurity concentration in the plasma, averaged
over all impurities. Zeff is defined as follows:

Zeff ≡
∑

i niZ
2
i∑

i niZi
=

∑
i niZ

2
i

ne
, (1)

where the sum is over all ion species, charged Zi with density ni, while ne is the electron density. There is a direct
relation between Zeff and the power radiated from the plasma through bremsstrahlung, as well as the dilution of
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the fuel. In addition, Zeff is an important quantity in the study of impurity transport. Several plasma diagnostic
techniques exist, both passive and active, for the determination of Zeff . Bremsstrahlung and Charge Exchange
spectroscopy as well as measurements of the plasma resistivity, continuum soft-X-rays and neutron yields have
been used to determine Zeff [1]. In this work, we concentrate on the bremsstrahlung and CXS methods.

A. Visible bremsstrahlung spectroscopy

The most widely used method to assess Zeff is by measuring the bremsstrahlung emissivity from the plasma,
integrated along several lines of sight, usually in the visible part of the spectrum. Care should be taken that the
continuum signal is not spoiled by atomic line radiation. This can be accomplished by selecting a narrow part of
the spectrum free of line radiation through a Fabry-Pérot interference filter, a technique first applied by Kadota
and co-workers on JIPP T-II in 1980 [9], see also [10], [11]. Alternatively, the continuum level may be deduced
from the background of the CX spectrum. A further possibility for estimating the background bremsstrahlung
emissivity from the spectrum, described in [12] and [13], is to use BPT in a mixture model approach, where part
of the continuum spectrum is assumed to be spoiled by an (unknown) contribution from atomic line radiation.
Once the bremsstrahlung background has been estimated, a radial bremsstrahlung emissivity profile εff(r) can be
reconstructed from the line-integrated measurements, e.g. through Abel inversion. When the local plasma electron
density ne and temperature Te are known, a Zeff profile can be determined from the bremsstrahlung profile through
the following relation (see e.g. [14]):

Zeff = C

√
Teεff

ḡff(Te)ne
2
, (2)

where C is a constant and ḡff is the so-called Gaunt factor that includes all quantum mechanical effects and is
slightly dependent on Te.

B. Charge Exchange Spectroscopy

Charge Exchange Spectroscopy involves the observation of the (visible) radiation resulting from charge exchange
reactions between plasma ions and a beam of highly energetic hydrogen or deuterium atoms. Several plasma
quantities can be derived from the observation of the charge exchange radiation, which are essentially the impurity
temperature and flow velocity, as well as the impurity density. The determination of local absolute impurity densities
(or concentrations) is particularly difficult. The lines of sight of a CX diagnostic are directed such that they are
more or less tangential to the magnetic flux surfaces at the crossing with the beam. In this case, the observed CX
spectral intensity ΦCX for the impurity species charged Z is related to the impurity density nZ by

ΦCX(λ)∆Λ =
1

4π
nZ

∆λ√
πλD

exp

[
−(λ− λ0)

2

λ2
D

∑

E

〈σv(E)〉CX

∫
nb(E, s)ds

]
, (3)

where the integral is over the intersection of the line of sight with the beam profile. A summation over the beam
energy E is necessary because a neutral beam generally consists of several energy components. In addition, λ is
the observation wavelength, λD is the Doppler width of the spectral line and λ0 is the wavelength at the line peak.
〈σv〉CX is the effective emission rate for the CX line under study [15] and nb is the local beam density, which is
related to the vacuum density nb,0 by

nb = nb,0 exp

{
−
∫

ne(s)

[
σs,e +

∑

i

σs,Zi

ni(s)

ne(s)

]
ds

}
, (4)

because the beam is attenuated through interaction with the plasma. This integral is along the beam path while σs,e
and σs,Zi

are the electron-induced and ion-induced (species Zi) beam stopping cross-sections, respectively. Since the
neutral beam is observed at the intersections with a set of lines of sight, plasma quantities that are derived through
interaction with the beam are more or less localized at the intersection of the sight line with the beam volume.
Therefore, in practice radial profiles can be calculated directly without the need for an inversion method. In order to
derive from (3) an estimate of the density nZ of impurity species Z, an iterative procedure is required because the
local beam density depends on densities of all plasma ion species, including species Z [16]. As mentioned above,
in addition to local impurity density estimates, also the bremsstrahlung emissivity can be deduced from the CX
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spectra by measuring the background signal. This is a line-integrated quantity since the bremsstrahlung originates
from the entire core plasma volume.

Both the bremsstrahlung emissivity data and the individual impurity density estimates employed in this work
were obtained during several discharges at JET using one of the JET horizontal CX systems equipped with 12 lines
of sight (see e.g. [16]–[18]). By using a periscope to view inside the plasma, the lines of sight can be made more
or less tangential to the magnetic flux surfaces at the intersection with the neutral beam. On JET, the CX lines of
sight are aligned on two PINIs of the neutral beam in octant 8. The spectra are obtained through a Czerny-Turner
spectrometer and a two-dimensional CCD array with a typical time resolution of 50 ms. The spatial resolution
is roughly 7 cm, depending amongst others on the number of PINIs used1. Apart from the possibility to monitor
carbon or beryllium and deuterium, other spectrometers have been introduced in order to measure CX lines from
puffed neon and argon [19], [20].

In order to derive Zeff from the individual impurity concentrations measured through CXS, we note from (1)
that

Zeff = 1 +
∑

i

Zi(Zi − 1)
ni

ne
. (5)

In practice, Zeff can be approximated by limiting the sum to the most abundant impurity species. At JET, the limiter
surfaces and divertor target plates are fabricated from graphite, Carbon Fiber Composites or beryllium. The by far
dominant impurity in many JET discharges is therefore carbon [15]. Beryllium usually need not be considered,
while oxygen contents are reduced significantly by gettering. Finally, concentrations of metallic impurities are
generally of the order of 0.01%. Moreover, at the typical temperatures in most of the plasma cross-section at JET,
only fully stripped carbon needs to be taken into account, while the other charge states can be neglected. If also
other impurities yield an appreciable contribution to Zeff , their influence can still be modeled through a systematic
uncertainty, as described in Section IV. In any case, considering only fully stripped carbon suffices for illustrating
the key points in this work. The active CX component due to interaction of the beam with fully stripped carbon is
usually monitored by CX at the strongest CVI transition in the visible, namely n = 8 → 7 at 5290.5 Å. A schematic
of the JET CXS system is shown in Fig. 1, with the instrument providing the data labelled ‘KS5a’ (observation
port in octant 7). Since JET is not equipped with a dedicated diagnostic for space-resolved visible bremsstrahlung
measurements (by means of an interference filter), we used bremsstrahlung data from the background level of the
CX spectra in the neighbourhood of 529 nm. An example CX spectrum of carbon VI from the horizontal JET CXS
diagnostic is shown in Fig. 2.

C. Data set

We selected a few JET discharges to demonstrate the potential of IDA with respect to the integrated estimation of
Zeff . These are pulses #61346, #61347 and #61348, all part of the same physical program studying D and T fueling
for ITB plasmas. For all measured quantities that are of importance in this work, error estimates are proposed by the
respective diagnosticians. However, and this is the case for many measured plasma quantities in general, often the
error estimates were, necessarily, established by empirical arguments, requiring a lot of assumptions, and through
rough approximation. The rigorous estimation of uncertainty levels for the quantities of interest here would require
a dedicated approach. Therefore, we started our analysis by relying on the error estimates that are in common use
among diagnosticians [17]. However, it is not always clear whether cited error bars are meant to represent statistical
uncertainty, or rather whether they are of a combined statistical and systematic nature. Furthermore, if the errors
should be interpreted as statistical errors, do they signify a single standard deviation, three standard deviations,
or still something different? In most cases, the errors should be understood to be caused both by statistical and
systematic effects. But also in that case one can pose the question with what probability the real quantity should
lie within the indicated error bars.

We nevertheless would like to mention here a few commonly used relative errors on several local plasma quantities
that are of interest in this work, without worrying for the moment about any of the issues posed above. The errors
are indicated in Table I, applying to JET conditions and on the magnetic axis. Taking into account only fully
stripped carbon as an impurity, the relative error for the CX Zeff depends on the ratio of the carbon concentration

1Recently, an upgrade was performed of the JET core CXS system, increasing sensitivity as well as spatial and temporal resolution [18].
However, the data used in the present work were acquired before this upgrade.
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to the CX Zeff itself, but we took a typical value here. It should also be mentioned that the error bars can in general
increase above the values stated here in the vicinity of the plasma periphery.

D. Inconsistency between Zeff measurements

A long-standing issue in plasma diagnosis is the inconsistency between the estimates of Zeff obtained via the
various diagnostic techniques. In particular, the values for the continuum and CX Zeff are often not compatible.
This appears to be a general problem observed at various machines [3], [22], [23]. The value of both Zeff estimates
may react very differently to changing plasma conditions and also the absolute value of the continuum and CX
Zeff are hardly ever in good agreement, being persistently plagued by strong systematic discrepancies. We present
some examples from various discharges at JET. Fig. 3a shows the Zeff time trace from visible bremsstrahlung, line-
averaged along a centrally viewing chord, as well as its equivalent CX line integral, reconstructed from contributions
of C6+, Be4+ and He2+ [3]. It can be seen that the CX Zeff lies systematically below the continuum Zeff . Apart
from a discrepancy in absolute number between the two Zeff signals, there is also a certain qualitative difference.
Indeed, whereas the continuum Zeff has a continuously rising tendency, the CX Zeff remains basically constant
after t = 14s. Another example from JET is shown in Fig. 3b, where the continuum and CX Zeff time traces on
the magnetic axis are displayed. The continuum Zeff was calculated from the inversion of the bremsstrahlung line
integrals obtained from the baseline level of the CX spectra. In this discharge, only fully stripped carbon (C6+) was
taken into account as an impurity. There is some qualitative resemblance between both signals, but the continuum
Zeff on the magnetic axis is on the average a factor of 2.5 higher than the CX Zeff . Since in this instance the
continuum Zeff is generally rather high, reaching peak values of over 9, it is clear that the Zeff discrepancy here
is at least partly due to a considerable overestimation of the continuum Zeff . This trend will be confirmed by the
analysis in Section IV. Fig. 3c shows similar behavior for the axial Zeff traces (based on C6+) in JET pulse #61346,
which we will analyze in more detail in Section IV. Clearly, again there is a substantial systematic discrepancy
between the two Zeff estimates, the average ratio of the continuum Zeff to the CX Zeff being about 1.5. Finally,
Fig. 3d shows Zeff profiles for the same discharge #61346 at about 5.7 s. Especially on the magnetic axis the
continuum and CX Zeff are inconsistent, differing by more than a factor of two. At a normalized minor radius ρ of
about 0.55 the Zeff values turn out to be systematically inconsistent as well, although the ratio is different from that
on the magnetic axis. Note that the continuum Zeff reaches values below 1 here, which is possibly an artifact of the
inversion process from the line-integrated measurements. In addition, the continuum Zeff profile is clearly peaked
whereas the CX Zeff profile is rather flat. We wish to stress, however, that the data shown in Figs. 3b, 3c and 3d
(together with all other data used in the analysis in Section IV) are the result of a routine processing of the raw
measurements. It is very well possible that a dedicated analysis of the measurements, using established methods,
succeeds in mitigating to a certain extent the here observed inconsistencies, by manually reducing uncertainties in
the raw data (see below). Nevertheless, in order to demonstrate the power of an IDA analysis, we will continue
working with the routinely processed data.

The reason for the observed inconsistency of Zeff values lies in the various uncertainties that enter the derivation of
Zeff , for both the continuum and CX values. As regards the continuum Zeff (profile), the following most important
sources of uncertainty in its calculation from the raw bremsstrahlung signals can be mentioned, listed here in
descending order of estimated impact on the accuracy of the Zeff measurement.

• The reconstruction of radial emissivity profiles can introduce large uncertainties, particularly near the plasma
periphery. It is an ill-posed inverse problem with only a few line-integrated measurements available. For
regularization purposes the profile is usually expressed in terms of a set of smooth basis functions (polynomials,
splines, . . . ) but this may yield unrealistically smooth profiles. Furthermore, uncertainty on the edge profile
may propagate towards the central profile [24]. In addition, there may be poloidal asymmetries in the plasma,
so that the emissivity can no longer be assumed to be constant on magnetic flux surfaces. Moreover, the
reconstruction critically rests on knowledge of the magnetic equilibrium, which depends on the accuracy of
the assumed equilibrium model.

