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Abstract

The sawtooth control mechanism in plasmas employing toroidally propa-

gating ion cyclotron resonance waves is extended. The asymmetrically dis-

tributed energetic passing ions are shown to modify the ideal internal kink

mode when the position of the minority ion cyclotron resonance resides within

a narrow region close to the q=1 surface. An analytical treatment of the in-

ternal kink mode in the presence of model distribution function with parallel

velocity asymmetry is developed. The fast ion mechanism explains the strong

sensitivity of sawteeth to resonance position, and moreover is consistent with

preliminary dedicated Joint European Torus [F. Romanelli, Nuc. Fusion 49,

104006 (2009)] experiments which controlled sawteeth despite negligible cur-

rent drive.

I. INTRODUCTION

The need for effective control of sawteeth has been well documented over the last few

years. Due to the stabilising role of trapped alpha particles, sawteeth are expected to be

strongly stabilised in ITER [1]. The collapse radius and crash amplitude has been predicted

to be so large in the ITER [2] that coupling is likely to occur with instabilities located

at other rational surfaces. Evidence of interaction between large sawteeth and neoclassical

tearing modes (NTM’s) has been observed [3,4] in the Joint European Torus (JET) [5], while

discharges with smaller regular sawteeth are found to have increased core confinement, and

are less likely to be coupled to confinement degrading NTM’s. Hence it is seen that greater

understanding and eventual control over the mechanisms that determine sawtooth stability is

required. Key to this will be control over the interaction between fast minority ion dynamics

and magnetohydrodynamic (MHD) stability.

Whilst fast trapped ions are known to stabilise sawteeth [3,6,7], this paper demonstrates

that under certain conditions [8,9] energetic ions can also effectively destabilise sawteeth.
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Sawtooth control from energetic ions injected with near tangential unbalanced neutral beams

has already been demonstrated analytically [8] and numerically [10]. It was found that an

energy flux like quantity
∫
dv3 (v2/2)v‖∂F/∂r of the fast ion distrubution F at the q = 1

surface has a markable effect on the internal kink stability. The energy flux clearly coincides

with fast ion parallel currents, since both require parallel velocity asymmetries in the fast

ion distribution function. The effect on the internal kink mode enters through finite orbit

width corrections of the passing ions, which increases with the kinetic energy of the particles,

and with pitch angles closer to the trapped-passing boundary. By extending the analysis

and conclusions of Ref. [9], we show in this paper that JET plasmas with -90◦ phased off-

axis ICRH share the same instability mechanism as the unbalanced NBI scenarios mentioned

above. The counter propagating waves yield asymmetric distributions of passing ions, which

are of course consistent with the fast ion currents evaluated in such discharges [11]. Dedicated

SELFO [12] RF wave-field and fast ion distribution simulations obtain in particular the

parallel velocity asymmetry in the passing ion distribution function, and their deposition.

Analytical and full numerical calculations of the internal kink mode with the JET ICRH

distribution functions demonstrate ideal instability when the deposition of -90◦ phased ions

is very close to the q=1 radius. Such is the sensitivity to the location of deposition, and

the magnitude of the effect, that this fast ion mechanism dominates over the previously

assumed classical mechanism (e.g. Refs. [13,14,11]) relating to the change in the magnetic

shear due the fast ions, and the resulting effect on resistive MHD and ideal MHD stability.

Furthermore, the fast ion mechanism is independent of the bulk plasma drag current, which is

expected [15] to limit the net ICCD current drive efficiency of the proposed ICRF system for

ITER, and thus diminish shear modification and the classical sawtooth control mechanism.

In order to address the issue that sawtooth control is due to the direct effect of fast ions,

experiments have been devised where the current drive is small. In the experiments presented

here, the net ion cyclotron driven current was significantly reduced by choosing 3He minority

ICRF, since the current dragged [16,13] by the background plasma tends to cancel the 3He

current in the relevant region of the tokamak (provided that the effective charge of the
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plasma is close to that of 3He, where Zeff < 2 typically). It is shown that sawtooth control

employing low concentration minority 3He is nevertheless effective, thus strengthening the

likelihood of the dominant effect of the fast ion mechanism [9], and moreover demonstrating

the viability of sawtooth control using ICRH in ITER [1], which is primarily and routinely

expected to employ 3He minority. These experiments, and earlier hydrogen minority pulses

[17], are used as a platform to compare analytically derived internal kink stability with full

numerical simulations.

The paper is organised as follows. In section II the internal kink mode calculations are

derived, with particular attention given to the effects of asymmetrically distributed passing

ions (the distribution function remains general except for an expansion in orbit width, which

assumes that the energies of the fast ions are not too large). In section III the important

features of the JET ICRH distribution functions are explored and modelled analytically. This

information is used to evaluate the internal kink stability for JET demonstration discharges,

and comparisons are made with full numerical internal kink solutions using SELFO [12]

and HAGIS [18]. Here, HAGIS evaluates the fast particle contribution to the perturbed

distribution function, and ultimately the growth rate, by following the guiding centre motion

of the population of ions in the presence of the internal kink perturbation. The analytical

treatment contained in this manuscript enables identification of the fast ion growth rate in

terms of the radial gradient of the fast ion current, thus assisting interpretation of existing

experiments, and the design of experiments employed to test the theoretical mechanism.

Finally, section IV details minority 3He experiments and the corresponding simulations

which demonstrate the importance of the fast ion mechanism. Conclusions and discussions

are reserved for the final section.

4



II. STABILITY OF INTERNAL KINK MODE WITH ASYMMETRIC ION

DISTRIBUTIONS

We now set out to evaluate the stability of the internal kink mode in the presence of the

fast ions. The motivation of this section is to identify the effects of finite orbit widths and

parallel velocity asymmetry for an arbitrary distribution function. Consequently, the results

of this section will generalise the fast ion contributions identified in Ref. [8], which was valid

for a slowing down distribution with parallel velocity asymmetry and a delta function in

pitch angle (such that all particles are deeply passing v⊥ = 0), with application essentially

only to unbalanced strongly tangential neutral beams. The relevant ordering employed is

βh ∼ βc ∼ O(ε2), where βh,c = 2µ0Ph,c/B
2
0 is the ratio of hot, or core, particle pressure and

the magnetic pressure, and ε is the inverse aspect ratio. Quantities attributed to the fast

ion population, are for convenience, henceforth absent of a subscript ‘h’. The response of

energetic ions to the internal kink mode is obtained by perturbing the hot ion distribution

F (E ,Pφ, µ, σ) with respect to the constants of motion, [19]. We note that in ICRF heated

plasmas, the equilibrium electric field E = −∇Φ provides only a small correction to the

actual conserved total energy E + ZeΦ/m, and so the equilibrium electric field, and its

corresponding plasma rotation, is neglected here. Focusing on ideal MHD modes in a low β

and small ε tokamak, we write down a solution [19,20] to the perturbed distribution function

δF = δFf + δFk which treats wide radial drift excursion. From Refs. [19,20]:

δFf = −(Ze/m)(ξ ·∇ψp)
∂F

∂Pφ
(1)

is the adiabatic (fluid) contribution, ξ = ξ̂ exp(−inφ− iωt) is the MHD displacement with

ξ̂ =
∑
m ξ̂m exp(−imθ), and the non-adiabatic (kinetic) contribution δFk can be approxi-

mately written as ‘bounce time’ τb = 2π/ωb periodic function of time:

δFk =
∞∑

l=−∞
δF

(l)
k exp

[
−i
(
ω + lωb + n

〈
φ̇
〉)
t
]
, (2)

δF
(l)
k = − ω − nω∗

ω + n
〈
φ̇
〉

+ lωb

∂F

∂E
×
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〈(
v2‖ +

v2⊥
2

)
κ · ξ⊥ exp

[
i
(
ω + lωb + n

〈
φ̇
〉)
t
]〉
, (3)

where ω∗ = ∂F/∂Pφ(∂F/∂E)−1 is the diamagnetic frequency, κ is the magnetic curvature

vector and 〈X〉 = 1
τb

∫ τb
0 dtX.

