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Abstract Drift-Alfvén vortex filaments associated with electromagnetic turbulence were recently identified in

a reversed field pinch devices. Similar propagating filamentary structures were observed in the Earth

magnetosheath, magnetospheric cusp and Saturn’s magnetosheath by spacecrafts. The characteristics of these

structures are closely resemble those of the so-called mesoscale coherent structures, prevailing in the fusion

plasmas, known as the ‘blobs’ and ‘ELM filaments’ in the boundary region, and propagating avalanche-like

events in the core region. In this paper the fundamental dynamics of drift-Alfvén vortex filaments in a

nonuniformly and strongly magnetized plasma are revisited. We systemize the Lagrangian-invariant-based

method. Six Lagrangian invariants are employed to describe structure motion and the resultant convective

transport, namely magnetic flux, background magnetic energy, specific entropy, total energy, magnetic

momentum and angular momentum. The perpendicular vortex motions and the kinetic shear Alfvén waves are

coupled through the parallel current and Ampere’s law, leading to field line bending. On the timescale of

interchange motion ⊥τ , a thermal expansion force in the direction of curvature radius of the magnetic field

overcomes the resultant force of magnetic tension and push plasma filament to accelerate in the direction of

curvature radius resulting from the plasma inertial response, reacted to satisfy quasineutrality. During this

process the internal energy stored in the background pressure gradient is converted into the kinetic energy of

convective motion and the magnetic energy of field line bending through reversible pressure-volume work as a

result of the plasma compressibility in an inhomogeneous magnetic field. On the timescale of parallel acoustic

response ⊥>>ττ || , part of the filament’s energy is transferred into the kinetic energy of parallel flow. On the

dissipation timescale ⊥>>ττ d , the kinetic energy and magnetic energy are eventually dissipated, which is

accompanied by entropy production, and in this process the structure loses its coherence, but it has already

traveled a distance in the radial direction. In this way the propagating filamentary structures induce intermittent

convective transports of particles, heat and momentum across the magnetic field. It is suggested that the

phenomena of profile consistency, or resilience, and the underlying anomalous pinch effects of particles, heat

and momentum in the fusion plasmas can be interpreted in terms of the ballistic motion of these solitary

electromagnetic filamentary structures.

PACS numbers: 52.35.Ra, 52.25.Fi
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1. Introduction

1.1. Filamentary structures in fusion plasmas

Plasma turbulence and the resultant anomalous transport occupied a critical role in the physics of

magnetically confined plasmas for thermonuclear fusion research from its very infancy [1]. Its nonlinearity and

complexity is even more prominent in the plasma edge region where the fluctuation levels are typically of the

order of unity [2]. In the last decade accumulating experimental evidences from tokamaks [3], stellarators [4],

reversed field pinches (RFP) [5], spherical tokamak [6], simple magnetized torus [7], and linear devices [8]

have revealed the presence of solitary coherent structures [9] in the plasma turbulence, propagating in the

radial direction as well as in the azimuthal direction, commonly referred to as blobs or magnetic-field-aligned

filaments [10], which leads to intermittent convective transport of particles, heat, momentum, charge and

current across the magnetic field. Recent observations of strong filamentary structures in the plasma boundary

in association with Edge Localized Mode (ELM) activity in high confinement mode (H-mode) [11-30] have

many similarities with the blob structures observed in low confinement mode (L-mode), indicating that they

might be governed by the same physical mechanisms. By careful analysis of fast camera and reciprocating

Langmuir probe data it was now demonstrated that turbulent transport in the inter-ELM periods is also

predominantly carried by filamentary structures, although with much smaller fluctuation amplitudes [6].