• Uncertainty on the ne and Te profiles that are used for the calculation of the Zeff profile, introduces further
errors. Due to the quadratic dependence of εff on ne, especially the ne profile should be known relatively
accurately. This can be an issue, particularly near the plasma boundary. The difference in toroidal location of
the respective diagnostics for the measurement of εff , ne and Te can cause even more inaccuracies.
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• A long-standing issue regarding the measurement of bremsstrahlung in the visible is the reflection of the plasma
light on various surfaces inside the tokamak vessel. Reflections can be minimized by mounting a viewing dump
on the wall that is seen by the diagnostic, but it is not feasible to completely eliminate the effect of reflections
through adjustments of the hardware. However, by assuming a reflection model for the bremsstrahlung on the
vessel surfaces it is possible to eliminate most of the influence of reflections on a derived Zeff profile through
appropriate manipulation of the measured signals [25].

• The spectral window that is used for the determination of the bremsstrahlung continuum should be free of
atomic line radiation. This should be verified regularly, but even then it is still possible that under certain
plasma conditions this requirement is no longer fulfilled. If the bremsstrahlung emissivity is determined from
the background of the CX spectrum, then errors are introduced because one has to separate the background
from the rest of the CX spectrum. Furthermore, the contribution of non-bremsstrahlung edge components in
the continuum can greatly influence the reconstructed profile, an influence that can propagate towards the
center of the profile during the inversion process. Examples of these components are recombination radiation,
molecular bands and black-body radiation from hot material components inside the tokamak vessel.

• The relative channel-to-channel calibration and the absolute calibration of the bremsstrahlung system also
represent a source of error.

• There may be several issues related to a suboptimal or inaccurate design of the involved diagnostic hardware.
In addition, detector electronics inevitably introduce a certain amount of measurement noise.

• In the derivation of the bremsstrahlung emissivity an approximation has to be chosen for the Gaunt factor.
This represents an uncertainty in the physical model, although it is estimated that the effect is modest [11].

As far as the calculation of the CX Zeff is concerned, the following list provides the most critical associated
uncertainties, again in descending order of possible impact.

• One of the main issues is the determination of a correct fit to the active CX spectral lines that are used to
monitor the impurity species of interest.

• Again, the analysis depends on the knowledge of the magnetic equilibrium, in order to assess the geometry
of the lines of sight with respect to the magnetic flux surfaces.

• Although in many plasmas, especially in the core and in particular at JET, fully stripped carbon yields by far
the dominant contribution to Zeff , the influence of other impurity species might not be negligible. If a certain
impurity species, occurring in the plasma with a significant abundance, is not monitored by the CX system,
then this may result in a Zeff underestimation.

• The ne profile enters the derivation of the CX Zeff through calculation of the neutral beam attenuation, see
(4). Due to the exponential dependence, uncertainties in the ne profile will introduce uncertainty in the beam
attenuation and hence in the calculated Zeff . The dependence of the CX Zeff on ne turns out to be more or
less linear, so the influence of ne uncertainties on the CX Zeff is in any case less important than for the case
of the continuum Zeff . The influence of Te profiles is not very important.

• The relative and absolute calibration represent a further source of error.
• As is the case for the bremsstrahlung system, there may be important issues related to the design of the CX

diagnostic hardware (including detector noise).
• The derivation of the CX Zeff rests on the determination of atomic data (cross-sections, rate coefficients). It

is however estimated that these atomic data are accurate enough to introduce only minor uncertainty in the
eventual CX Zeff , at least compared to the other sources of uncertainty.

We may conclude that, due to the many important uncertainties influencing both the continuum and CX Zeff

estimates, the determination of a consistent global Zeff value, and a fortiori a consistent Zeff profile that is reliable
over the whole plasma cross-section, is at present a real challenge. The remainder of this work concerns the
modeling of the uncertainties through probability distributions, in order to derive a probability distribution for Zeff

from which further inferences can be drawn.

III. BAYESIAN PROBABILITY THEORY

A. Bayesian probabilities

The mathematical framework that we will be using for our analysis is Bayesian Probability Theory. BPT has
proven to be very effective in the solution of problems on the basis of uncertain information. Applied to experimental
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physics, usually one has a set of measurements and a physical model linking the measurements with the physical
quantities of interest, which are in fact model parameters. Since the measurements are uncertain, it is natural
to describe them through a probability distribution, parametrized by the physical model parameters. Assessing the
probability of the data given some model parameters is rather straightforward, but the inverse problem of estimating
the model parameters given the uncertain data was solved only in 1763 by the reverend Thomas Bayes [26] and
again in a more general form in 1812 by Laplace [27]. From this developed Bayesian Probability Theory and a clear
rationale for BPT was provided by Cox [28] and Jaynes [29], who described the theory as an extension of deductive
logic to cases where there is uncertainty [29]. BPT has many advantages over and is much more general than the
traditional frequentist approach [29]–[32]. The Bayesian paradigm defines probability as a degree of plausibility of a
certain proposition, not as a long-run frequency. As a consequence, whereas the frequentist definition of probability
necessitates the field of statistics to infer the truth of an hypothesis, Bayesians can directly assess the probability
of the hypothesis, given the available information. This renders many complex inference problems simpler to solve
using BPT than via the frequentist approach.

In our current application, a physical model is assumed providing the so-called forward model or data descriptive
model that links the model parameters to the measured data. The formulation of the forward model is the start of
any Bayesian analysis. In its most complete form, the forward model predicts the raw, uncalibrated data as recorded
by the detector(s). Our aim is to make inferences about the model parameters of interest, e.g. the effective charge,
given the measured data. This is the inverse problem, which is usually much harder to solve than it is to formulate
the forward model. The propositions of parameters of our physical model taking on a certain value, constitute the
relevant hypotheses. The probability (density) of such propositions can be derived from the data at hand through
Bayes’ theorem:

p(θ|x, I) = p(x|θ, I)p(θ|I)
p(x|I) , (6)

where in general θ is a vector of parameters that characterize the physical model, while x is a vector of mea-
surements. Furthermore, I represents any additional information that is available. This comprises, for instance,
additional information on the physical system under study, i.e. the physical model that is used, or in the present
application it includes the knowledge of positivity of the signals (since we are studying positive physical quantities).
The factor p(x|θ, I) in the nominator of the right-hand side of (6) is called the likelihood of the parameter vector θ.
To emphasize that it is a function of θ, it is sometimes written as L(θ). The likelihood is the probability (density)
to observe the data vector x, given a set of model parameters θ. It typically involves a difference between the
observed data x and the data calculated from the given set of parameters θ, via the assumed physical model. Thus,
the likelihood describes the data misfit. The factor p(θ|I) is called the prior probability (density) of the parameter
vector θ, and it embodies everything we are willing to assume about the model parameters, before gathering the
data. The latter is imperative, and an often made mistake is to use the data for constructing a prior PDF. This does
not prevent, however, to employ information on data that were gathered in a previous experiment for defining a
prior. The quantity on the left-hand side of (6) is named the (joint) posterior PDF. It is the PDF of interest, as it
provides the probability (density) of the parameters of interest θ of the physical model, given the observed data.
The factor p(x|I) in the denominator of (6) is named the evidence. It does not depend on the parameters θ, and
it is often ignored since it merely normalizes the posterior. However, this factor is important when using BPT for
choosing between different models that should explain a given data set (model selection) [33]. Bayes’ theorem
represents the process of learning, since it tells us how to update our prior beliefs on a certain proposition as soon
as new information (data) becomes available.

The choice of a suitable prior probability distribution for a certain physical parameter that accurately—and
objectively—represents the a priori available information, is sometimes a difficult problem. As the amount of
measured data increases, the influence of the prior on the posterior decreases gradually (see e.g. [32]). Hence, when
a large amount of data is available, the choice of prior is not really important. However, in cases where we have
a limited data set or when the data quality is poor, the prior will be all the more important. Especially in such
instances, one should be cautious not to encode more information into the prior PDF than is in fact supported
by the available prior knowledge. In addition, care has to be taken to construct a prior that does not lead to an
improper posterior, i.e. one that can not be normalized because its integral over the parameter space diverges. When
little or no prior information is available, this is encoded in a so-called uninformative prior. Many principles exist
to construct uninformative priors, all leading to (slightly) different results. However, in many cases the uniform
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distribution is a good choice for an uninformative prior and we will employ it in this work as well. Finally, a prior
distribution may also depend on other unknown parameters, called hyperparameters. In turn, these hyperparameters
can be assigned a prior distribution (hyperprior), possibly parameterized by hyperhyperparameters, and so on. Thus,
one creates a so-called hierarchical probabilistic model, possibly consisting of several levels [32].

As noted above, p(θ|x, I), where θ ≡ (θ1, . . . , θp)
T, is the joint posterior density for all parameters of the

physical model. However, we typically want to make inferences about individual parameters θk, k = 1, . . . , p. For
instance, the posterior that we will use in Section IV for the estimation of Zeff is a joint distribution for both Zeff

and ne. Hence, to deduce the distribution for Zeff alone, we will have to marginalize the joint posterior. In fact,
the posterior often depends also on parameters we are not even interested in, but that necessarily enter the forward
model. These are called nuisance parameters. In order to obtain the PDF for an individual parameter θi, we have
to marginalize the joint PDF, i.e. integrate out the other parameters:

p(θk|x, I) =
∫

p(θ|x, I)dθ1 . . .dθk−1dθk+1 . . .dθp

∼
∫

p(x|θ, I)p(θ|I)dθ1 . . . dθk−1dθk+1 . . . dθp.

The integral is over the complete parameter space spanned by the parameters θ1, . . . , θk−1, θk+1, . . . , θp and it may
also be a sum in the case of discrete parameters. In addition, in order to characterize the posterior PDF we might
want to calculate its moments. To do this, we also need to integrate the posterior over the model parameters. The
integrations can be very difficult to perform, which leads into the field of Bayesian computational methods.

B. Bayesian computational methods

As mentioned in the previous subsection, in BPT often integrals need to be calculated of the joint posterior
distribution of all model parameters. This is necessary to obtain the marginal posterior probability distribution for
the individual quantities of interest or to integrate out the nuisance parameters. Furthermore, the posterior represents
the most complete description of the quantities of interest. However, usually when mentioning experimentally
obtained information on a physical quantity, one is not interested in the full associated probability distribution but
rather in some summary of the distribution. Often this summary comes in the form of a ‘best estimate’ for the
quantity of interest together with some measure of uncertainty, but it may include any kind of summarizing item
such as skewness or kurtosis. The decision on which quantities to use as a best estimate and uncertainty measure,
depends on the problem at hand. However, when the distribution is unimodal (has a single local maximum) and is
more or less symmetric, the mode of the distribution (i.e. the value of the variable where the probability density
reaches a maximum) can be taken as a best estimate. The mode of the posterior distribution is referred to as the
Maximum a Posteriori (MAP) estimate for the parameters of interest (for uniform priors, this comes down to the
maximum likelihood estimate). If the distribution is highly skewed, the mean or the median usually provide better
summarizing items for the posterior. Uncertainty bounds (often iso-probability contours) are best defined based
on the amount of probability that they include, i.e. one calculates credible intervals (the Bayesian analogue of
classical confidence intervals). Depending on the skewness of the distribution, the iso-probability contours may be
asymmetrically distributed around the mode. Alternatively, for more symmetrical distributions the covariance of the
joint posterior or the variance of the marginal posteriors may also be quoted as uncertainty measures. The point
here is that usually moments of a distribution have to be derived in order to summarize the distribution, which
again involves integrating the distribution.

Now, integration of the probability distributions can be difficult when the distribution is intractable, in which case
one needs to resort to numerical integration methods. However, as the number of model parameters—hence the
dimensionality of the integration space—rises, deterministic numerical integration becomes very slow compared to
stochastic integration techniques. This is where the use of Bayesian computational methods comes in. Simulation
techniques such as Markov Chain Monte Carlo (MCMC) are particularly popular.