In the limit of zero radial drift excursion, or orbit width ∆r, the adiabatic (or fluid)

contribution is simply a result of convective ‘c’ motion perpendicular to the field line, δFc =

−ξ⊥ ·∇F . Meanwhile, δFk is associated with the parallel dynamics, and is often referred

to as the response due to kinetic-compressibility. In particular, replacing the drift kinetic

treatment employed here with the ideal MHD model, one would substitute δFk defined

above with δFknc = −γF∇ · ξ, the non-convective ‘nc’ stabilising effect of compressibility.

Assuming an isotropic equilibrium distribution function, taking a second velocity moment of

δFc+δFknc simply yields the MHD perturbed pressure δP = −ξ⊥ ·∇P−γP∇·ξ. The MHD

model provides a very poor description of the parallel dynamics of energetic particles, and

clearly cannot describe resonant wave-particle interaction. However, MHD does a better

job of representing perpendicular dynamics. In particular, the perpendicular component

of the MHD equation of motion, in which δPc = −ξ⊥ ·∇P (the second moment of δFc)

appears explicitly, describes the essential perpendicular dynamics of a hybrid kinetic-MHD

treatment. Nevertheless, in additional to the well known non-convective effects associated

with the kinetic response δFk, finite orbit widths introduce additional non-convective effects

in δFf [8,9]. As we will see, by expanding δFf with respect to small orbit width, we are able

to identify the non-convective correction associated with the fluid contribution [8,9]:

δFfnc = −(Ze/m)(ξ ·∇ψp)
∂F

∂Pφ
+ ξ⊥ ·∇F. (4)

It is in this correction that the effect of parallel velocity asymmetry on the internal kink

mode arises, and the on resulting observable affect on sawteeth.

In order to relate Eqs. (1) and (2) to a potential energy δW , we recall that δW is defined

in terms of the perturbed force δF via δW = −(1/2)
∫
d3x ξ∗⊥ · δF , where

δF = δj ×B + j × δB −∇ · δP .
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Now, the fast ions primarily influence the linear perturbed force δF through the perturbed

pressure tensor δP . This is despite the fact that the fast ion distribution function also

yields a significant equilibrium current. As discussed in [20], the flux averaged fast ion

current contributes an order ε correction to the safety factor, and this in turn plays a role in

the MHD field line bending contribution to the internal kink mode. The latter is however

minimised to insignificant ordering by the top-hat leading order displacement ξ̂0 = H[r1−r],

where H is the Heaviside step function, and r1 is the radius at which q = 1. Moreover, even

though the poloidal modulation of the fast ion current is of order unity, it does not contribute

to δW at significant order. The effects of fast ions are found to enter the dynamics entirely

through the perturbed pressure tensor. The fast ion pressure tensor δP is of course obtained

by evaluating the second velocity moments of δF , and results in,

δW =
1

2
m
∫
d3x

∫
d3v κ · ξ∗⊥

(
v2‖ +

v2⊥
2

)
δFh, (5)

where

∫
all v

dv3 =
∑
σ

π
∫ ∞
0

dE(2E)
∫ 1/B

0
dλ

B

|v‖|
and

∫
dx3 = 2π

∫ 2π

0
dθ
∫ a

0
drRr.

The kinetic contributions to δW are examined first. Due to the high energy of the ICRH

species, such that ω∗h, ωb and
〈
φ̇
〉

are much larger than the frequency of the n = 1 mode

responsible for sawteeth, it is appropriate to employ the approximation ω = 0 in Eq. (3).

For both trapped ions, and passing ions, the largest kinetic contribution to low frequency

sawtooth modes occurs in the absence of bounce harmonics, i.e. for l = 0. The small

contribution (when ω = 0) that exists when one takes l = 1 for the passing ion response

has been examined previously [8,21,22], and is found to be small, and is thus neglected

here. To make progress we need to expand F in orders of the orbit width ∆r, so that

F = F0 + F1 + .... We note that another constant of motion, defined by Pφ, is the temporal

average of the particles’ minor radius, r, over a full toroidal transit, i.e. r = τ−1b

∫ τb
0 dt r(t),

where τb is the bounce time, or transit time, for respectively trapped or passing particles.

Writing r(t) = r + ∆r(t) we have,
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F0 = F (E , µ, r)|r→r and F1(E , µ, r) = −∆rG0(E , µ, r), (6)

and

G0(E , µ, r) = G(E , µ, r)|r→r and G =
∂F

∂r
, (7)

with

∆r =
q

rΩc

(
|v‖|R− pR2

0qωb
)
, (8)

where σ is the sign of v‖ , p = 1 for passing particles, p = 0 for trapped particles, ωb = 2π/τb

and Ωc = eZB0/m. Defining F± = F (σ) and G± = G(σ) etc to separate the contributions

of particles with v‖ > 0 and v‖ < 0, we now have for the passing ‘p’ and trapped ‘t’ ions the

leading order (in orbit width) kinetic (‘k’) response (by setting ω = 0 and l = 0 in δFk):

ˆδW kp = −
(

2

π

)1/2 2

ε21R0

∫ r1

0
dr
∫ 1

0
dy2

[
2

π

(
G3 +

G4

2

)]2 ( q

Ωc

)(
eT⊥
m

)1/2
(

2µ0

B2
0

)
(C+ − C−)

(9)

and

ˆδW kt = − 3

23/2πε
1/2
1

∫ r1

0
dr
(
r

r1

)3/2 ∫ 1

0
dk2

F 2
q

KFd

(
2µ0

B2
0

)
(D+

t +D−t ) (10)

where ˆδW = δW/(2π2R0ξ
2ε21B

2
0/µ0), the pitch angle k2 = (1−λB0(1−ε))/2λB0ε for trapped

ions and y2 = 1/k2 for passing ions. Note that the upper limit r1 above, and in the equations

that follow, is a result of imposing the leading order eigenfunction which vanishes outside

r1. Furthermore, we have

Cσ =
(
eT⊥
m

)−1/2 (m/2)(π/2)3/2

[y2 + ε(2− y2)]3
∫ ∞
0

dE (2E)2Gσ
0 ,

together with

Dσ
t =

m(2π/3)

[1 + ε(2k2 − 1)]5/2

∫ ∞
0

dE (2E)3/2Gσ
0

and the following passing ion pressure gradient related quantity will be required later
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Dσ
p =

m(2π/3)

[y2 + ε(2− y2)]5/2
∫ ∞
0

dE (2E)3/2Gσ
0 .

In the above we have used
〈
φ̇
〉

= qωb for passing ions (valid at the required ordering in

Larmor radius and orbit width), and
〈
φ̇
〉

= −q(EFd(r, k2)/(rR0Ωc) for trapped ions, where

F t
d(r, k

2) =
2

1 + ε(2k2 − 1)

(
H1(k

2) + 2s(r)H2(k
2)−∆′′(r)H3(k

2)− α

4q2

)
,

s = (r/q)q′ is the magnetic shear, α = −2R0q
2P ′/B2

0 is the ballooning parameter, while

H1, H2, and H3 are given by Eq. (10) of Ref. [23] (written there as G1,2,3), and are entirely

in terms of elliptic integrals. Moreover, the definition Fq and G3 and G4, as well as other

expressions are given in the appendix. We note however that Fq, G3 and G4 involve inte-

gration of cos(φ −
〈
φ̇
〉
t) over the full poloidal circuit. In order to make progress we use

φ −
〈
φ̇
〉
t = qθ for the trapped particles, while for passing particles, we are at liberty to

use the result φ−
〈
φ̇
〉
t = q(θ− πK[θ/2, y2]/K[y2]), where K[φ, y2] is an incomplete elliptic

integral of the first kind, and K[y2] = K[π/2, y2] is a complete elliptic integral of the first

kind.

We note that ˆδW kt involves G+
0 + G−0 , and thus contributes when the distribution is

symmetric or not. Indeed, it is generally thought that ˆδW kt is responsible for conven-

tional sawtooth stabilisation by energetic ions. The leading order passing ion kinetic con-

tribution, ˆδW kp, scales as a finite orbit correction [8], since ˆδW kp/ ˆδW kt is proportional to

(q/Ωc)(eT⊥/m)1/2 ∼ ∆r/r. Furthermore, it is important to note that ˆδW kp is proportional

to G+
0 −G−0 , and is therefore only non-zero when the distribution is asymmetric at the lowest

order. We note that Eq. (10) generalises the passing ion, finite orbit kinetic response of Eq.