The generation of these structures is generally thought to be the result of strong nonlinearities of the plasma

edge turbulence [31]. Their two-dimensional (2D in the drift plane, i.e. the plane perpendicular to the magnetic

field) electrostatic features have been extensively investigated experimentally [2,3,10] and numerically [31-

33]. Now, strong interest is arising around their three-dimensional (3D) characteristics, with strong emphasis

on the parallel dynamics [34] and electromagnetic features [35-37]. This interest is enhanced by some

analogies with the propagating avalanche-like events [38] or streamers [39] previously observed in the plasma

core region, where the plasma β (the ratio of thermal to magnetic pressure) is much higher. These events are

generally thought to be associated with some nonlinear electromagnetic structures or fronts ballistically

propagating in the radial direction [1]. Partially motivated by this target, nonlinear kinetic simulations with

electromagnetic effects are rapidly evolving in the recent years [40-42].

The electromagnetic characters of ELM filaments were studied in MAST spherical tokamak [23,24] and

ASDEX Upgrade tokamak [28,29] experiments, ruling out purely electrostatic dynamics. Hints of
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electromagnetic features of blobs were obtained in linear devices [43], and more recently, the first direct

experimental measurement of the parallel current density associated with blob structures [44] and the first

experimental evidence showing the association of the propagating turbulent structures with the drift-Alfvén

vortices was obtained in the RFP device [45]. And, the first direct observation of current in ELM filaments was

made on ASDEX Upgrade tokamak [46]. These new experimental activities aimed at identifying the

electromagnetic features of filamentary structures in the fusion plasmas is partially motivated by recent

observation of drift-Alfvén vortices in the space plasmas.

1.2. Filamentary structures in space plasmas

It is well know that propagating filamentary structures are frequently found at boundary layers in

astrophysical, geophysical and solar atmospheric plasmas. In recent years, dipolar drift-Alfvén vortices have

been detected both in the magnetospheric cusp [47] and in the magnetosheath [48-50] by the four-spacecraft

Cluster mission, and its relation to the cross-field transport was found [51]. Similar Alfvén vortex filaments

were observed in Saturn’s magnetosheath by Cassini spacecraft [52], indicating the universality of such

structures in planetary space. In the year 2007, Alfvén waves were detected in the solar corona [53], where the

filamentary structures associated with Alfvén waves were suggested to explain how energy is transferred to the

solar corona, which is millions of degrees hotter than the solar surface, known as the photosphere. The

connection between the erupting filamentary structures in the fusion laboratory plasma and the solar flares was

summarized in a recent review paper [54]. And, the auroral plasma is occasionally observed to evolve into

highly coherent electromagnetic vortex structures [55], in which the perturbed electric and magnetic fields

exhibit regular rotation together with the particles trapped inside the structures. Another example is the

phenomenon that takes place during ionospheric irregularities where localized regions of plasma depletions,

often referred to as bubbles, move radially outwards on the night-side of the equatorial F layer ionosphere

[56].

1.3. Impacts of the filamentary transport in fusion plasmas

The similarity of the electromagnetic filaments in fusion plasmas and in space plasmas suggests that it could

be a universal phenomenon in plasma turbulence. As a consequence, the study of plasma blobs or filaments
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and the resultant intermittent convective transport is one of the most active research areas within plasma

physics [2,3,10,33]. In the fusion plasma boundary the propagating filaments are believed to dominate the

transport across the scrape-off layer (SOL) of fusion devices and possibly lead to serious wall erosion,

impurity and recycling problems for future fusion reactors [33]. More seriously, the transient power loads

associated with the ELM filaments on plasma facing components (both divertor and limit tiles) pose stringer

design criteria and operational limits on the material for future fusion reactor, most notably the planned ITER

experiment [57].

An important consequence of the filamentary transport is a strong ballooning nature of turbulence and a

strong poloidal asymmetry of radial fluxes in toroidal geometry. Turbulence and flow measurements in the

SOL indicate that transport is concentrated on a narrow sector near the outboard midplane [58], and the radial

fluxes on the outboard midplane are nearly two orders of magnitude larger than on the inboard midplane [59].

There is also increasingly evidence for the existence a B×∇B-independent subsonic parallel flow component

which is driven by the strong ballooning in the radial turbulent transport, and thus direct from the outboard

midplane region toward the divertor targets [60,61]. These 3D features of turbulent transport have significant

implications on ITER, considering that currently ITER design is largely based on predications from 1D

transport modeling [57]. As such, understanding the elementary electromagnetic filamentary structures which

constitutes the plasma turbulence is recognized as an issue of the highest priority with regard to ITER. For this

reason, it is essential to understand the mechanisms responsible for the filamentary dynamics.