1) The origins of MCMC: MCMC methods are very popular for drawing samples from (marginal) posterior
distributions. The origins of MCMC lie in an illustrious paper by Metropolis et al. on the computation of high-
dimensional integrals in statistical mechanics [34]. The method was later generalized and improved by Hastings [35],
who viewed the Metropolis algorithm chiefly as a way to sample from high-dimensional probability distributions,
which is precisely its primary modern use. Hastings noted that the Metropolis method involved the transition matrix
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of a Markov chain. He expressed the target distribution to sample from in terms of the invariant distribution π of
the Markov chain. This scheme is presently known as the Metropolis-Hastings (M-H) algorithm, one of several
existing MCMC methods.

In the early 1990s, another popular MCMC method, known as Gibbs sampling, was proposed, based on the
work of Gelfand and Smith [36], who built on the paper of Geman and Geman [37]. The Gibbs sampler is a
related simulation algorithm that is especially useful for sampling multivariate distributions, particularly when the
univariate conditional densities are known, or are easy to sample from. Later, it was shown that the Gibbs sampling
algorithm is in fact a special case of Metropolis-Hastings [38]. The history of the M-H algorithm is summarized
in [39]. Further details on MCMC methods can be found in [40]–[44].

2) The principle of Monte Carlo integration: The principle of Monte Carlo integration is very simple. For
simplicity, we work in one dimension where we want to evaluate the following integral over some domain D:

∫

D
h(θ)f(θ)dθ. (7)

To do this, we can view f(θ) as a (not necessarily normalized) probability density, so that (7) becomes the expected
value of h under f : Ef (h). We now generate a (large) sample θ1, . . . , θn from f . Then, we can approximate (7)
by the empirical average

h̄n =
1

n

n∑

j=1

h(θj). (8)

Indeed h̄n converges almost surely to (7) due to the Strong Law of Large Numbers. As a special case, by setting
h(θ) = θ, θ2, etc., we can approximate the moments of the distribution f , explaining the relevance of Monte Carlo
integration in the current context.

3) The principles of MCMC: The key idea behind MCMC for sampling from arbitrary probability distributions,
is to set up an ergodic Markov chain of random variables (Θ(i)), whose limiting distribution is the target distribution
of interest π. Here, (Θ(i)) refers to state i of the Markov chain2. If π is a multivariate distribution, (Θ(i)) consists
of multiple components Θ

(i)
k and the Markov chain moves in a multidimensional space. The chain’s ergodicity

ensures various properties of convergence and stability [40]. Inferences drawn from running an MCMC simulation
are usually summarized in terms of ergodic averages of the form

ḡn ≡ 1

n

n∑

i=1

g(Θ(i)), (9)

where g is a—possibly vector-valued—function of interest of the chain states and n is the current number of
samples drawn. This represents the Monte Carlo aspect of MCMC. The so-called Ergodic Theorem is the Law of
Large Numbers for Markov chains and guarantees the convergence of ergodic averages [40]. More precisely, the
Ergodic Theorem states that if the Markov chain (Θ(i)) is ergodic, then

P

(
ḡn →

∫
g(θ)π(θ)dθ

)
= 1,

where P denotes probability. For example, if we take g(θ) ≡ θ, then ḡn converges surely to the mean of the
stationary (target) distribution π, and similarly for other moments of the distribution. In practice, for an arbitrary
starting value θ(0), a chain (Θ(i)) is generated using a transition kernel with stationary distribution π, which ensures
the convergence in distribution of the chain to a random variable from π. If the chain is ergodic, the starting value
θ(0) is (in principle) not important.

The question remains how to set up the Markov chain. One way to do this is through the M-H algorithm
that draws samples from approximate distributions, and then corrects those draws to better approximate the target
distribution. The samples (state vectors) are drawn sequentially and the distribution of the draws depends only
on the last value drawn, forming a Markov chain. In the M-H algorithm, the transition from a previous state
Θ(t−1) to the current state Θ(t) of the Markov chain may occur as follows (although there are other possibilities).
Consecutively for all components k of the state vector a new value φk is proposed. The candidate value of the

2It is common practice in probability theory to denote random variables by capital letters and their realizations by lower-case letters.
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component is sampled from a univariate conditional distribution, called the proposal or instrumental distribution
q(φk|θ(t)1 , . . . , θ

(t)
k−1, θ

(t−1)
k , θ

(t−1)
k+1 , . . . , θ

(t−1)
p ), which is easy to sample from. Note that the new values θ(t)j for j < k

are immediately used in the current step of the chain for sampling the value φk, the proposal for θ(t)k . Henceforth
we will use the notation for the current parameter vector: θc ≡ (θ

(t)
1 , . . . , θ

(t)
k−1, θ

(t−1)
k , θ

(t−1)
k+1 , . . . , θ

(t−1)
p ). Now, the

new value φk is accepted or rejected according to a specific criterion, given below. The target density π must also
be available up to some extent: a general requirement is that the ratio

π(φ)

q(φk|θ) , with φ ≡ (θ
(t)
1 , . . . , θ

(t)
k−1, φk, θ

(t−1)
k+1 , . . . , θ(t−1)

p ),

is known up to a constant independent of θ, for all k. This is crucial in Bayesian simulation, since we often only
know the target posterior distribution up to a multiplicative factor (namely the evidence). It is important to note
that knowledge of the functional form of the target density π does not automatically allow to generate samples
from π; hence the use of MCMC.

The M-H algorithm can be summarized in pseudocode as follows.

Algorithm 1 (Metropolis-Hastings)

1: Given θ(t−1) = (θ
(t−1)
1 , θ

(t−1)
2 , . . . , θ

(t−1)
p )

2: repeat
3: for k = 1 → p do
4: Generate

Φk ∼ q(φk|θ(t)1 , . . . , θ
(t)
k−1, θ

(t−1)
k+1 , . . . , θ

(t−1)
p )

5: Let Φ ≡ (θ
(t)
1 , . . . , θ

(t)
k−1,Φk, θ

(t−1)
k+1 , . . . , θ

(t−1)
p )

6: Take

Θ
(t)
k =

{
Φk with probability ρ(θc,φ)

θ
(t−1)
k with probability 1− ρ(θc,φ)

,

where

ρ(θc,φ) ≡ min

{
π(φ)

π(θc)

q(θk|φ)
q(φk|θc)

, 1

}

7: end for
8: until Satisfied

The probability ρ(θc,φ) is called the Metropolis-Hastings acceptance probability. Only in the symmetric case, where
q(θk|φ) ≡ q(φk|θc) does the acceptance depend solely on π(φ)/π(θc), in which case the algorithm is simply called
the Metropolis algorithm. In the general case, if the ratio π(φ)/q(φk|θc) is increased by the proposed value φk,
the proposal will be accepted. Hence, the algorithm preferentially samples in regions of probability space where
most of the probability density of π is concentrated.

Thus, instead of sampling directly from the target distribution, which might be very difficult, or, indeed, analyti-
cally impossible, the M-H algorithm samples from the proposal distribution and then introduces a correction, such
that the Markov chain’s distribution eventually converges to the actual distribution of interest. In order to allow
the Markov chain to efficiently converge to the target distribution, one has to run the chain for an initial period,
called the burn-in. Once convergence has been reached, the M-H algorithm primarily generates samples from the
full, possibly multivariate, target density π. In addition, and most relevant for the application we have in mind, it
is not difficult to prove that every component subsequence Θ

(i)
k , for all k, also forms a Markov chain with limiting

stationary distribution the corresponding marginal distribution

πk(θk) ≡
∫

π(θ)dθ1 . . . dθk−1dθk+1 . . .dθp.

This means that, in effect, MCMC is also a stochastic integration method by providing samples from the respective
marginal distributions [40]. The ergodic averages (9) thus enable to calculate moments of the marginal distributions
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as well. Only the post-convergence samples are used for the Monte Carlo estimation of quantities. To monitor
convergence of the chain, one studies the acceptance probability and time traces of the quantities of interest.

The transitions of the chain depend on q, which in turn depends on the current parameter vector θc. However, in
many applications the proposal distribution only depends on θ

(t−1)
k , not on the other component values. Transitions

should not be taken too small, because we want the support of the target distribution to be explored efficiently. On
the other hand, neither should the transitions be taken too large, because then the chain’s acceptance probability
will become too small.

The samples that are generated by the M-H algorithm are not mutually independent. For one thing, there may be
repeated occurrences of the same value. However, this poses no real problem since we are merely interested in the
convergence of empirical averages (9) to the quantity Eπ[f(Θ)], which is ensured by the Ergodic Theorem since
the Metropolis chain is ergodic.

For an M-H simulation to be efficient, on the one hand the acceptance probability throughout the simulation
should be sufficiently high, but on the other hand the Markov chain still has to be able to move through the entire
support of the target distribution π. A random walk chain is a common choice that satisfies these requirements. A
Markov chain performs a random walk when candidate components Φk are given by

Φk = Θ
(t−1)
k + εt,

where εt is a (small) perturbation with distribution g, independent of Θ(t−1)
k . The random walk Metropolis-Hastings

algorithm thus samples from the proposal distribution centered at the current value of the Markov chain: q(Φk|θ(t−1)
k )

is of the form g(Φk − θ
(t−1)
k ). Common distributions for g include the uniform, the normal, Student’s t and the

Cauchy distributions. The Gibbs sampler arises as a special case of the M-H algorithm when samples from the
univariate conditional distributions πk(θk|θ(t)1 , . . . , θ

(t)
k−1, θ

(t−1)
k+1 , . . . , θ

(t−1)
p ) can be readily obtained at every time

step t [40]. No proposal distribution is needed and none of the samples is rejected, resulting in an acceptance
probability uniformly equal to unity.

C. Integrated Data Analysis

The idea behind IDA is to consider information from several heterogeneous sources, be it theory, calibration
data or measurements from experiments that are either necessary for the calculation of the physical quantities of
interest, or complementary to already available measurements. The latter can be very useful in situations where
individual experiments provide diffuse or even conflicting information on the physical quantities. Combined with
a proper analysis using BPT, this can result in much more accurate results that are compatible with all available
data. At the same time, the integrated analysis permits to quantify systematic uncertainties in the data and to study
their effect on the parameters of interest. This is exactly the situation one faces when comparing Zeff estimates
from bremsstrahlung spectroscopy with the results from CXS. The IDA framework has proven its usefulness in the
diagnosis of fusion plasmas in [2], [4], where it was used for calculating electron density and electron temperature
profiles from Thomson scattering data and interferometry measurements. In [45] measurements from a Thomson
scattering system, interferometer, diamagnetic loop and neutral particle analyzer were combined with an equilibrium
reconstruction, modeling the diagnostic interdependencies using Bayesian graphical models. Recently, lithium beam
emission spectroscopy was combined with interferometry data to obtain full electron density profiles. Together with
hardware improvements, this allowed to increase the temporal resolution by a factor of 400 compared to classical
inversion techniques [46]–[48].

An inherent feature of the IDA approach is that it can be conducted through several stages, gradually increasing
the complexity of the probabilistic model. Hence, depending on the desired level of sophistication, one can start
the analysis with a simple model, describing the uncertainties only roughly. One can then compare the estimates
for the quantities of interest and their uncertainty with the classical approach. As such, it is imperative to first
identify the major sources of uncertainty in the quantities of interest, given the measured data, and rank these
uncertainties in an order of decreasing importance. Then, the uncertainties have to be formally quantified in terms
of a suitable probability distribution. Statistical uncertainties in the data (measured data and calibration data) have
to be modeled through likelihood PDFs, describing the error statistics of the measurement. Systematic uncertainties
can be modeled by introducing nuisance parameters, possibly in a hierarchical model using hyperparameters. The
nuisance parameters subsequently have to be integrated out (marginalized). Uncertainties in the physical model
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itself can be taken into account by introducing and marginalizing proper model flexibility. Although also single
experimental set-ups can be analyzed in this way, we here consider mainly the integration of multiple diagnostics.