(14) in Ref. [24], now accounting for arbitrary distribution function. Nevertheless, as is the

case for a simplified passing ion distribution [8], ˆδW kp is seen once again to be cancelled out

by part of the adiabatic response when finite orbit corrections are included.

We now go about solving for the adiabatic contribution, corresponding to Eq. (1). In or-

der to separate zeroth order effects from finite orbit effects, we expand Eq. (1) about the flux

label r. For this purpose we note that ξ ·∇ψ = rB0ξr/q(r) and ∂/∂Pφ = Ω−1c (q(r)/r)∂/∂r,

r/r = 1 + (∆r/r), q(r)/q(r) = 1− (∂∆r/∂r), where ∂∆r/∂r = ∆rs(r)/r. This then yields
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δFf = δFfc + δFfnc (11)

with the convective contribution:

δFfc = −ξrG0, (12)

and the non-convective contribution:

δFfnc = −ξr
∆r

r

(2− s)G0 −
y2

2
(2− y2) ∂G0

∂y2

∣∣∣∣∣
r

− ∂(rG0)

∂r

∣∣∣∣∣
y2

 , (13)

where it is important to highlight that ∂G/∂r|λ = ∂G/∂r|y2 − (2− y2)(y2/2)∂G/∂y|r, must

be taken into account when dealing with partial derivatives. We are reminded however, that

G0, defined in Eq. (7), is the radial derivative of F , with λ kept constant, since G = ∂F/∂r|λ.

We now evaluate the δW expressions corresponding to each of the terms in Eq. (11).

Clearly Eq. (12) is simply the convective contribution δFc = −ξ⊥ ·∇F described earlier,

and leads to the usual adiabatic response in the absence of finite orbit effects:

ˆδW ft0 =
3

23/2πε
1/2
1

∫ r1

0
dr
(
r

r1

)3/2 ∫ 1

0
dk2(2G1t +G2t)

(
2µ0

B2
0

)
(D+

t +D−t ) (14)

ˆδW fp0 =
3

23/2πε
1/2
1

∫ r1

0
dr
(
r

r1

)3/2 ∫ 1

0
dy2(2G1p +G2p)

(
2µ0

B2
0

)
(D+

p +D−p ). (15)

The sum of Eqs. (14) and (15) is the lowest order (in orbit width) adiabatic energetic ion

response, and is generally the same order of magnitude as the well known trapped ion kinetic

response ˆδW kt of Eq. (10). In the isotropic limit A = T⊥/T‖ = 1, we find ˆδW ft0+ ˆδW fp0 = 0.

Meanwhile, the total fluid contribution comprises also the finite orbit response ˆδW fp1, so

that ˆδW f = ˆδW ft0 + ˆδW fp0 + ˆδW fp1. The non-convective contribution δFfnc given by Eq.

(13) is proportional to ∆r, i.e. corresponding to Eq. (4) for the internal kink mode, and

yields the following expression, written here in a convenient form upon integration by parts:

ˆδW fp1 = ˆδW r1 + ˆδW y2=1 + ˆδW fp1(extra), (16)

where each of the above terms are defined in the following. First of all,
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ˆδW fp1(extra) =
(

2

π

)1/2 2

ε21R0

∫ r1

0
dr
∫ 1

0
dy2 ×[

2

{
εy2

2
−
(
y2

4
+
ε

2

∂

∂ε
+
y2

4
(2− y2) ∂

∂y2

)(
2G1 +G2

K[y2]

)}](
q

Ωc

)(
eT⊥
m

)1/2
(

2µ0

B2
0

)
(C+ − C−) (17)

is almost cancelled by the kinetic contribution for passing ions given by Eq. (9). It turns

out that sum of the intregrands (in the y2 integrals) of Eqs. (9) and (17) cancel for arbitrary

ε except near the passing trapped boundary (y ≈ 1), and due to the magnitude of ˆδW r1 ,

it is legitimate to take ˆδW fp1(extra) + ˆδW kp = 0. Thus, Eq. (10), which for arbitrary

distribution function generalises the passing ion finite orbit kinetic response of Eq. (14) in

Ref. [24], is cancelled. The term has been shown [8] to exactly cancel for the strongly parallel

distribution employed in Refs. [24,8]. The remaining terms in ˆδW fp1 are boundary terms. In

particular we have the term evaluated on the passing side of the passing - trapped boundary

(y2 = 1):

ˆδW y2=1 = −
(

2

π

)1/2 2

ε21R0

∫ r1

0
dr

(
ε

4
− 2G1 +G2

2K[y2]

)(
q

Ωc

)(
eT⊥
m

)1/2
(

2µ0

B2
0

)
(C+ − C−)

∣∣∣∣∣
y2=1

.

(18)

We recall that the reflection of trapped particles requires that G+
0 −G−0 = 0 in the trapped

region, of velocity space, and so, if the distribution function is continuous across the passing

trapped boundary, we require that C+(y2 = 1) − C−(y2 = 1) = 0, and hence ˆδW y2=1 =

0. Indeed, as discussed and implemented in e.g. Refs. [25] and [26], slowing down and

pitch angle scattering of fast ions due to collisions ensure that the distribution function is

continuous across the passing trapped-trapped boundary. Moreover, since the orbit width

∆r is also continuous across the boundary, it therefore follows that the leading order (in

orbit width) distribution function F0 is also continuous with respect to pitch angle.

The only significant remaining finite orbit correction term is the following, evaluated at

r = r1:

ˆδW r1 = −
(

2

π

)1/2 2

ε1

∫ 1

0
dy2

(
ε1y

2

2
− 2G1 +G2

K[y2]

)(
q

Ωc

)(
eT⊥
m

)1/2
(

2µ0

B2
0

)
(C+ − C−)

∣∣∣∣∣
r=r1

.

(19)

11



Equation (19) is valid for an arbitrary distribution function, and thus generalises Eq. (5) of

Ref. [8], which is valid for an asymmetric slowing down distribution with strongly parallel

pitch angle. Note that in order to compare with Ref. [8] we must take g(l) = 0 in Eq. (5) of

Ref. [8], which is valid for highly energetic particles in a plasma with finite magnetic shear,

for which ω � k‖v‖ [27,21]. Here g(l) arises from the l = 1 bounce harmonic of the kinetic

response δFk, which has already been discussed and dismissed.

It is clear that δWr1 given by Eq. (19) above does not vanish if G+
0 − G−0 6= 0, since

ˆδW r1 represents the effect of having non-zero parallel energy flux at the q = 1 surface. The

particular energy flux like quantity that matters is proportional to
∫
dv3G0(V⊥ + v2‖/2)v‖,

and clearly this third moment of ∂F0/∂r will be non-zero when there are localised fast

ion currents. Clearly ˆδW r1 is enhanced for increased finite orbit widths, which are turn

enhanced by loading the distribution function close to the passing trapped boundary, and

by increasing the thermal energies of the particles. The sensitivity of ˆδW r1 to the asymmetry

in the lowest order distribution function means that stability is intrinsically linked to the

sign and magnitude of the derivative of the lowest order fast ion current. These concepts

are assisted by consideration of Fig. 1. Only ions which intersect q = 1 contribute to Eq.

(19). If an orbit is entirely always outside r1, the particle does not contribute to the internal

kink mode, due to the mode amplitude being zero outside r1. If an orbit is constrained

to be entirely inside r1, then the integral of ξ0H[r(t)]cosθ(t)[v⊥(t)2/2 + v‖(t)
2]∆r(t)/v‖(t)

along the path t will not integrate to zero, but the similar adiabatic and non-adiabatic

contributions sum to zero, as described above (Eqs. (9) and (17) sum approximately to

zero, as originally discovered in Ref. [8]). For particles that do intersect, then the portion of

ξ0H[r(t)]cosθ(t)[v⊥(t)2/2+v‖(t)
2]∆r(t)/v‖(t) along the path t that is inside q = 1 contributes

to the integral, and this region of the orbit is shown in bold in Fig. 1. If there are an equal

number of co and counter passing particles the effect of particles intersecting q = 1 is

nullified. However, destabilisation can occur when ∂F (v‖ > 0)/∂r > ∂F (v‖ < 0)/∂r, i.e.

G1
0 > G−10 . These identities occur for example with populations of ions created by unbalanced

neutral beam injection. Destabilisation will occur for off-axis (∂F/∂r > 0) with injection
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orientated along the plasma current (F 1
0 > F−10 ), or with on-axis beams (∂F/∂r < 0) with

injection orientated counter to the plasma current (F 1
0 < F−10 ). Stabilisation will occur when

G1
0 < G−10 , thus for on-axis co-injection, and off-axis counter injection. These combinations

of unbalanced NBI have been tested [10,28] across various machines, and it is seen that

the effect on sawteeth is consistent with the effect on the internal kink mode described

above. Moreover, the mechanism described by Eq. (19) has been verified against HAGIS

[18] whereby Eqs. (1) and (2) are evaluated by following guiding centres, and deposited in

δW with little approximation.

The motivation for the first derivation of an approximated version of Eq. (19) was to

explain experiments [29] in JT-60U showing sawtooth stabilisation for strongly tangential

beams where the trapped fraction was expected to be small. The beam ions were highly

energetic (350 keV) and as such the orbit widths of the passing ions were large. Moreover,

since the ions were injected tangentially, it was legitimate to evaluate Eq. (19) for a pop-

ulation with delta distributed pitch angle, for which all particles had the property v⊥ = 0.

The calculation showed that the energy of the fast ions had to be large, and the parallel

asymmetry strong, in order that the mechanism becomes important. It was therefore ini-

tially a surprise that MAST, JET and TEXTOR experiments (see Refs. [28]), which have

low energy beam ions, showed that sawteeth were sensitive to the deposition and orientation

of beam injection, and that the HAGIS simulations of these pulses proved that the effect on

the internal kink mode was due to the finite orbit mechanism described above. The answer

to this turns out to be that the orbit width of passing ions becomes larger as the pitch angle

approaches the passing trapped boundary. The orbit width is in fact continuous across the

boundary, such that a barely passing ion has the same orbit width as a barely trapped ion.

For the issue at hand it can be shown that Eq. (19) is proportional to

δWr1 ∝
∫ ∞
0

dE(2E)3/2
∫ 1

0
dy2

∑
σ

Gσ
0∆r

where ∆r is the velocity and pitch angle weighted effective orbit width is given by

∆r =

(
v2‖(θ = 0)

(2E)3/2

)
1

2π

∫
dθ cosθ

(
R

R0

) [v2‖ + v2⊥/2

v‖

]
∆r.
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In Fig. 2 it is seen that the effective orbit width is strongly enhanced close to the passing-

trapped boundary. It is the effective orbit width which determines stability/instability. It

is noted now that both high energy particles, and a large barely passing population, is

generated with ICRH. Thus it is now clear that we should expect typical ICRH ions to

have very large ∆r. Moreover, radial gradients in the distribution function tend to be high

for ICRH, and parallel velocity asymmetry is created by setting the antenna such that the

waves propagate with a preferential toroidal direction. The conditions under which co-

propagating waves or counter-propagating waves are destabilising depends sensitively on

their radial deposition, as we shall see in the next section.

III. CHARACTERISING TOROIDALLY PROPAGATING ICRH DISTRIBUTION

FUNCTIONS

In this section we will concentrate on the key features of the ICRH distribution functions.

This will be applied to the well documented [17,11] JET demonstration discharge 58934. This

important discharge demonstrates that an off-axis ion cyclotron resonant wave, with -90◦

degree phasing (counter propagating waves), can destabilise (shorten period of) sawteeth

even when the sawteeth are initially stabilised by trapped energetic RF ions in the core.

Hence, in the latter part of the discharge two resonant ICRH waves co-exist. It is the sum

of these two populations that ultimately require modelling in order to ascertain the internal

kink mode stability. The time trace of the soft x-ray (SXR), heating power and unshifted

resonance locations, the inversion radius and the sawtooth period of 58934 are reproduced

in Fig. 3.

In the following subsections we aim to develop a model fast ion distribution function

that encapsulates the important features of the true distribution function. This then enables

analytical calculation of the internal kink mode to be undertaken, and the resulting stability

mechanisms to be identified and understood clearly. In any case, within this paper, the

analytical results are compared favourably with numerical distribution functions, and with
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full numerical calculation of the internal kink mode stability.

A. Fast ion density, pressure and anisotropy

We will see that the even moments of the distribution function, namely the density and

parallel and perpendicular pressure, depend on the poloidal angle. The reason that the

even moments are not flux surface quantities is due to the strong anisotropy associated with

ICRH. Cyclotron resonance preferentially and locally heats in the perpendicular direction,

thus developing trapped orbits with banana tips close to the line of resonance, and hence

localised peaks of pressure and density in the R-Z plane. These effects can be encompassed

in a model [30] of the distribution function, and due to the possibility of obtaining the even

moments of the distribution function exactly, the following model has been incorporated in

the 3D equilibrium code VMEC [31], and 3D fluid stability code TERPSICHORE [32].

In this section we require only the leading order distribution F0 as defined in Eq. (6).

The first finite orbit width correction F1 does not affect the even moments, but is required

for evaluation of the currents considered in the next section. F is written in terms of a

modified bi-Maxwellian which satisfies the lowest order Vlasov equation ∂F/∂l = 0 (where

l is the arc length along the magnetic field) [30]:

F =
(
m

2πe

)3/2 nc(r)(1 + σ c(r, λ))

T⊥(r)T
1/2
‖ (r)

exp

[
mE

(
− λBc

eT⊥(r)
− |1− λBc|

eT‖(r)

)]
. (20)

where λ = µ/E is the pitch, and temperatures are in units of electron Volts. The distribution

is a modified bi-Maxwellian in the sense that it is not written in terms of v2‖ and v2⊥. The

latter quantities are not constant over the trajectory of a single particle, since they depend

in the local value of B. The parameter Bc, is the resonant magnetic field for the ICRH wave.

Clearly A(r) ≡ T⊥/T‖ is a measure of the anisotropy. Finally, nc is related to the particle

density, while σ c(r, λ) is the part of the distribution function that can treat the differing

deposition of co and counter passing particles. For the even moments of F0, the asymmetry

is cancelled, and thus c(r, λ) does not feature until the treatment of currents in the next
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section, and finite orbit width corrections to the internal kink mode derived later. By tuning

the parameters of Eq. (20) we match the density, parallel and perpendicular temperature,

and currents with those of SELFO, and thereby attempt to model the salient features of the

distribution function. Clearly no attempt is made to model far into the energy tail of the

distribution function. It should be recognised that the way in which asymmetry enters F

(via σc) is necessarily simple so that the even moments are independent of the asymmetry

parameter, and analytical progress can be made in the δW calculations. The limitations

of Eq. (20) could explain differences observed in Sec. IV between δWr1 calculated by the

analysis and by the SELFO/HAGIS codes.

Taking the zero’th moment of F0 yields the variation of the density with respect to B:

n(r, B) = ncNB (21)

where

NB =
T⊥a
T⊥

for B > Bc and

NB =
T⊥a
T⊥

+
T⊥b − T⊥a

T⊥

(
T⊥
T‖

)1/2 (
Bc −B
Bc

)1/2

for B < Bc, and

T⊥a = T⊥

[
Bc

B
+
T⊥
T‖

(
1− Bc

B

)]−1
and T⊥b = T⊥

[
Bc

B
− T⊥
T‖

(
1− Bc

B

)]−1
.

Here we have used

n =
∫
allv

dv3F0 = (1/2)
∑
σ

2π
∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥ v⊥F0.

Now, taking second moments of the distribution function it can be shown that

P‖ = ncT‖H‖ and P⊥ = ncT⊥H⊥, (22)

where for B > Bc:

H‖ =
(
T⊥a
T⊥

)
and H⊥ =

(
T⊥a
T⊥

)2

,
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while for B < Bc:

H‖ =

[
T⊥a

T⊥
+
(
T⊥
T‖

)3/2 (
Bc−B
Bc

)3/2 (T⊥b−T⊥a

T⊥

)]

H⊥ =

[(
T⊥a

T⊥

)2
+
(
T⊥
T‖

)1/2 (
Bc−B
Bc

)1/2 {T⊥b−T⊥a

2T⊥

(
B
Bc

)
+

T 2
⊥b−T

2
⊥a

T 2
⊥

}]
.