1) The IDA recipe: We now outline the basic recipe that can be used for the Bayesian integrated analysis of
(tokamak) diagnostic data. First, estimates have to be determined for the statistical measurement errors. The effect
of the statistical uncertainties is then modeled into an appropriate likelihood PDF. Often the normal distribution is
selected here; a consequence of the Central Limit Theorem since the error is assumed to arise as a result of many
small, independent effects of a stochastic nature. The sum of the associated random variables then approaches a
Gaussian distribution. In a first stage, when little is known about the exact nature of the various uncertainties, their
contribution to measurement uncertainty can be gathered into only a few likelihood PDFs. Likewise, only a few
general nuisance parameters can be used to describe the effect of all systematic uncertainties. In a later stage, the
contribution of each individual uncertainty can be modeled in more detail. This is the approach taken in the present
work, and it is a natural way of working, if one considers that virtually any uncertainty is made up of multiple
‘sub-sources’ of uncertainty.

The next step is to formalize any additional available information into prior PDFs. This could involve, for
instance, the formulation of a prior distribution on the nuisance parameters describing the systematic uncertainties.
The information required to do this can often be obtained from additional (e.g. laboratory) measurements, see
e.g. [4]. If one wants to make the least assumptions possible, one has to use uninformative priors.

Then all PDFs must be combined according to Bayes’ theorem. It specifies how to integrate all relevant
information in a probabilistic framework in order to infer the quantities of interest. The nuisance parameters,
if any, have to be marginalized, integrating out systematic effects and physical model uncertainties.

Eventually, one ends up with the joint posterior PDF of the quantities of interest. One can then sample from the
marginal distributions for each of the parameters, or calculate the marginal moments. In the present context, this
(together with the marginalization of nuisance parameters) is mainly done using MCMC methods. Characteristics
such as the mode or mean of the marginal distributions can then be used as best estimates for the respective
parameters, and credible intervals can be used to construct statistical error bars.

The shape of posterior distributions allows to detect inconsistencies between different diagnostics. This can be
signaled, for example, by a multimodal posterior distribution (with multiple local maxima). On the other hand, it
is clear that if the marginal posterior distribution for a specific physical quantity, derived from measurements by
diagnostic A, is sufficiently similar to the marginal distribution of the same quantity derived from measurements
by diagnostic B, then both diagnostics can be regarded as mutually consistent with respect to the information they
yield on that specific quantity of interest. If this is not the case, then the diagnostics produce inconsistent results.
Thus, by measuring the similarity of the distributions, one may study the compatibility of diagnostic data with
respect to a certain physical quantity. A popular similarity measure for probability distributions that may be used
in this context is the Kullback-Leibler divergence [49]. The incompatibility of diagnostic data is usually caused by
not taking into account a systematic uncertainty or by an oversimplification of the probabilistic model.

Finally, it is possible to study the impact of various experimental and model uncertainties on the marginal
posteriors for the physical quantities, hence on their most plausible value and error estimates. This process is termed
a sensitivity analysis. In practice, it involves reducing, or entirely switching off, individual root uncertainties and
observing the effect on the posterior PDF. By manipulating statistical root uncertainties, one can study their impact
on the final physical quantities and their uncertainty. In addition, once the foregoing IDA analysis has revealed
estimates for the involved systematic uncertainties, one may investigate their influence on the (in)compatibility of
the various diagnostic data sets, by measuring the Kullback-Leibler divergence between the marginals resulting from
the individual measurement sets, while varying the systematic uncertainties. This way, it is possible to detect the
most crucial sources of uncertainty a posteriori. Once the most critical uncertainties have been identified, one can
attempt to reduce them. Thus, IDA permits the optimization of experimental set-ups. Here, also the techniques of
Bayesian Experimental Design can be of assistance, enabling even the optimization of future diagnostics. The idea
is to maximize a utility function that quantifies the information gain on the quantities of interest as measurements
are being taken. More information on this scheme can be found e.g. in [50].

2) Unambiguous forward model invertibility: An obvious but often instructive question that can be posed at the
start of any Bayesian error analysis, is the following: what results does one obtain on the quantities of interest when
no uncertainty on the measurements is assumed? Mathematically, this amounts to solving the forward model for
the quantities of interest and we will demonstrate this initial approach when we will apply IDA to the estimation
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of Zeff in the next section. Naturally, for a unique solution to exist for the inverse problem, the forward model
needs to obey certain regularity conditions. Let us illustrate with a simple example what happens when trying to
make inferences in systems that are not that well-behaved. Suppose the forward model has the following form:

x = θ1θ2,

where x represents a single, infinitely precise measurement depending on two parameters θ1 and θ2, assumed to
be positive. Clearly it is not possible to make useful inferences on, say, θ1 without additional information on θ2.
Rather, there is an infinite number of solutions, depicted in Fig. 4a. Next, suppose there is some uncertainty on
the measurement x, represented, for example, by an additive Gaussian noise term ν with mean zero and standard
deviation σν :

x = θ1θ2 + ν, with ν ∼ N (0, σ2
ν).

As a consequence, the distribution of x given θ1 and θ2, i.e. the likelihood of θ1 and θ2, is also a normal distribution,
with mean θ1θ2 and standard deviation σν :

L(θ1, θ2) = p(x|θ1, θ2) = 1√
2πσν

exp

[
−(x− θ1θ2)

2

2σ2
ν

]
.

This likelihood, a function of θ1 and θ2, is plotted in Fig. 4b for arbitrary values x = 5 and σν = 1. Naturally, since
the forward model does not permit unambiguous determination of both θ1 and θ2, also the case with an uncertain
measurement will not result in useful inferences on θ1 and θ2 simultaneously. To solve this problem, the forward
model could be expanded to contain a measurement yielding additional information on θ1 and θ2, e.g. through a
second measurement y, possibly given by y = θ1/θ2. Another possibility is to include useful prior information
on θ1 or θ2. In any case, before starting the IDA analysis it is always a good idea to first check whether the
forward model is invertible (e.g. assuming infinitely precise measurements) such that the parameters of interest can
be obtained unambiguously, possibly aided by the available prior knowledge. In the simple example we provided
here, it is obvious that the available information is not sufficient to deduce the parameters of interest, but in the
case of a more complicated forward model it might be less discernible. Worse still, when the inverse problem
can not be solved unambiguously, if the analysis is conducted further, deriving the joint and respective marginal
posterior distributions for the parameters of interest, the problem is often not readily apparent. Let us illustrate
the danger by pursuing the Bayesian analysis using the present example. Suppose we know that 0 ≤ θ1 ≤ 10 and
1 ≤ θ2 ≤ 10, but we possess no further (prior) information. Then we might choose a uniform prior distribution that
is non-zero between 0 and 10 for θ1 and non-zero between 1 and 10 for θ2. The marginal posterior distribution
for θ1 is plotted in Fig. 4c. Nothing in this plot reveals that still the system under study is indeterminate. In fact,
as we will experience in the next section, the curve resembles the shape of a distribution one often gets in cases
where the inverse problem is solvable unambiguously. However, although the prior information provides the ranges
of possible values for θ1 and θ2, it is, for example, not possible to suggest any single most probable value for
θ1 and θ2 at the same time. Nevertheless, the marginal distribution in Fig. 4c creates the impression that, on the
contrary, there is a single ‘most probable’ value for θ1 (where the probability density is the highest), given by the
mode of its marginal posterior at about θ1 = 0.65. At the same time, a similar argument holds for θ2. This is of
course nonsense and just an artifact of our choice of integration boundaries during marginalization.

IV. APPLICATION OF IDA TO THE DERIVATION OF A CONSISTENT Zeff

We will now apply the IDA concepts outlined in the previous section to the estimation of Zeff from the integrated
data set consisting of measurements of the bremsstrahlung emissivity on the one hand and individual impurity
concentrations obtained via CXS on the other hand. In the present approach to the problem of the integrated
determination of Zeff , we estimate the value of Zeff locally, usually on the magnetic axis of the plasma. Hence,
we employ the local bremsstrahlung emissivity, obtained via Abel inversion of line-integrated emissivities, as well
as the local concentration of fully stripped carbon C6+ deduced from CXS reactions. We should note, however,
that within the IDA framework it is entirely possible to include the line integration of local quantities into the
forward model and infer estimates of local quantities (radial profiles) from the line-integrated data. This makes
the use of an Abel inversion superfluous. For reasons of simplicity we will not follow this route at present. The
influence from impurity species other than fully stripped carbon will be neglected, as motivated previously, or taken
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into account in the form of a systematic uncertainty (Section IV-C). We propose a very simple forward model and
we work through three stages of sophistication. First, we assume that the data are not affected by any statistical
nor systematic uncertainty. Next, we include some statistical uncertainty and finally we introduce both statistical
uncertainty and a rough systematic uncertainty.

In a more complete study of the uncertainties involved in the integrated estimation of Zeff , one should start
from the raw measurements as registered by the respective detectors. In this paper we will conduct a less rigorous
analysis by considering as the measured data two artificially constructed plasma quantities, ε and δ, defined below.
Both ε and δ are the result of a long chain of calculations, involving many uncertainties. We will summarize these
uncertainties in only a few statistical and systematic parameters. Concretely, suppose we have calculated a value,
at a certain time in a certain discharge on the magnetic axis, for each of the quantities ε and δ, defined as follows:

ε =
εff
√
Te

Cḡff
, (10)

δ =
∑

i

Zi(Zi − 1)ni. (11)

The sum is over all impurity species i. Taking into account only C6+ as the dominant impurity species in the core
plasma, we get δ = ZC(ZC − 1)nC = 30nC. This means that ε is related to the measured local (magnetic axis)
bremsstrahlung emissivity, while δ can be derived from the measured local CXS C6+ density. Now, from (2) and
(5), at every time instant ε and δ are connected to the local ne and Zeff through

{
ε = ne

2Zeff

δ = ne(Zeff − 1)
. (12)

This constitutes our forward model. Hence, apart from Zeff , we will also consider ne as a quantity of interest.
Indeed, the density is affected by some amount of uncertainty as well. Thus, due to the strong correlation of ne

with Zeff , both quantities should be estimated jointly. From the ‘measurements’ ε and δ, possibly considered to be
affected by statistical or systematic uncertainty, we want to derive estimates for ne and Zeff . Note that the quantity δ
has an implicit dependency on ne through the beam attenuation. Therefore, part of the uncertainty on δ is made up
of uncertainty on whatever measurement we use for the electron density. In addition, we can compare the electron
density estimate from the model (12) to the density measured by other diagnostics, for example through Thomson
scattering or interferometry. At a later stage, we will also explicitly incorporate electron density measurements
from these diagnostics, where we will cover the statistical uncertainties on the associated density measurements.
Because of the correlation structure between Zeff and ne, this is likely to increase the accuracy of not only the
density estimates, but also the Zeff values.

A. Deterministic model inversion

The model (12) is a system of two equations, with two data (ε and δ) and two unknowns (ne and Zeff ). If we
assume that no measurement error was made, it turns out we can solve this system exactly. Hence, we presume
also a zero error on ne and Zeff . The solution can already teach us a lot about the more realistic problem, where
measurement error is present. After some simple algebra, we find the following solutions of (12):





ne,inv =

√
ε

Zeff ,inv

Zeff ,inv =
2ε+ δ2 ± δ

√
4ε+ δ2

2ε

. (13)

It is easy to see that the solution for Zeff with the minus sign in (13) is always smaller than 1, so we will no longer
consider it, nor its associated solution for ne.