Here three dimensional data files from the SELFO simulations of n, P⊥ and P‖ are used

to identify the three radially dependent parameters of the model distribution function. In

particular, in the following, the LHS of the equations correspond to the parameters in the

model, and the RHS of the equations are the quantities from the SELFO simulations:

nc(r) = n(Rc, Z) , T⊥(r) =
P⊥(Rc, Z)

e n(Rc, Z)
and A(r) ≡ T⊥(r)

T‖(r)
=
P⊥(Rc, Z)

P‖(Rc, Z)
,

where Rc is the RF minority resonance major radius such that Bc = B(Rc). Now, since the

heating is approximately located on a vertical line through the plasma cross section we can

resolve the minor radius on the left hand side of the equations through r2 = Z2 + (Rc−R0)
2

with Z defining the distance along a vertical chord R = Rc. Here a circular cross section

has been assumed, which is consistent with SELFO.

Where there are two resonant surfaces the problem is treated upon assuming the sum of

model distributions. This is a reasonable assumption because RF-wave-particle interaction

is strongest for trapped particles bouncing on a resonant layer. If the width of separation of

the two resonances is not less than the radial excursion of a fast ion, then a particle bouncing

on one resonance will only be weakly affected by the other. Hence there are now six radially

dependent parameters to resolve namely nc(r), T⊥(r) and A(r) for the two distributions. The

problem has been treated upon exploitation of simulations with off-axis heating alone. This

enabled identification of the three functions for off-axis heating, and thus when employed in

conjunction with the parameters obtained with on-axis heating alone, provided a first guess

for the distribution function for the combined heating case. The six functions were then

normalised iteratively to provide a best parameter fit of the 3D plots of the density, parallel

pressure and perpendicular pressure. The result of such a procedure for the case at hand, i.e.

JET discharge 58934, has been undertaken, and one finds for example that the anisotropy
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A(r) is of order 10. The resulting flux surfaced averaged density and parallel pressure, and

compared with the SELFO data in Fig. 4 for the latter part of discharge 58934 when both

RF antennas are being deployed. Finally, Fig. 5 shows the density over the entire poloidal

cross section. Peaks in the density result from the localised deposition of the RF heating

(resonances shown with near vertical lines), and again recover the salient features of the

SELFO data.

B. Currents in asymmetric fast ion distributions

The parallel velocity asymmetry is conveniently visualised through the parallel current

density j‖ = eZ
∫
dv3 v‖F . We derive the currents for a general distribution function, and

then specialise to our model distribution of Eq. (20). First we define F+ as the distribution

function of particles moving in the same direction as the plasma current, and F− as the

distribution counter to the plasma current. It is more conventional to discuss current drive

in terms of the toroidal current density jφ = eZ
∫
dv3 vφF than the parallel current density.

In the following it is the parallel current that is evaluated analytically, but we label the

currents as toroidal. Moreover, SELFO evaluates the toroidal component of the parallel

current. In any case the correction is much smaller than the currents described below. We

recall the definitions of F0 and G0 in Eqs. (6) and (7), to reveal the orbit width expansion

of the current jφ = jφ0 + jφ1, where

jφ0 = Zeπ
∫ ∞
0

dE(2E)
∫ 1/Bmax

0
dλB(F+

0 − F−0 )

and

jφ1 = −Zeπ
∫ ∞
0

dE(2E)
∫ 1/B

0
dλB

q

rΩc

(
|v‖|R− pR2

0qωb
)

(G+
0 + G−0 )

with p = 1 for passing particles, p = 0 for trapped particles, and Ωc = eZB0/m. Note

that we have used the result for large aspect ratio circular geometry ∆r = q(v‖R −

R2
0q(pσ)2π/τb)/(rΩc), valid for both trapped and passing particles, but where τb = 2π/ωb is

the transit time for passing ions.
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We note now that jφ0 is valid only for passing particles, and hence the limit of integration

λ = 1/Bmax. Due to the poloidal reflection of trapped particles, there is no current associated

with trapped particles at that order, and hence for trapped ions F+
0 − F−0 = 0. We note

that, jφ0 can encompass both Fisch currents [16], and the currents associated with detrapping

into preferentially co- or counter-passing ions [33,11]. In this paper we do not differentiate

between which of these mechanisms creates jφ0 , but we note that both are consistent with an

asymmetric distribution in v‖ at the lowest order, i.e. in F0. The finite orbit corrected current

jφ1 is essentially independent of asymmetry in the lowest order distribution function, and we

see that any distribution of particles have currents associated with constraint of canonical

momentum conservation. It is seen here that jφ1 is important when the radial gradient of

the distribution is large, and when the orbit widths of the particles are large. Hence, these

currents are seen as the drift orbit analogue of finite Larmor radius diamagnetic currents. It

is clear then that jφ1 can be large for ICRH because the ions are heated to high energy, and

ions are pushed towards trapped and deeply trapped pitch angles, and also the local nature

of ICRH can create large radial gradients in the distribution function. Finally, barely passing

ions contribute to a small orbit current, jφ1 , while, due to their small orbit width, deeply

passing ions hardly contribute to jφ1 at all. Finally we note that barely passing fast ions

also contribute to a bootstrap current [34], despite being neglected in the above definition

of jφ1 . However, since pitch angle scattering is very weak for energetic ions, the fast ion

bootstrap current is of order ε smaller than the bootstrap current associated with electrons

(given a like for like pressure profile) [34]. Resultingly, the fast ion bootstrap current can

be ignored. To summarise, trapped ions cannot contribute to the current due to parallel

asymmetry, jφ0 , but meanwhile trapped ions strongly dominate the finite orbit width current

jφ1 . Consequently, providing the currents are not dominated by the effects of non-standard

orbits, one can approximately identify jφ0 with the total current from passing ions, and jφ1

with the total current from trapped ions.

For the internal kink mode analysis and the interpretation that follows, it is necessary

to be able to identify separately jφ0 and jφ1 , since the mechanism determining sawtooth
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destabilisation due to local ICRH deposition is found to be dependent on asymmetric dis-

tribution functions in v‖ at the lowest order, and thus must be consistent with having finite

jφ0 . Since it is the total fast ion current jφ that is either measured or simulated (e.g. using

SELFO), we can estimate jφ0 and hence the parallel asymmetries in the distribution function

F+
0 − F−0 , from jφ-jφ1 , where, as we have mentioned jφ1 is not sensitive to the asymmetry

in the number of co and counter passing ions. In practice however, as mentioned above,

providing the currents are not dominated by the effects of non-standard orbits, one can

approximately identify jφ0 with the total current from passing ions, and jφ1 with the total

current from trapped ions.

We now undertake to calculate the flux averaged currents for our model distribution

function, parameterised with the SELFO simulations of JET discharge 58934. The critical

resonant field Bc is written in terms of εc = (Rc − R0)/R0, so that Bc ≈ B0(1 − εc).

Hence for the on-axis resonant wave of 58934, εc ≈ 0, while for the off-axis resonant wave,

εc ≈ −0.3m/R0, with R0 ≈ 3m. Writing the temperature in units of electron Volts, we have

upon employing the model of Eq. (20):

〈jφ0(r)〉 = Zenc

(
2eT⊥A

πm

)1/2 ∫ 1

0
dy2

2ε c(r, y2)

[y2(1− εc) + A|2ε− y2(ε− εc)|]2
(23)

where, from the model distribution function of Eq. (20), we recall that nc(r)c(r, y) is the

asymmetric contribution to the density. Due to the requirement that mirror trapped particles

cannot contribute to jφ0, and if the distribution function is to be continuous across the

passing-trapped boundary, we have the condition c = 0 at the passing-trapped boundary,

i.e. c(r, y2 = 1) = 0.

The finite orbit corrections must be broken down into trapped and passing, denoted by

superscript ‘t’ and ‘p’ respectively, so that employing the model of Eq. (20):

〈jφ1(r)〉p = −e
(

3

2

)(
R0q

rB0

) ∫ 1

0
dy2

(2ε)3/2

[y2(1− εc) + A|2ε− y2(ε− εc)|]5/2
×[

(ncT⊥A
1/2)′ −

(
5

2

)
(ncT⊥A

1/2)A′|2ε− y2(ε− εc)|
y2(1− εc) + A|2ε− y2(ε− εc)|

]
Jp(r, y2) (24)

and for trapped particles,
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〈jφ1(r)〉t = −e
(

3

2

)(
R0q

rB0

) ∫ 1

0
dk2

(2ε)3/2

[1− εc + A|2εk2 − (ε− εc)|]5/2
×[

(ncT⊥A
1/2)′ −

(
5

2

)
(ncT⊥A

1/2)A′|2εk2 − (ε− εc)|
1− εc + A|2εk2 − (ε− εc)|

]
J t(r, k2) (25)

where X ′ ≡ dX/dr, ε = r/R0 and we have

J t =
2

π
E(k2) +

k2 − 1

π
K(k2) and Jp =

2

π
E(y2)− π

2K(y2)

where K and E are complete elliptic integrals of the first and second kinds respectively.

Figure 6 (a) shows the SELFO deduced flux averaged current density 〈jφ(r)〉 as a function

of minor radius for discharge 58934. We note that the SELFO current has been obtained

by evaluating the parallel current from fast ion distribution function, and subtracting the

drag current from the background plasma. Figure 6 (b) plots 〈jφ1(r)〉, the sum of Eqs.

(24) and (25), which are the currents due to finite drift orbits. These currents are now

straightforward to calculate because T⊥(r), nc(r) and A(r) were obtained in section III A

for the two distributions. We note here that 〈jφ1(r)〉t is found to be at least an order of

magnitude larger than 〈jφ1(r)〉p. Since the currents from passing ions are found to be the

same order of magnitude as trapped ions [11], this means that the majority of the current

attributed to passing ions must be contained in 〈jφ0(r)〉 (note that this statement may need

to be relaxed if the passing ion currents are dominated by the effects of non-standard orbits).

The flux averaged current 〈jφ0(r)〉 due to the asymmetries in the lowest order distribution

function F0, is identified with 〈jφ(r)〉 − 〈jφ1(r)〉. It is obtained by multiplying the SELFO

current of Fig. 6 (a) by the inverse of the plasma drag coefficient, (i.e. by 1/jd, where jd is

defined in Eq. (30)), and then to subtract from this 〈jφ1(r)〉, i.e. the current of Fig. 6 (b).

Figure 6 (c) shows 〈jφ0(r)〉 after it has been smoothed.

Nevertheless, knowledge of the full distribution function, and development of the internal

kink analysis in the next subsection, requires the asymmetry function c(r, y2) be resolved.

Identification of the latter requires further modelling. We let c = cr(r)cy(y
2), and choose cy

to be Log-Normal in 1 − y2. This enables the lowest order asymmetry to disappear at the

passing-trapped boundary as required. Hence, setting
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cy(y
2) =

5

4

1

1− y2
exp

[
−
(

ln
{

5

8
(1− y2)

})2
]

we can now resolve cr(r) and hence c(r, y2), and thus the entire distribution function. Shown

in Fig. 7 (a) is a contour plot of F0 given by Eqs. (20) and (6), i.e. the distribution function

in absence of finite orbit corrections, plotted with respect to v‖ and v⊥ on the outboard

side (θ = 0) and at r/a = 0.35. Features shown in Fig. 7 (a) include the peaking of the

distribution function on the trapped side of the passing-trapped boundary, which is due

to an abundance of trapped particles along the line of the off-axis RF resonance, and also

the asymmetry in v‖ which is consistent with c(r, y2) and the lowest order current 〈jφ0(r)〉

at r/a = 0.35 shown in Fig. (6) (c). Finally, Fig. 7 (b) shows F0 − ∆rG0 ≈ F given by

Eqs. (20), (6) and (7), i.e. the total distribution including the effects of finite orbit widths,

plotted with respect to v‖ and v⊥ on the outboard side (θ = 0) and at r/a = 0.35. We now

see additional asymmetries in v‖, particularly inside the trapped cone. The corresponding

currents are consistent with the total current 〈jφ(r)〉 at r/a = 0.35 shown in Fig. (6) (a).

C. Internal kink stability for JET minority H demonstration discharge

In this section we will develop the internal kink stability in terms of the model distribution

function given by Eq. (20), and compare results with the solution to the fast ion δW given

by the HAGIS code for the full distribution function obtained by SELFO. The results will

be compared with the main features of the relevant experiment.

For the semi-analytical treatment, it just remains to calculate D+
t +D−t , D+

p +D−p and

C+ − C− for F0 given by Eq. (20). This is easily achieved:

D+
p +D−p =

d
dr

(nceT⊥A
1/2)−

(
5
2

)
dA
dr

(
(nceT⊥A

1/2)|2ε−y2(ε−εc)|
y2(1−εc)+A|2ε−y2(ε−εc)|

)
[y2(1− εc) + A|2ε− y2(ε− εc)|]5/2

, (26)

D+
t +D−t =

d
dr

(nceT⊥A
1/2)−

(
5
2

)
dA
dr

(
(nceT⊥A

1/2)|2εk2−(ε−εc)|
1−εc+A|2εk2−(ε−εc)|

)
[1− εc + A|2εk2 − (ε− εc)|]5/2

(27)

and,
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C+ − C− =

eT⊥(r)

 ∂
∂r

[ncA
1/2c(r, y2)]− ncA1/2(2− y2)

(
y2

2

)
∂
∂y2
c(r, y2)− 3dA

dr

(
(ncA1/2c(r,y2))|2ε−y2(ε−εc)|
y2(1−εc)+A|2ε−y2(ε−εc)|

)
[y2(1− εc) + A|2ε− y2(ε− εc)|]3

 ,
(28)

where we recall that A = T⊥/T‖ and c are dimensionless, so that D+
t + D−t , D+

p + D−p and

C+ −C− are seen to be pressure gradients weighted appropriately to account for the single

particle dynamics concerned.

It is now straightforward to evaluate δW for the fast ion distribution function of JET

discharge 58934. It is necessary to take into account D+
t +D−t , D+

p +D−p and T
1/2
⊥ (C+−C−)

for both of the two fast ion populations, corresponding to resonance with the two ICRH

waves. The resulting δW contributions are then added together and compared with ideal

and resistive stability criteria. In order to demonstrate the sensitivity of δW to the position

of the current drive, and hence the position of the off-axis resonance, we instead allow r1 to

move relative to fixed off and on axis resonance locations. This then also allows us to compare

with HAGIS simulations, which take the full marker distribution from SELFO, and calculates

the internal kink mode stability over a range of r1. The results of the analytical calculation

are shown in Fig. 8. The dot-dash curve shows the conventional fast ion contribution ˆδW 0 =

ˆδW kt + ˆδW ft0 + ˆδW fp0 given by the sum of Eqs. (10), (14) and (15), which yields the effect

of fast ions on stability in the absence of finite orbit effects, and is plotted as a function of

r1. The magnetic shear, as well as all plasma and fast ion related profiles remain fixed. It

is seen that as r1 increases, ˆδW 0 increases, and this result is consistent with (roughly) the

dependence of
∫ r1
0 drr3/2(−P ′h) on r1. The solid line in Fig. 8 plots the finite orbit correction

of ˆδW r1 , given by Eq. (19), as a function of r1. It is seen that there is a deep and narrow

minimum in ˆδW r1 close to r1/a = 0.41, which is close to the measured inversion radius of

rinv/a = 0.34. As we will see, the large and negative ˆδW at r1/a = 0.41 would make the

internal kink mode ideally unstable, and is thus consistent with the very small sawteeth

observed in discharge 58934.
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Let us examine in more detail the physics behind the extreme sensitivity of ˆδW r1 to

the location of r1. Simply by inspection of Eqs. (23) and (19) and (28), it is clear that

ˆδW r1 and the radial derivative of jφ0 are related. We recall that the current associated with

energetic passing ions, in the absence of drag, is almost entirely encapsulated in jφ0, since jφ1

is dominated by trapped ions. This means that we should be able to determine the stability

of the internal kink mode relative to the passing ion current profile prior to the deduction of

the plasma drag current. In fact, some simple algebra and numerical integration over pitch

angle y2, reveals the following fit:

ˆδW r1 ≈ −
21/2

πε21

1

ZΩc

(
2µ0

B2
0

)
T

1/2
⊥ T

1/2
‖

d

dr
< jφ0 >

∣∣∣∣∣
r1

. (29)

The dashed line of Fig. 8 plots Eq. (29), for the current profile of Fig. 7 (a), as a function

of r1, and it seen that there is excellent agreement with Eq. (19). It is therefore clear

that maximum instability occurs when the largest positive gradient in the fast ion current

dipole coincides with the location of r1. The location of the maximum gradient in jφ0 is

close to the Doppler shifted resonance position, corresponding also closely to the zero in jφ0.