We will calculate the solutions (13) from measurements of ε and δ for two JET discharges where only fully
stripped carbon was monitored by the CX system. In Section IV-C we will describe the influence from other
impurity species in terms of systematic uncertainties on the data. In order to better visualize the estimation results,
we work with time traces of measurements ε and δ, and we also estimate ne and Zeff time traces. It should be
noted that still the number of input data is two, since we will process all time points independently.
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We selected the JET discharges #61346 and #61348, the former for which the time evolution of the on-axis
continuum and CX Zeff was already shown in Fig. 3c. For completeness, Fig. 5a shows the temporal evolution for
discharge #61346 of the on-axis ne, Te, εff and nC, during operation of the neutral beam in JET octant 8. The
signals for the derived parameters ε and δ are also depicted. Fig. 5b gives a similar overview for pulse #61348.
The error bars shown correspond to the relative errors given in Table I. The error bars on ε and δ were calculated,
via (10), assuming that the uncertainties on the other quantities are of a pure statistical nature, corresponding to a
single standard deviation. We will have to come back to this assumption later on. Simple Gaussian error propagation
was used as a first approximation. This yields 20% for the relative error on ε and 35% for δ. Fig. 6a now shows
for pulse #61346 the solution ne,inv obtained from (13), and the comparison with the measured ne signal. The
density measurements at JET we use in our work are derived from LIDAR Thomson scattering, cross-checked
with interferometry measurements. In short, we will refer to this measurement as the ‘LIDAR’ measurement. The
signal for ne,inv is systematically higher than the LIDAR density signal. Fig. 6b shows the continuum and CX
Zeff signals, as well as the solution Zeff ,inv. The solution lies below the continuum and CX Zeff , hence closer
to the CX Zeff . This seems rather unlikely and the reason will turn out to be that our model does not take into
account systematic uncertainties (see Section IV-C). Similar remarks are valid for JET pulse #61348. Observing
Figs. 6c and 6d, it can be noticed that the solution ne,inv for the density again does not match the LIDAR density,
whereas the solution for Zeff is relatively close to the CX Zeff . The figures also show the error bars for the signals,
the width of which we define again as a single standard deviation. Once more, the error bars were calculated by
Gaussian error propagation analysis from the errors on ε and δ. The relative error for the solution ne,inv is about
17%: considerably larger than for the LIDAR density (5%). The error bars for the two ne estimates in general do
not overlap two-by-two, indicating a consistency problem (see Section IV-B3). The relative error for the calculated
Zeff from model inversion is about 25%, the same as for the continuum Zeff , and slightly higher than the error bar
on the CX Zeff . The error bars for the CX and inverted Zeff estimates overlap two-by-two, but generally not with
the error bars on the continuum Zeff . In any case, because of the clear failure of the model to predict the LIDAR
ne measurements (due to the systematic discrepancies), we cannot accept the present solutions of both ne and Zeff .

Concluding, the direct inversion of the system of equations (12) is an instructive exercise, but we have no measure
indicating that these estimates are any better than either the continuum Zeff or the CX Zeff values we had before.
To improve on this, we need to carry out a better modeling of the uncertainties on the data.

B. Statistical uncertainties

1) Model definition: As a next step, in order to make the model somewhat more realistic, we will consider some
uncertainty on the data before inverting the model. We again took two measurements ε and δ, and we wish to
estimate from this ne and Zeff , consistent with both measurements. To begin with, we assume that all uncertainties
on the data are of a statistical nature, not systematic. We model the statistical uncertainties entering the data through
two uncertainty terms νε and νδ: {

ε = ne
2Zeff + νε

δ = ne(Zeff − 1) + νδ
, (14)

where ν = [νε, νδ]
T, which, by the Central Limit Theorem, we assume to be distributed independently identically

Gaussian:

ν ∼ N (0,Σν) , Σν ≡
[
σ2
ε 0
0 σ2

δ

]
.

Here, σε and σδ denote the respective standard deviations. The fact that we take the noise on ε to be independent
of the noise on δ, means that the measurements should have been performed with two different instruments. In our
case, this is not really true, as we used bremsstrahlung measurements from the background of the CX spectrum.
However, since both ε and δ are not raw data, we expect the error statistics to be quite different. Therefore, we
will assume no noise correlation as yet, an assumption that can be relaxed in the future. The standard deviations
σε and σδ describe only the statistical errors on the data. As such, to define their values we should not accept the
previously quoted relative errors (20% on ε, 35% on δ), since these take into account any systematic discrepancies
as well. Instead, to estimate the statistical error on ε and δ, assumed to be normally distributed, we fit a Gaussian
to a sample of ε (δ) values using Maximum Likelihood. These values were obtained from a plateau region in a
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discharge, where both ε and δ were assumed to remain stationary. Hence, the variability of ε (δ) in this sample
was presumed to be due only to statistical fluctuation (fixed mean). The thus acquired sample standard deviations
resulted in a relative error roughly given by 15% for ε and 10% for delta. Henceforth, we will use these numbers,
which we checked for several discharges, for the relative errors on ε and δ. A similar procedure gave a relative
statistical error of 5% on ne. This is the same value as mentioned in Table I, suggesting that the uncertainty on ne

is entirely due to statistical fluctuations. We will adopt this point of view for the remainder of our analysis.
Following the IDA recipe, we now construct the forward model in terms of appropriate likelihood functions.

Since the noise terms νε and νδ both have a normal distribution and are independent, we can write the likelihood
for the two unknown parameters ne and Zeff as:

L(ne, Zeff) = p(ε, δ|ne, Zeff , I)

=
1√
2πσε

exp

[
−
(
ε− ne

2Zeff

)2
2σ2

ε

]

× 1√
2πσδ

exp

[
−(δ − ne[Zeff − 1])2

2σ2
δ

]
,

(15)

where I represents any additional information we might possess, apart from the prior information on ne and Zeff .
We will call the first likelihood (containing ε) the continuum likelihood, and the second likelihood (containing δ)
the CX likelihood. Next, we need to decide on the prior information that we are willing to trust. Initially, we do
not wish to assume a lot of prior information and we only impose some boundaries between which ne and Zeff

are known to lie with ‘certainty’. On JET the following safe intervals can be proposed:

ne ∈ [0, 15]× 1013cm−3,

Zeff ∈ [1, 5].
(16)

We model this prior information in two, relatively uninformative, uniform priors Une
and UZeff

, cut off at the
respective boundaries. Following Bayes’ theorem, Equation (6), we can now write down a posterior distribution
(for each time point), which matters only up to a proportionality factor:

p(ne, Zeff |ε, δ, I) ∼ p(ε, δ|ne, Zeff , I)p(ne, Zeff , I)

∼ exp

[
−
(
ε− ne

2Zeff

)2
2σ2

ε

− (δ − ne[Zeff − 1])2

2σ2
δ

]
Une

UZeff
. (17)

Furthermore, we can include relevant information on ne through additional LIDAR measurements. We assume
a statistical uncertainty on the LIDAR density measurements and we can encode this information in an extra
independent Gaussian likelihood factor with a standard deviation σne

given by the relative error of 5% on the ne

measurement. This likelihood is to be multiplied with (17), so the posterior becomes:

p(ne, Zeff |ε, δ, ne,L, I) ∼ p(ε, δ, ne,L|ne, Zeff , I)p(ne, Zeff |I)

∼ exp

[
−
(
ε− ne

2Zeff

)2
2σ2

ε

− (δ − ne[Zeff − 1])2

2σ2
δ

]

× exp

[
−(ne,L − ne)

2

2σne
2

]
Une

UZeff
,

(18)

where ne,L denotes the available LIDAR ne measurement.
2) Posterior calculations:

a) Measurements of ε and δ: Suppose we have made a (series of) measurement(s) of ε and δ, excluding
LIDAR measurements. Since we essentially search for the two unknown parameters ne and Zeff , we work in a
two-dimensional parameter space. For problems of such low dimensionality, it is still computationally feasible to
calculate the posterior density (17) on a (sufficiently large) grid of values for ne and Zeff . Fig. 7 gives a contour
plot of the (normalized) posterior density resulting from such a procedure. In order to make inferences about ne

or Zeff individually, we have to marginalize the joint posterior. No closed-form expression could be found for the
integral over ne, so in order to calculate the marginal posterior for Zeff , numerical integration is required. In the
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present simple case, we did not need MCMC to accomplish this as we could just sum over the parameter values
on the (sufficiently fine) grid. We took an ε and δ value from pulse #61346 at 5.7 s and we calculated the marginal
posterior distributions; the results are displayed in Fig. 8. We have chosen uniform priors, therefore it is correct
to say that the modes of the marginal posteriors (i.e. the MAP estimates) equal the respective solutions of the
deterministic model (12). A measure for the uncertainty at the maximum of the joint posterior is given by the
covariance matrix of the distribution. The covariance can be approximated by the inverse Hessian at the maximum.
In our case, if p denotes the posterior, the Hessian is given by

[
∂2 log(p)
∂ne

2

∂2 log(p)
∂ne∂Zeff

∂2 log(p)
∂Zeff∂ne

∂2 log(p)
∂Zeff

2

]
.

In effect, this comes down to approximating the joint posterior at the maximum by a Gaussian. The diagonal
elements of the covariance matrix give the posterior variances on ne, respectively Zeff . In addition, the form of the
joint posterior, Fig. 7, reveals the dependence between Zeff and ne

3. The off-diagonal elements of the covariance
matrix give the cross-correlation coefficients between Zeff and ne. However, as mentioned before, the joint and
marginal distributions contain the most information on the parameters ne and Zeff , given the model, the data and
the error bars on the data. Another measure of uncertainty is the standard deviation of the marginals, particularly
suited when the skewness of the marginals is limited. We calculated the marginal posterior mean and standard
deviation for ne and Zeff at each time point. The results, shown in Figs. 9a and 9b, are not much different from
the signals obtained via deterministic inversion of the model (i.e. the MAP estimates). The reason is the almost
zero skewness of the marginal distributions (visible in Fig. 8), such that the marginal posterior mean is about the
same as the mode. Therefore, again the LIDAR measurement is not well approximated. Incidentally, it is needless
to say that the marginal posterior distributions are not necessarily as symmetric around their respective modes as
in the present example, and in many cases they can be considerably skewed.

The error bars on the estimated density and Zeff are much smaller than in the case of deterministic inversion
(about 10% for ne, 5% for Zeff ). The main reason is, of course, the fact that in the present case for computing the
relative error on ε and δ, we have taken into account only the purely statistical uncertainty on the data. Nevertheless,
for completeness we repeated the analysis using the same error bars on ε and δ as assumed in Section IV-A (20%
on ε, 35% on δ). This resulted in an average 15% relative error on the estimated ne and 16% on Zeff . Both are
still smaller than the errors found using the Gaussian error propagation in deterministic model inversion. We can
conclude that in the present example the Bayesian analysis results in smaller error bars than the Gaussian error
propagation. This is not always the case and there are situations where the advantage of a Bayesian analysis is
marginal and where a Gaussian procedure suffices.

b) Measurements of ε, δ and ne,L: We now turn to the case where not only ε and δ, but also a LIDAR electron
density measurement ne,L is given, each with its respective statistical error. We perform the same analysis as in
the previous subsection, again starting from the measurements of JET pulse #61346 at 5.7 s. However, we now
work with the posterior given in (18). The marginal posteriors for ne and Zeff are shown in Fig. 10. According to
our expectations, and comparing to Fig. 8, the characteristic width of the marginal posterior for ne has shrunken
considerably with the inclusion of the extra density measurement. Again, we calculated the marginal posterior mean
and standard deviation for ne and Zeff at each time point. The results are displayed in Figs. 11a and 11b. The
estimate for ne now matches the LIDAR density much better than in the case where only the measurements ε and
δ were used, with still slightly smaller error bars (about 5%). Of course, this is largely due to the high trust we
have chosen to put in the LIDAR (5% statistical error as well). The estimate for Zeff is now about the same as the
CX Zeff ; hence it is closer to the CX Zeff compared to the case without extra LIDAR measurements. The relative
error on the Zeff estimates is about 4%. Similar results were observed for other discharges.

3) Consistency analysis: We would now like to visualize the degree of consistency of the various measured data
sets. To this end, we made an overview of the marginal posterior distributions for ne and Zeff , taking into account
various (combinations of) data sets. As an example, we took again JET pulse #61346 at 5.7 s. Fig. 12a presents the
normalized marginal distributions for ne for a posterior containing, respectively, a combination of continuum and
CX likelihoods, continuum and LIDAR, CX and LIDAR and finally a combination of all three likelihood factors.
The posterior densities for Zeff are shown in Fig. 12b. The marginals for ne and Zeff for the combination of all

3A multimachine database yielded the following scaling relation between Zeff and the line-averaged density n̄e: Zeff − 1 ∼ n̄2
e [51], [52].
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three likelihoods are symmetric, bell-shaped curves, so their maximum corresponds to the value of the estimated
ne, respectively Zeff at 5.7 s, displayed in Figs. 11a and 11b.

The most striking features of this overview of marginal posteriors are the following. The density estimated
from the combination of continuum and CX likelihoods (i.e. approximately the maximum of the solid curve), is
considerably higher than the LIDAR density. This is a result already obtained in Fig. 9a. In addition, judging from
the Zeff marginals in Fig. 12b, the consistency between the continuum and CX data, each in combination with
LIDAR measurements, is found to be negligible. This can be concluded from the small degree of overlap of the
respective probability distributions. An integrated analysis of these data sets gives rise to the posterior distribution
represented by the dotted curve. This marginal mostly overlaps with the CX-LIDAR density, indicating almost
perfect consistency. However, the Zeff marginal obtained from all three data sets is not at all consistent with the
continuum-LIDAR marginal. In addition, note that the continuum-LIDAR marginal is substantially broader than the
CX-LIDAR marginal. Thus, the Zeff estimated from the continuum data has a considerably larger statistical error
bar than the Zeff derived from CXS.

We anticipate that a more sophisticated IDA scheme, where more uncertainties are modeled, or where the
uncertainties are modeled in more detail, will reveal the sources of uncertainty that are responsible for the here
observed data inconsistency. In the next subsection, we will see that this is actually the case. Indeed, it will become
clear that in general one should not neglect the effect of systematic uncertainties on the input data. If we do not
model all sources of uncertainty to a sufficient extent, in order to obtain intrinsic data consistency, we should not
expect that our estimated Zeff brings us much closer to the real, physical Zeff value. Thus, the degree of consistency
of the total data set in an IDA model can be seen as a measure for the quality of the corresponding parameter
estimates obtained via the IDA analysis.

C. Statistical and systematic uncertainties

1) Model definition: We will now include some basic systematic uncertainties on the ε and δ measurements.
One of the critical questions is whether this will increase the overall data consistency, compared to the case where
only statistical uncertainties are modeled. We will also explicitly incorporate LIDAR density measurements, but we
will not consider any systematic uncertainty on the LIDAR density. The statistical uncertainties on the input data
ε and δ were taken of the same magnitude as in the previous subsection. In any case, the results concerning best
estimates are only weakly dependent on the exact value of the statistical uncertainties [7].

As a first approximation we will assume that the measured data ε and δ may be off the real physical value by a
scale factor. This scale factor may or may not be of interest, thus determining its status as a parameter of interest,
or rather as a nuisance parameter, respectively. Let sε and sδ stand for the scale factors belonging to the ε and δ
measurements, respectively. Then the forward model is given by





ε = sεne
2Zeff

δ = sδne(Zeff − 1)

ne,L = ne

. (19)

For example, the factor sδ may, amongst others, roughly account for impurity species other than fully stripped
carbon, which could influence the value of Zeff . If we suppose no measurement error, the density is assumed to
be given exactly by ne,L and the forward model essentially reduces to a system of two equations (measurements
ε and δ) with three unknowns: Zeff , sε and sδ. Clearly, without sufficient additional information on the three
unknowns, it does not make much sense to try to derive a most probable or mean value for Zeff , see the discussion
in Section III-C2.

There are two possibilities now. Either we seek to deduce some useful prior information on Zeff , sε and sδ,
or we need to gather more data. Instructive prior information could be the result of external measurements using
other diagnostics. In a more detailed model, a systematic discrepancy on any quantity that enters the forward model
could be quantified by additional laboratory measurements. Since such measurements are themselves affected by
statistical uncertainty, this leads to a prior distribution on the corresponding parameter that describes the particular
systematic uncertainty under study. A similar procedure was carried out in e.g. [4]. However, at this point we do
not possess any objective informative prior information on the real Zeff or the scale factors. In fact we are in a
situation that arises rather frequently in the analysis of diagnostic data. Indeed, in many cases the diagnostician is
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conscious of systematic uncertainty in the data, but it might be difficult to pinpoint where and how exactly this
uncertainty enters the forward model. It may also be, as mentioned in the introduction, that trying to locate and
quantify systematic uncertainties would require a disproportionate amount of effort and time. In such cases the
procedure followed in the present work can be of assistance. The idea is, as outlined above, to include at different
places in the forward model some very general parameters characterizing the systematic uncertainty, represented
here by the scale factors sε and sδ. Next, we are going to demand consistency between measurements performed
in different time slices within a single discharge or within several discharges. Meanwhile, we assume that the
parameters describing the systematic uncertainty remain constant over the considered time slices. This condition is
reasonable in many situations and at least often can be presumed to be met to a sufficient extent. In the present case,
we are able to acquire entire time traces for our measurements and this provides us with a lot more information.
Hence, suppose we collect measurements at two different time instants t1 and t2 during a discharge, or in different
discharges. We demand the plasma conditions at the two time instants to be sufficiently different, such that the
variability of the data between t1 and t2 is not only caused by statistical fluctuations. Let us, as just discussed, also
assume that the scale factor sε is the same at both t1 and t2 and similar for sδ. At the time instants t1 and t2 we
then have 




ε1 = sεne
2
,1Zeff ,1

δ1 = sδne,1(Zeff ,1 − 1)

ne,L,1 = ne,1

ε2 = sεne
2
,2Zeff ,2

δ2 = sδne,2(Zeff ,2 − 1)

ne,L,2 = ne,2

, (20)

with the subscripts 1 and 2 referring to t1 and t2, respectively. For zero measurement error, this is equivalent to
a system of four equations with four unknowns (Zeff ,1, Zeff ,2, sε and sδ). This system can be solved exactly, as
can be (and should always be!) readily checked. Therefore we can conduct a well-behaved IDA analysis to infer
estimates of ne,1, ne,2, Zeff ,1, Zeff ,2, sε and sδ. For two time instants the joint posterior density is given by

p(ne,1,Zeff ,1, ne,2, Zeff ,2, sε, sδ|ε1, δ1, ne,L,1, ε2, δ2, ne,L,2, I)

∼ exp

[
−
(
ε1 − sεne

2
,1Zeff ,1

)2
2σ2

ε,1

− (δ1 − sδne,1[Zeff ,1 − 1])2

2σ2
δ,1

− (ne,L,1 − ne,1)
2

2σ2
ne,1

]

× exp

[
−
(
ε2 − sεne

2
,2Zeff ,2

)2
2σ2

ε,2

− (δ2 − sδne,2[Zeff ,2 − 1])2

2σ2
δ,2

− (ne,L,2 − ne,2)
2

2σ2
ne,2

]

×Une ,1Une ,2UZeff ,1UZeff ,2UsεUsδ .

(21)

Now, although the forward model (20) is invertible, there is still a difficulty associated with the posterior density
(21). The problem is that the joint density, hence also the marginal distributions, are found to be very broad, i.e.
the density is smeared out over a very large volume in the parameter space. As a result, not only is it hard to
estimate such a distribution, but it also does not make much sense to summarize a similar distribution by point
estimates for the quantities of interest, which would anyhow have very large statistical error bars attached to them.
The reason is mainly the fact that we have introduced, through the uniform priors, an enormous uncertainty in
both the values of Zeff and the systematic uncertainties sε and sδ. We chose to remain extremely ignorant about
Zeff and the scale factors, and the broad posterior is the price that is paid. In the present situation, we solved this
problem as follows. We improved the statistics of the data by selecting a phase in the discharge wherein the plasma
conditions are assumed to remain stationary. Referring to the model (20), this should be a region corresponding to
time point t1. The constancy of the relevant plasma conditions during this phase may be checked, for example, by
monitoring mainly the electron density and perhaps also the local continuum and CX Zeff time traces throughout
the discharge. Next, we considered a second phase (corresponding to t2), again characterized by stationary plasma
conditions, which should be, however, systematically different from the conditions in the first region. This way
we can include in the posterior density the statistics of all data points within these two regions. Hence, the joint
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posterior density becomes

p(ne,1, Zeff ,1, ne,2, Zeff ,2, sε, sδ|ε1, δ1,ne,L,1, ε2, δ2,ne,L,2, I)

∼ exp

{
−

n1∑

i=1

[(
ε1,i − sεne

2
,1Zeff ,1

)2
2σ2

ε,1,i

+
(δ1,i − sδne,1[Zeff ,1 − 1])2

2σ2
δ,1,i

+
(ne,L,1,i − ne,1)

2

2σ2
ne,1,i

]}

× exp



−

n2∑

j=1

[(
ε2,j − sεne

2
,2Zeff ,2

)2
2σ2

ε,2,j

+
(δ2,j − sδne,2[Zeff ,2 − 1])2

2σ2
δ,2,j

+
(ne,L,2,j − ne,2)

2

2σ2
ne,2,j

]


×Une ,1Une ,2UZeff ,1UZeff ,2UsεUsδ .

(22)

Here, the subscript 1 refers to the conditions in phase 1; likewise for the subscript 2. We now observe vectors of
ε, δ and ne,L measurements, but note that we estimate only a single ne,1, ne,2, Zeff ,1 and Zeff ,2, characterizing the
conditions in the respective plateau phases. n1 and n2 are the number of data points considered in phase 1, resp.
phase 2. Finally, we note that phase 2 may—and often will—be part of a different discharge. The only requirement
is that the sources of systematic uncertainty should be not too different in the two phases, such that sε and sδ can
be deemed constant between the phases. Ideally, discharges should be selected that are part of the same physical
program.

The prior distributions for ne,1, ne,2, Zeff ,1 and Zeff ,2 are chosen similarly as in the case of only statistical
uncertainty. The prior distributions for the scale factors should be sufficiently uninformative. Several (relatively)
uninformative distributions for the scale parameters were tested, but eventually simulations on an artificial data set
pointed out that a simple uniform distribution performs best. The uniform prior distributions Usε and Usδ for sε,
respectively sδ just express the required positivity of both scale factors.

2) Posterior calculations:
a) Artificial data set: To sample from and marginalize the joint posterior distribution, we used the Metropolis-

Hastings algorithm. This MCMC algorithm is a convenient tool in the present situation because we are dealing with
six parameters to be estimated (ne,1, ne,2, Zeff ,1, Zeff ,2, sε and sδ) and since the density (22) does not correspond
to any known density. We first checked the estimation of the posterior density in the case of an artificial data set.
Known values for ne and Zeff were assumed, at two different phases in an artificial discharge, with 15 data points
per phase. From this, values for ε and δ were calculated, according to (20), using artificial values for sε (= 0.5)
and sδ (= 1.8). Next, Gaussian noise was added so as to obtain the relative statistical errors cited above (15% on
ε, 10% on δ and 5% on ne,L). A random walk Markov chain was run, accepting or rejecting samples according
to the M-H acceptance probability and using the Cauchy distribution as a proposal distribution (in physics also
known as the Lorentz distribution). This distribution has the advantage of being rather peaked on the one hand,
but still having broad tails, so that the probability of sampling far away from its mode (i.e. the current value in
the Markov chain) is sufficiently high. This ensures that the support of the posterior is scanned effectively. The
Cauchy distribution for θ with location parameter x0 and scale parameter κ has the following probability density:

C(θ|x0, κ) = 1

π

κ

(x− x0)2 + κ2
, κ > 0.

Since the Cauchy distribution is symmetric in its argument versus its location parameter, it drops out of the
acceptance probability, and we effectively use the Metropolis algorithm. The Cauchy inverse cumulative distribution
function for a probability p is given by

F−1(p|x0, κ) = x0 + κ tan[π(p− 1/2)],

which can be used to sample a proposal value for the parameters of interest, based on the current value x0 and
given a probability p that is sampled from a uniform distribution. This way, the Markov chain becomes a random
walk chain, by the definition given in Section III-B3. The scale parameter κ has to be chosen so as to maintain a
post-convergence acceptance probability in the range 40% – 60%. This is a level recommended by Roberts, Gelman
and Gilks [53] based on empirical studies, providing good convergence properties of the chain. The burn-in period
was chosen to be 3000 samples, while the Monte Carlo period was 50,000 samples long.