Furthermore, we recall that one can approximately identify jφ0 with the entire passing ion

current prior to the deduction of the plasma drag current, and hence we can now directly

obtain an approximation for ˆδW r1 following calculation of the passing ion current profile

such as those obtained by SELFO (see e.g. Fig. 19(a) of Ref. [11]).

These new calculations and derivations in this manuscript provide an answer to why

toroidally propagating ICRF waves are so successful at sawtooth control despite only having

a modest effect on the magnetic shear. In particular, for JET discharge 58934, SELFO

simulations demonstrate that the effect of the fast ion current profile leads to a maximum

change in the shear of only 0.1. The corresponding change in the ideal or resistive internal

kink threshold, in the absence of the finite orbit effect of Eq. (29), is small. It is in fact clear

that the classical mechanism involving only the shear at q = 1 is dwarfed by the fast ion

mechanism described here.
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IV. MINORITY 3HE SAWTOOTH EXPERIMENTS AND SIMULATIONS

In order to clearly show that the fast ion mechanism is responsible for sawtooth control it

is desirable to attempt to reduce the effect that fast ions have on the magnetic shear. While

for the hydrogen minority pulse analysed above the change in the shear due to ions was

around 0.1, the change in the shear arising from minority 3He is much smaller. This subsec-

tion summarises dedicated experiments employing minority 3He, with resonance placed on

the high field side close to r1. The details of these pulses, and other more advances pulses

will be published elsewhere [35]

As mentioned already, the experimental objective of generating negligible net minority

ion current in the core is made realisable upon choosing minority 3He. The fast ion current

density jh = enhZhvh can be evaluated by SELFO, where vh is the v‖ moment of the

distribution function. However, the plasma is dragged along with the fast ions, such that

the total current is proportional to a drag coefficient jd such that jtot = jh× jd. The fast ion

current is subject to momentum conservation, quasi-neutrality and the balance of collision

rates of electrons on all ion species [16], giving

jd = 1−
[
Zh
Zeff

+
mh

∑
i Zini(1− Zi/Zeff )
Zh
∑
i nimi

−G
(
Zh
Zeff

− mh
∑
i niZ

2
i

ZhZeff
∑
i nimi

)]
, (30)

where G = 1.46A(Zeff )ε
1/2, A is a weak function of Zeff and i denotes ion species other that

hot (h). Due to the minority ion mass number mh = 3 and charge Zh = 2 and moderate

Zeff ≈ 1.8 giving A ≈ 1.4, the effect of the plasma drag is to reverse the sign of the net

current density inside q = 1, and to neutralise the current density and the change in the

shear at q = 1.

The objective of the experiment was for the 3He resonance to pass slowly through the

inversion radius on the high field side in each discharge. This was technically difficult,

because the fundamental hydrogen resonance needed to remain outside the antenna region (>

4m) at all times. A particular configuration was chosen which permitted the 3He resonance

to access a q=1 radius which was not compromised in size. The two pulses summarized in

25



Fig. 9 had the slowest field and current ramp, and the clearest sawtooth control signatures.

The field was varied from 2.9T to 2.96T . The pulses were identical, except crucially, 76189

employed 3MW of counter-propagating waves (-90◦), while 76190 employed 2MW of co-

propagating waves (+90◦). Also shown in Fig. 9 is the NBI power, the core central electron

temperature, the sawtooth period and the n = 1 magnetics amplitude for both pulses. All

of these signals show the contrasting effects of the antenna phasing on the sawteeth (and

internal kink instability in the case of the magnetics signal).

The minority ion concentration was around 1 percent, giving fast ion tail temperatures in

excess of 250 keV. Sawteeth were strongly affected when the resonance was about 2 to 6 cm

inside the inversion radius (rinv). Discharge 76189 (-90◦) demonstrates sawtooth destabilisa-

tion (small period) over a width of a few percent of the minor radius. For 76190 (+90◦), the

signature of the sawtooth stabilisation is slightly broader. Nevertheless, since a contrast-

ingly different signatures occur for +90◦ and -90◦ phasings, we have demonstrated that the

sawteeth were not merely modified by a change in the local conductivity, which nevertheless

would not be expected to result in sawteeth that are highly sensitive to resonance position.

A. modelling of 3He pulses

Figure 10 (a) and (b) plots the passing and trapped contributions of the fast ion current

profiles for respectively 76189 and 76190 before the plasma drag is subtracted. It is seen

that the trapped currents are very similar for co and counter propagating waves. This is

expected, since from Eq. (25), the trapped ion current depends on the radial derivative of

the distribution function, which is expected to be quite similar for the two phases (except

for the pinch effect described later). However, it is seen that the radial gradient in the

passing ion currents for the two phases have the opposite sign in the relevant region close

to r1. From Eq. (29) it is clear that this will lead to the opposite sign in δW and hence

the opposite effect on internal kink stability, as expected from the observed effect on the

sawteeth.
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The above comments are quantified in Fig. 11, where in (a) the HAGIS code calculates

δW for 76189 (-90◦ phasing) with the marker distribution taken directly from the SELFO

code, and with calculations made for varying r1 but with fixed resonance position (i.e. for

varying r1−rres as occurs in the experimental scan of B). This is compared favourably with

the potential energy evaluated from Eq. (29), with the current taken from SELFO (i.e. Fig.

10 (a)), and with T⊥ = 250keV and T‖ = T⊥/4. The fit of Eq. (29) recovers the trend in δW ,

and moreover, both are consistent with the observed variation of the sawtooth period with

respect to r1−rres. Finally, Fig. 11 (b) attempts to recover the trend in the sawtooth period

for 76190 (+90 ◦ phasing). The SELFO/HAGIS simulations do this successfully. Strong

internal kink stabilisation occurs in a narrow region of r1. However, the semi-analytic

calculation from Eq. (29) does not show such a strong variation with r1, and this follows

from the smaller negative derivative in the passing contribution of the current, shown in Fig.

10 (b), in the region r1 > rres. More work is needed in order to understand this discrepancy

better, however, it is clear that the analysis leading to the derivation of Eq. (29) assumed

a number of simplifying assumptions and models for the distribution function. Identifying

the role of barely passing ions, detrapping, long tail distribution functions (non-Maxwellian

tails), and non-standard orbits will be required in that study. Nevertheless, it is pointed out

here, that both the passing and trapped currents for 76190 are more on-axis than for 76189,

which is consistent with the concept of inward pinching [36] of particles in the presence of

co-propagating waves, and it is primarily the latter that leads to the contrasting distribution

functions.

V. CONCLUSIONS

This paper outlines in detail a new mechanism [9] that has been proposed to explain the

highly effective nature of sawtooth control using off-axis toroidally propagating ICRH. By

developing an analytical treatment, initially for a general distribution function, and later

with a specialised ICRH model distribution, it is shown that energetic passing ions influence
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the internal kink mode when the distribution of ions is asymmetric in v‖. The latter is clearly

a natural feature of co or counter propagating ICRH waves. A JET demonstration discharge

[11] has been used to quantify the control mechanism, and demonstrate its viability.