The a priori chosen values for the parameters of interest are given in Table II. Estimates for the parameters
are also mentioned, together with the respective statistical error bars. Since several of the marginal distributions
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are often relatively skewed (see below), we chose the marginal posterior means as estimates for the parameters.
Again because of the skewness of the marginal distributions, the error bars were obtained from the distributions
by constructing a 100(1− α)% Bayesian credible interval around the respective means of the marginal posteriors.
The interval was created such that 100(1 − α)/2% of probability was situated toward the left of the mean and
100(1− α)/2% toward the right. By choosing α = 0.317 we get a 68.3% interval, which is the same probability
contained within the interval [µ− σ, µ+ σ] for a normal distribution with mean µ and standard deviation σ. Thus,
we obtain a similarity between the credible interval and the usual 1σ intervals quoted in Gaussian error analysis as
error bars on a measurement. Moreover, if one of the marginal posterior distributions is skewed e.g. towards the
right, the corresponding credible interval will be asymmetric around the posterior mean and so will the associated
error bar. This indicates a larger uncertainty on the measurement toward the right of the mean than toward the
left, corresponding to our intuition. The true parameter of interest will lie with a probability of (1− α) within the
specified credible interval. Note that in a Bayesian setting, the latter is a valid statement, in contrast to the case
of a confidence interval in frequentist statistics. Indeed, in frequentist statistics the interval itself is random and
one can only speak of the relative frequency of the true parameter lying within a long series of realizations of
the interval, obtained from a series of data samples. We will denote the difference between the marginal posterior
means and the upper or lower boundary of the corresponding credible interval by the common term ‘absolute
error’, from which a relative error can be deduced as well. If a (post-convergence) MCMC sample {θi} of the
marginal posteriors is available, as in the present case, a credible interval as described above is constructed easily
by calculating sample quantiles as follows. Sort the samples in a rising order, denoted by {θj}, j = 1, . . . , n, and
locate the sample, say with index jm, that is closest to the mean of the distribution. Then, in the sorted MCMC
sample find the samples with index jl = jm − ⌊

1−α
2 n

⌋
and jr = jm +

⌊
1−α
2 n

⌋
, where b.c denotes the integer part

of its argument. The interval [θjl , θjr ] is the sought-after credible interval (see [54] for an explanation and [55] for
a derivation of properties such as consistency and asymptotic normality of the sample quantiles). On the basis of
the obtained post-convergence MCMC samples, we constructed normalized histograms for the estimated marginal
posterior densities for the parameters of interest. These are shown in Fig. 13, with the mean denoted by a vertical
line and the (approximate) 68.3% credible interval indicated by a darker shade in the histogram. The histograms for
ne,1 and ne,2 are well approximated by a Gaussian, while the histograms for Zeff ,1, Zeff ,2, sε and sδ have substantial
non-zero skewness. This is reflected by the symmetric or asymmetric error bars in Table II. The traces4 (burn-in
plus Monte-Carlo phase) of the quantities of interest during the MCMC sampling indicate good convergence of the
chain; they are given in Fig. 14. A zoomed display of the trace for ne,1 is given in Fig. 15, showing a clear burn-in
period of some 100 samples, starting from an arbitrary initial value, after which the Markov chain converges to a
stable distribution. Note also how, according to the M-H scheme, not every move of the chain is accepted, resulting
in an acceptance probability of about 50%.

We can conclude from this analysis using an artificial data set that the quantities of interest are well estimated.
Fig. 13 clearly shows that the marginal posterior mean provides a better point estimate for the quantities of interest
compared to the marginal posterior mode in case the marginal posterior is skewed. This can only be obtained
through the estimation of the full posterior distribution—a clear advantage over the estimation of the modes using
Maximum a Posteriori. Our analysis also allows us to construct the credible intervals and we should note that the
error bars on the values of Zeff and the scale factors may become relatively large. Finally, we stress that deterministic
inversion of the forward model would not be helpful here, since it does not permit us to make use of the improved
statistics provided by including multiple data points per phase.

b) Real data set: We now turn to a real data set obtained from a set of discharges at JET, mentioned in
Section II-C. We will select data points, on the magnetic axis, for phase 1 from a period in a first discharge where
the LIDAR density assumes a plateau phase, in the sense that the remaining variability in the measurements is
expected to stem from statistical fluctuation only. This means that ε and δ also remain in an approximate plateau
phase during this period and this is a first assumption. Next, in a similar fashion we obtain data for phase 2
from a second discharge. However, the mean value of at least ne in the second discharge should be systematically
different from the values in the first discharge, i.e. the difference should not be due to statistical fluctuation only.
Otherwise, the forward model theoretically becomes not invertible, while in practice we will obtain impractically

4An MCMC trace for a certain parameter of interest is the sequence of values adopted by the Markov chain in sampling from the associated
marginal distribution. It should not be confused with a time trace of a plasma quantity during a discharge.
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broad posteriors. The data for phase 2 may also originate from the same discharge, again provided the above
conditions are fulfilled, but discharges with two plateau phases at different levels of the plasma quantities are less
common. In addition, the data should be modeled reasonably well by the forward model, meaning in particular that
the scale factors sε and sδ should be more or less the same in the two phases. We expect this to be true at least
for discharges belonging to the same physical program and this is a second assumption.

The LIDAR density for a first couple of JET discharges (#61346 and #61348, part of the physical program
mentioned in Section II-C) from which data were used, is shown in Fig. 16. From each discharge, 15 samples were
extracted for constructing the plateau phases, indicated in the figure as well. Next, the posterior distributions were
estimated using MCMC, similar to the analysis using artificial data. Again, ε, δ and ne,L were taken to be normally
distributed with relative errors quoted above; this is a third assumption. We found the estimates of the marginal
posterior means to be rather independent of these error levels, although the credible intervals are, of course, more
strongly influenced by these error bars. The normalized histograms obtained from the MCMC samples are given
in Fig. 17, while the best estimates of the parameters of interest in terms of the marginal posterior means, together
with the statistical error bars based on the credible intervals, are summarized in Table III. The marginals for Zeff ,
sε and sδ are relatively skewed (non-Gaussian) distributions. Therefore, estimation of the parameters of interest
through the posterior mean yields rather different results than via MAP.

Let us compare for discharge #61346 the estimated value of Zeff to the value, averaged over all samples in
plateau 1, found in the case where only statistical uncertainties were modeled. Plateau 1 is defined by the region
depicted in Fig. 16 (#61346) and the mean value of the Zeff signal obtained in Section IV-B (including LIDAR
measurements) within this region is about 1.6. This is significantly lower than the value of about 2.2, estimated for
the case where the systematic uncertainties are taken into account. Analysis of other discharges points out similar
discrepancies. Thus, systematic uncertainties definitely play a role in the present situation and they should be taken
into the analysis. This will be confirmed by the consistency analysis below.

A similar procedure was carried out on data from JET discharges #61347–#61348 and the results are given in
Table IV. Comparing with Table III, first we note that the estimated Zeff values are, well within the 68.3% error
bars, consistent between the two analyses, i.e. about the same Zeff value is found in Tables III and IV for pulse
#61348, as it should be. Second, we see that the estimated density corresponds very well to the LIDAR density,
which is a consequence of the low statistical uncertainty that we assumed on the LIDAR measurement. Third, the
estimated values for sε correspond very well between both cases. Similarly, the values for sδ are comparable and
at least can be deemed mutually compatible in view of the error bounds on the estimates (which may become
rather large). This means that, as anticipated, the systematic uncertainties in the discharges we analyzed appear to
be characterized by roughly the same values of sε and sδ. Fourth, comparing the relative errors on the estimated
values for Zeff with the ones given in Table I, we see that in several cases we have succeeded in reducing the Zeff

error bars considerably, which are now, by the forward model, assumed to be of a pure statistical nature. The width
of the error bars is, however, strongly dependent on the statistics of the data, i.e. the number of samples included
in each of the plateau regions. Therefore, further reduction of the residual statistical error is possible by selecting
broader plateau regions. Finally, the estimated factor sε is in both cases well above one, while sδ is well below one.
Therefore, in the discharges analysed, the ε measurements, i.e. the continuum data, appear to be overestimated. By
the forward model (20) and since the on-axis ne is assumed to be measured (through LIDAR Thomson scattering
and interferometry) with sufficient precision, this would mean that the continuum Zeff is an overestimate of the
real physical Zeff . Similarly, the real Zeff appears to have a tendency to be higher than the CX Zeff . One possible
reason is the fact that in the derivation of the CX Zeff only C6+ has been considered as an impurity, whereas the
influence of other impurities may not be negligible in the present case.

Next, we applied the same scheme to data from the discharges #61346–#61348, but now at a normalized minor
radius ρ of about 0.55. Similar statistical errors were found on the data as those obtained on the magnetic axis.
As noted before from Fig. 3d, at ρ = 0.55 the continuum and CX Zeff are systematically inconsistent. However,
since the average ratio of the continuum to the CX Zeff is different from the typical ratio on the magnetic axis,
the scale factors sε and sδ modeling the systematic errors at ρ = 0.55 are expected to be different from those
on the magnetic axis. This is confirmed by the results of the analysis given in Table V. The estimated Zeff now
corresponds in absolute value very well to the CX Zeff . The nonphysical values (below 1) of the continuum Zeff

are clearly rejected. The estimated Zeff is for both discharges lower than the corresponding on-axis estimates. This
suggests a peaked Zeff profile due to impurity accumulation on the magnetic axis. It confirms a similar tendency
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reflected in the continuum Zeff profile in Fig. 3d, although not seen in the CX Zeff profile.
3) Consistency analysis: Finally, let us again perform a consistency analysis on the same data as used in

Section IV-B, namely pulse #61346 at 5.7 s (magnetic axis). This time point falls inside the interval given in
Fig. 16. However, this time we include in the posterior the values of the scale factors sε = 1.35 and sδ = 0.63
obtained in the above combined analysis of discharges #61346 and #61348, as stated in Table III (i.e. ε and δ are
scale-corrected). Figs. 18a and 18b depict the marginal posterior distributions for ne and Zeff , again taking into
account a combination of continuum and CX likelihoods, continuum and LIDAR, CX and LIDAR and finally a
combination of all three likelihood factors. It is apparent that the respective marginals, both for ne and Zeff , overlap
for a large part. This indicates a considerable increase of consistency between the scale-corrected data ε and δ,
compared to the case in Section IV-B, where only statistical uncertainties were taken into account (this could be
quantified e.g. by calculating Kullback-Leibler divergences). In particular, in contrast to the analysis considering only
statistical uncertainties, the Zeff estimate is consistent with both the continuum (+ LIDAR) and CX (+ LIDAR) data.
Thus, by including the systematic uncertainties into the analysis, even through the simple model we proposed, we
have succeeded in rendering the data set intrinsically consistent. Therefore, since we took into our analysis both the
continuum and CX data, modeling the associated systematic uncertainties, resulting in intrinsic data consistency,
we put more trust in the presently estimated Zeff compared to either the continuum or the CX Zeff . Given the
current forward model and the data, it is clearly the best estimate of Zeff we are able to give. Should more—and
possibly contradictory—information become available, e.g. expert spectroscopist knowledge, then ideally it should
be included into the analysis: either in the forward model (likelihood) or as prior information.

We should note, however, that still a more detailed analysis of the uncertainties involved, carefully following
the chain of calculations from the raw measurements to the final quantities of interest, is likely to still increase
the accuracy of the estimates as well as the intrinsic data consistency. This can be accomplished by listing the
various sources of statistical and systematic uncertainties and by inserting some useful prior information for these
uncertainties into the IDA analysis. Moreover, such a procedure could result in a sufficiently narrow posterior,
without the need for including the statistics of multiple samples. This would allow to process the data and derive
estimates on a point-by-point basis. Nevertheless, we would like to stress again the value of the present mode of
operation, demanding consistency between measurements in multiple time slices, in situations where very little is
known about the nature of the systematic uncertainties.

V. CONSIDERATIONS FOR ITER AND DEMO

The framework of Integrated Data Analysis will have an even more important role to play in the analysis
of diagnostic data for ITER and other next-step devices such as DEMO. To begin with, as already mentioned
in the introduction, there will not be enough space available (e.g. through access ports)—even more so than at
present-generation devices—to accommodate every diagnostic useful for studying the physical properties of the
plasma. Some economy will have to be exercised in terms of number of diagnostics. Therefore, diagnostic data
analysis will benefit from an integrated approach where interdependencies between redundant data sets enable a
reliable assessment of plasma quantities, in case each of the individual data sets provide only limited information.
In addition, access to diagnostic hardware will be reduced. This means that it will be difficult or impossible to
correct any hardware failures, possibly introducing important systematic effects in the data. As demonstrated in the
present work, IDA permits to efficiently deal with systematic uncertainties, either through the inclusion of relevant
prior information, or by demanding consistency with other (laboratory) measurements or time frames. Furthermore,
many diagnostic instruments will be exposed to severe physical conditions and there will be a critical need for in
situ calibration. To do this, again data from different diagnostic sources will have to be combined, which can be
accomplished most successfully via IDA.

With regard to the determination of Zeff at ITER, we should note that the accuracy of the measurement required to
allow a safe operation of the machine is stated to be 20% for line-integrated values and 10% for profiles [56], [57].
Concerning the profiles, this is typically more stringent than what can be accomplished with the current diagnostic
capabilities, either using continuum or CX measurements (see also Table I). However, note that when modeling
both statistical and systematic uncertainties in Section IV-C, we have succeeded in meeting this requirement in
several instances; refer to Tables III, IV and V. As mentioned above, an even higher accuracy could be achieved by
considering more samples per plateau region. Alternatively, the systematic uncertainties could be modeled at a more
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detailed level. In any case, the required accuracy for Zeff profiles at ITER comes into reach using an integrated
analysis on continuum and CX measurements.

VI. CONCLUSION

The purpose of this work was, first, to address the long-standing difficulty of the inconsistency between the
derivation of the ion effective charge Zeff from bremsstrahlung measurements on the one hand, and from the
weighted summation of individual impurity densities obtained from CXS on the other hand. Second, in doing
so, we discussed the value and many key principles of the framework of Integrated Data Analysis by means of
Bayesian Probability Theory. Third, we demonstrated the practical benefits of a gradual approach, starting from an
elementary forward model. This already allows informative conclusions to be drawn, eliminating the necessity for
a fully detailed model right from the beginning. In turn, inferences from a less sophisticated model may further
guide a more detailed analysis of the involved uncertainties.

The systematic discrepancy between the continuum and CX Zeff was shown to be apparent in both line-integrated
and local estimates in discharges at JET. We gave an overview of the main sources of uncertainty, responsible for
this discrepancy, in the assessment of Zeff from bremsstrahlung and CX measurements individually. In this work,
the uncertainties were modeled via the IDA framework. The main advantages are, to begin with, the possibility
of integration of multiple data sets of a heterogeneous nature in order to derive more trustworthy estimates for
the quantities of interest, with smaller error bars than obtained via a traditional analysis using measurements from
individual diagnostics. In addition, IDA enables, in conjunction with BPT, a straightforward modeling of all sources
of uncertainty, tackling non-Gaussian error propagation as well as systematic errors without difficulty. We briefly
outlined some basic concepts of BPT, including the core idea represented by Bayes’ theorem, expressing the concept
of learning from the prior information, through the acquisition of measurements, to a joint posterior distribution for
the quantities of interest. The likelihood compares the measurements to the outcome of the physical (forward) model
that depends on some underlying parameters, which are to be estimated. Many real-world problems in Bayesian
analysis involve non-standard posteriors or a large amount of parameters. Therefore, in order to render practical
the marginalization of the posterior and the derivation of best estimates as well as error bars for the quantities of
interest, stochastic integration methods such as Markov Chain Monte Carlo are appropriate. This allows to sample
from the (marginal) posterior distribution by setting up a Markov Chain in a multidimensional space. A move of
the chain is determined by sampling from a proposal distribution, accepting or rather rejecting the proposal with
a certain probability depending on both the posterior and the proposal distribution. Monte Carlo averages over
the thus obtained samples permit the estimation of e.g. the marginal posterior means of the quantities of interest.
Statistical error bars can be obtained by constructing Bayesian credible intervals that encompass a certain amount
of posterior probability. Next, the IDA recipe was given, where statistical uncertainty is modeled through likelihood
distributions, while systematic uncertainty is covered by introducing nuisance parameters.

This framework was applied for the integrated estimation of the local Zeff and the electron density, since the
two quantities are strongly correlated. The analysis was conducted at three stages of sophistication. First, no a
priori measurement error was assumed, permitting the deterministic inversion of the forward model including
both continuum and CX measurements. Carrying out this procedure on time traces of measurements, we found
unrealistically low values for Zeff as well as a serious systematic overestimation of the electron density, compared
to the well trusted value obtained from LIDAR Thomson scattering and interferometry. Error bars, calculated via
Gaussian error propagation, were fairly large. In a second step, statistical measurement error was allowed and a
posterior distribution for Zeff and ne was obtained. Provided additional measurements of the electron density were
included into the analysis, the estimated and measured ne were in good agreement, while Zeff was estimated to
equal the CX Zeff . The statistical error bars, derived from the marginal posterior standard deviation, were found
to be substantially smaller than obtained via the Gaussian analysis, indicating the non-Gaussian character of the
error propagation. However, a consistency analysis pointed out the lack of intrinsic data consistency and, as such,
the need for the modeling of systematic uncertainty. This was remedied to a large extent by introducing two scale
factors in the continuum and CX data sets, acting as nuisance parameters. However, very little prior information was
assumed about Zeff and the scale factors, and it was pointed out that in such a case care should be taken to ensure
invertibility of the forward model. This difficulty was solved by the demand of consistency of the measurements
between two time slices, in two different discharges, during data acquisition. It is a way of working that is most
useful in the frequent situation where little is known about the systematic uncertainties in the data. In addition,
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the statistics of the data were improved by considering multiple measurements in phases characterized by roughly
stationary plasma conditions. For marginalization of the posterior and inference of marginal posterior means, the
Metropolis (MCMC) algorithm was applied. This also enabled the construction of 68.3% credible intervals, used to
formulate statistical error bars. The estimated electron density was more or less equal to the density obtained from
Thomson scattering. The Zeff estimates on the magnetic axis were found to lie in between the CX and continuum
Zeff , suggesting an overestimation of the continuum data and an underestimation of the CX measurements in the
data set under study. Further towards the plasma periphery, the estimated Zeff turned out to lie very close to the
CX Zeff , dismissing unrealistically low levels of the continuum Zeff . A consistency analysis revealed a substantially
improved intrinsic data consistency compared to the case where only statistical uncertainties were modeled. Since
we used data from two diagnostics, modeling the systematic uncertainty, this implies that the obtained Zeff values are
more reliable than either the continuum or CX Zeff . The remaining statistical error bars on Zeff suggest an accuracy
that approaches requirements for Zeff profiles at ITER. Even higher accuracy can be obtained by considering more
data points per plateau phase in the forward model. Nevertheless, it should be stressed that through our analysis
we already succeeded in mitigating the important and a priori entirely unknown systematic uncertainty in the data.

A next step in the present work would involve listing in more detail the various sources of uncertainty in the chain
of data acquisition and subsequent calculations for both the continuum and CX systems. Additional measurements
would have to provide prior information for the various nuisance parameters describing systematic uncertainties,
possibly aided by consistency requirements between data in different time slices. This would enable the formulation
of a posterior distribution, from which inferences could be drawn, resulting in still more accurate and consistent
Zeff estimates. If carried out to a full extent for both diagnostics, this would represent a considerable amount of
work. Therefore, the strategy should be adopted where the analysis is carried out at increasingly higher levels of
model sophistication. We hope that the present paper has laid the foundations for a possible route towards a more
reliable derivation of Zeff that closes the long-standing gap between the traditional Zeff estimates. At the same
time, we have endeavored to present an accessible overview of the methods of Integrated Data Analysis by means
of Bayesian Probability Theory, which we hope will stimulate other researchers in the field of plasma diagnosis to
put to use these important techniques for the improved validation and analysis of their diagnostic data.
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TABLE I
ESTIMATED RELATIVE ERRORS ON SEVERAL PLASMA QUANTITIES IN JET PLASMAS ON THE MAGNETIC AXIS. THE ERRORS ARE

GENERALLY BOTH OF A STATISTICAL AND SYSTEMATIC NATURE.

Quantity Relative error

ne 5%
Te 10%
εff 20%
nC 35%

Continuum Zeff 25%
CX Zeff 20%

TABLE II
A PRIORI CHOSEN AND MCMC ESTIMATED VALUES FOR THE PARAMETERS OF INTEREST IN AN EXPERIMENT FOR THE ESTIMATION OF
ne AND Zeff USING ARTIFICIAL DATA AND INCLUDING SYSTEMATIC UNCERTAINTIES. THE ERROR BARS (ABSOLUTE AND RELATIVE

ERROR) REPRESENT THE LENGTH OF A 68.3% CREDIBLE INTERVAL, WITH THE PROBABILITY EQUALLY DIVIDED AROUND THE
RESPECTIVE MARGINAL POSTERIOR MEANS.

Parameter Original Estimated Absolute Relative
value value error error

ne,1 3.0 3.00 ±0.04 ±1%
(×1013cm−3)

ne,2 4.0 4.03 ±0.05 ±1%
(×1013cm−3)

Zeff ,1 2.0 1.96 +0.22/ +11%/
−0.30 −15%

Zeff ,2 1.7 1.64 +0.27/ +17%/
−0.33 −20%

sε 0.5 0.53 +0.13/ +24%/
−0.07 −13%

sδ 1.8 1.80 +0.53/ +30%/
−0.36 −20%

TABLE III
MEASURED AND MCMC ESTIMATED VALUES FOR THE PARAMETERS OF INTEREST IN AN EXPERIMENT FOR THE ESTIMATION OF ne

AND Zeff USING DATA FROM JET DISCHARGES #61346 AND #61348 ON THE MAGNETIC AXIS AND INCLUDING SYSTEMATIC
UNCERTAINTIES. THE TRADITIONALLY MEASURED VALUES WERE AVERAGED OVER THE RESPECTIVE PLATEAU REGIONS.

Parameter Traditional Estimated Absolute Relative
mean value value error error

ne,1 3.26 3.24 ±0.04 ±1%
(×1013cm−3)

ne,2 4.51 4.50 ±0.05 ±1%
(×1013cm−3)

Zeff ,1
Cont. 2.96 2.19 +0.28/ +13%/
CX 1.63 −0.43 −20%

Zeff ,2
Cont. 3.22 2.36 +0.22/ +9%/
CX 1.90 −0.37 −16%

sε n/a 1.35 +0.33/ +25%/
−0.14 −11%

sδ n/a 0.63 +0.46/ +73%/
−0.11 −17%
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TABLE IV
MEASURED AND MCMC ESTIMATED VALUES FOR THE PARAMETERS OF INTEREST IN AN EXPERIMENT FOR THE ESTIMATION OF ne

AND Zeff USING DATA FROM JET DISCHARGES #61347 AND #61348 ON THE MAGNETIC AXIS AND INCLUDING SYSTEMATIC
UNCERTAINTIES.

Parameter Traditional Estimated Absolute Relative
mean value value error error

ne,1 3.41 3.39 ±0.04 ±1%
(×1013cm−3)

ne,2 4.51 4.51 ±0.06 ±1%
(×1013cm−3)

Zeff ,1
Cont. 2.82 2.20 +0.26/ +12%/
CX 1.55 −0.55 −25%

Zeff ,2
Cont. 3.22 2.41 +0.20/ +8%/
CX 1.90 −0.45 −19%

sε n/a 1.32 +0.64/ +49%/
−0.13 −10%

sδ n/a 0.55 +0.31/ +56%/
−0.08 −14%

TABLE V
MEASURED AND MCMC ESTIMATED VALUES FOR THE PARAMETERS OF INTEREST IN AN EXPERIMENT FOR THE ESTIMATION OF ne

AND Zeff USING DATA FROM JET DISCHARGES #61346 AND #61348 AT ρ = 0.55 AND INCLUDING SYSTEMATIC UNCERTAINTIES.

Parameter Traditional Estimated Absolute Relative
mean value value error error

ne,1 1.56 1.56 ±0.02 ±1%
(×1013cm−3)

ne,2 1.96 1.95 ±0.02 ±1%
(×1013cm−3)

Zeff ,1
Cont. 0.97 1.56 +0.26/ +17%/
CX 1.55 −0.31 −20%

Zeff ,2
Cont. 1.09 1.85 +0.21/ +11%/
CX 1.84 −0.29 −16%

sε n/a 0.57 +0.15/ +25%/
−0.07 −12%

sδ n/a 1.14 +0.71/ +62%/
−0.24 −21%
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Fig. 18. Normalized marginal posterior distributions for the on-axis ne ((a)) and Zeff ((b)) for JET #61346 at 5.7 s, taking into account
different data sets. The values obtained above for the scale factors sε and sδ were included into the posterior.
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