In other recent discharges [37] it has been shown that a change in the magnetic field of

only about two percent can be sufficient to enable or disable sawtooth control. The cor-

responding change in the magnetic shear has been calculated, and was shown to be quite

modest, thus questioning the viability of the classical [13] sawtooth control mechanism. Nev-

ertheless, it is shown in this manuscript that when a counter propagating wave is deposited

sufficiently accurately on the high field side, a newly discovered fast ion effect is so strong

that the internal kink mode is driven not only resistive unstable (e.g. [2]), but ideally unsta-

ble, and this in turn is consistent with measured sawteeth that are much shorter in period

than those obtained in Ohmic plasmas. Furthermore, it is shown that the response of the

fast ions on the internal kink mode is very sensitive to the difference between the position of

the RF resonance position and the q = 1 surface. This is due to the fact that the only fast

ions that contribute are those that intersect the q = 1 radius, and thus the mechanism does

not rely on integrals over radial extent. Finally, the mechanism can also explain sawtooth

stabilisation with co-propagating waves on the high field side

It is of interest to consider the implications of this research for sawtooth control in

ITER. The available range of antenna frequencies in ITER are such that 3He is the likely

minority species to be employed. Primarily due to the high plasma drag in plasmas with

3He minority, the net current drive efficiency is expected to be poor [15]. While the classical

sawtooth control mechanism (e.g. [13]) would fare badly from such a prediction, the fast ion

mechanism outlined in this manuscript is unaffected by the bulk plasma drag current, since

the orbit widths of the bulk plasma particles are negligible. 3He minority ion experiments in

present day machines would be a fitting test of the fast ion sawtooth control model, and the

viability of ICRH control of sawteeth in ITER. Initial experiments of this sort, undertaken

in JET, are presented here. It is shown that despite weakly driven current, sawtooth control

is viable with low concentration 3He. This work therefore not only serves to strengthen the
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theory first put forward in Ref. [9], but furthermore, gives some confidence that sawtooth

control in ITER using ICRH might be viable.
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APPENDIX A: ANALYTICAL EXPRESSIONS FOR POLOIDAL INTEGRALS

The following provide closed forms for orbit averaged integrals required in the δW ex-

pressions of this paper.

k2 = (1− λB0(1− ε))/2λB0ε for trapped ions and y2 = 1/k2 for passing ions. Now,

G1p =
ε

2

∮
dθ cos θ(1 − ε cos θ)[1 − y2(sin(θ/2))2]1/2

and

G2p =
y2

4

∮
dθ

cos θ(1− ε cos θ)2

[1− y2(sin(θ/2))2]1/2

where G1t and G2t are obtained by replacing y2 with 1/k2 in the corresponding equations

above, and integrating over the poloidal orbit of the trapped particles. The following exact

results are obtained

G1t(ε, k
2) =

(
2ε

3

) [
(1− k2)K(k2) + (2k2 − 1)E(k2)

]
+ 0(ε2), (A1)

G1p(ε, k
2) = 2E(k2)−K(k2) +

(
2ε

3

) [
(1− 4k2)K(k2) + (8k2 − 4)E(k2)

]
+ 0(ε2), (A2)

G1p(ε, y
2) = − 2ε

15y4

[{
5y2(y2 − 2) + ε(7y4 + 8y2 − 8)

}
E(y2)
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+
{

2(y2 − 1)[−5y2 + 2ε(y2 − 2)]
}
K(y2)

]
, (A3)

Gp2(ε, y
2) =

1

15y4

[{
30y4 − 40εy2(y2 − 2) + 2ε2(32− 32y2 + 17y4)

}
E(y2)

+
{

15y4(y2 − 2)− 10εy2[8− 8y2 + 3y4] + ε2(y2 − 2)(32− 32y2 + 15y4)
}
K(y2)

]
, (A4)

G3 =
ε

2

∫ π

−π
dθ cos

(
q(θ)− πK[θ/2, y2]

K[y2]

)
(1− ε cos θ)[1− y2(sin(θ/2))2]1/2

and

G4 =
y2

4

∫ π

−π
dθ cos

(
q(θ)− πK[θ/2, y2]

K[y2]

)
(1− ε cos θ)2

[1− y2(sin(θ/2))2]1/2
.

The trapped precession drift frequency

〈
φ̇
〉

= −qEFd(r, k
2)

rR0Ωc

where

F t
d(r, k

2) =
2

1 + ε(2k2 − 1)

(
H1(k

2) + 2s(r)H2(k
2)−∆′′(r)H3(k

2)− α

4q2

)
,

s = (r/q)q′ is the magnetic shear, α = −2R0q
2P ′/B2

0 is the ballooning parameter, while H1,

H2, and H3 are given by Eq. (10) of Ref. [23] and are,

H1 = E(k2)/K(k2)− 1

2
,

H2 = E(k2)/K(k2) + (k2 − 1),

H3 =
2

3
[(2k2 − 1)E(k2)/K(k2) + (1− k2)]. (A5)

Another result required is

Fq =
∫ π/2

0
dφ

cos[2q arcsin(k sinφ)]√
1− k2 sin2 φ

. (A6)

The following fit can be employed [38],

Fq(q, k
2)=[2E(k2)−K(k2)]− 4(1− q) cos(πq)

1− 4(1− q)2
[E(k2) + (k2 − 1)K(k2)]

− (1 + cos(πq))f1(q)
[
E(k2) + (k2 − 1)K(k2) +

2

π
E(k2)− 1

]
− (1 + cos(πq))[E(k2)−K(k2)]− f2(q)(1− k2)

[
π

2
−K(k2)

]
, (A7)
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with

f1(q) =
π

2

[
1.0841− 0.3193(1− q)2 − 0.0683(1− q)4

]
,

f2(q) = 5.1
(
q − 1

2

)
(1− q)2 [1− 0.034(1− q)].
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Figure 1: Plotting co-passing and counter passing ions intersecting the q = 1 surface.

Figure 2: Showing the effective orbit width ∆r normalised to itself with pitch angle ν⊥ = 0, plotted with respect to y,
for two values of ∈. As usual y = 0 corresponds to ν⊥ = 0 and y = 1 corresponds to the passing-trapped boundary.
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Figure 3:JET Pulse No: 58934 [17], plotting the central
electron temperature, sawtooth period, sawtooth inversion
radius Rinv and first harmonic H unshifted cyclotron
resonance layers Rres(H) for +90o and -90o phasings,
and heating power for the two antennas.

Figure 4: Showing the flux averaged density (units of 1019)
and perpendicular pressure as a function of normalised
minor radius. Comparisons between the profiles from the
SELFO code, and the flux averages of Eqs. (21) and (22),
for the latter part of JET Pulse No: 58934.

Figure 5: Showing the fast ion density across the R-Z
plane according to Eqs. (21) for the latter part of Pulse
No: 58934. The anisotropic distribution function recovers
the local peaks in density, which are due to an abundance
of trapped ions along lines tangent to the resonances.
The location of the resonant field strengths are indicated
with near vertical lines.

Figure 6: Showing (a) the SELFO deduced  flux averaged
current density 〈jφ(r)i〉 (after plasma drag has been
deducted) as a function of minor radius for Pulse No:
58934. (b) plots finite orbit currents 〈jφ1(r)i〉, the sum of
Eqs. (24), and (25), while (c) plots the current due to the
asymmetries in the lowest order distribution function
〈jφ0(r)i〉, and is obtained by subtracting the currents shown
in (b) from (a) multiplied by j-1.0
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Figure 7: In (a) showing a contour plot of the lowest order distribution function F0, according to Eqs. (20) and (6),
while in (b) plotting the more accurate F ≈ F0 - ∆rG0, with G0 given by Eq. (7), all for Pulse No: 58934.

Figure 8: δW0 = δWkt + δWft0+ δWfp0 and δWr1 according to Eq. (19), and also δWr1 according to the fit of Eq. (29),
plotted as a function of r1, for Pulse No: 58934.
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Figure 11: Showing the passing ion contributions to  W
for (a) Pulse No: 76189 and (b) Pulse No:76190.
Comparisons are made between numerical solutions from
the SELFO and HAGIS codes with evaluations using Eq.
(29).

Figure 10: Showing the passing and trapped ion currents
calculated by SELFO for (a) Pulse No: 76189 and (b)
Pulse No: 76190.

Figure 9: Showing the time traces of NBI and ICRH power,
the 3He resonance position and inversion major radius,
central electron temperature, sawtooth period and n = 1
magnetics amplitude for Pulse No’s: 76189 (blue, -90o

antenna phasing) and 76190 (red, +90o antenna phasing).
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