1.4. Lagrangian-invariant-based method

In this contribution we intend to concentrate our discussions on elementary electromagnetic structures and

fundamental mechanism of turbulent transport in the plasma edge. Specifically, the dynamics of drift-Alfvén

vortex filaments in a nonuniformly and strongly magnetized plasma are revisited. The physical parameters and

derived quantities for a typical filamentary structure (using the JET tokamak parameters) in the pedestal region

(in H-mode) or periphery region (in L-mode), in the vicinity of separatrix and in the scrape-off layer (SOL) are

summarized in table 1 in the Appendix. The Lagrangian-invariant-based method was systemized and

intensively used in this paper. Six Lagrangian invariants are employed to describe the structure motion and the

resultant convective transport. They are magnetic flux, background magnetic energy, specific entropy, total
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energy, magnetic momentum and angular momentum.

The Lagrangian-invariant-based method was proposed for predicting the quasisteady profiles in tokamak

plasmas [62-72]. The basic assumption is that turbulence mixing causes uniformly distribution of the

Lagrangian invariants over the accessible phase space, a state denoted turbulence equipartition (TEP) [62].

The mechanism behind the TEP process is the Rayleigh-Bénard convection, carried by structures, known as

the convective cells [73]. The simplest case of TEP is the adiabatic vertical temperature profile that results

from large scale convection in a fluid heated from below. Note that this profile is not determined by the

intensity of the turbulence, but by the uniform distribution of specific entropy, which is a Lagrangian

invariant.

It is well known TEP occur in atmospherical convection, for instance, in the troposphere, and also appears in

the convection zone of the sun, a natural nuclear fusion reactor with turbulent transport of energy to the

surface, just like in fusion devices. According to data for sun seismology [74], the Lagrangian invariant

32−Tn  is constant to within a factor of 210−  in the convection zone. Here T  is the temperature and n  the

particle density. This is generally attributed to the conservation of the specific entropy, leading to the isentropic

atmosphere model [75]. The same mechanism is responsible for the decrease of temperature with height in the

Earth’s atmosphere. The success of the TEP approach to turbulent transport in the sun makes it natural to apply

the same ideas to fusion devices [62-72].

Recently, the TEP theory was extensively used to study the anomalous pinch effects of toroidal momentum

[76,77]. In this paper the TEP theory is extended and systemized to include the electromagnetic effects. It will

be demonstrated in this paper that the well-know phenomena of profile consistency, or resilience [78], and the

underlying anomalous pinch (up-gradient transport) effects [67] of particles, heat and momentum in fusion

plasmas can be interpreted in terms of the ballistic motion of electromagnetic filamentary structures.

1.5. Paper organization

This paper is organized as follows. In the following section, we show the relation between the intermittent

convective transport and the mesoscale structures using some experimental data from JET tokamak. In section

3 the ordering scheme for mesoscale structures in fusion plasmas and the concept of drift-Alfvén vortex

filaments are introduced. In section 4 we highlight that the presence of compressibility in an inhomogeneous
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magnetic field is responsible for the energy exchange between random thermal motion and collective motion.

In section 5 the generation mechanism of kinetic energy of filament motion and magnetic energy of field line

bending is analyzed. The energy transfer is through the reversible pressure-volume work which can be

interpreted in terms of the fundamental thermodynamic relation and the entropy equation. The dynamics for

filament acceleration and electromagnetic vorticity generation are presented in section 6. An equivalent circuit

is used to illustrate the processes in a drift-Alfvén vortex filament. The acceleration of plasma filament is

induced by a force unbalance in the direction of curvature radius resulting from plasma inertial response on the

timescale of interchange motion, reacted to satisfy quasineutrality. A discussion on the fundamental kinetic

mechanism underlying the cross-field turbulent transport associated with the filamentary process is given in

section 7. The filamentary structures present a channel for local energy exchange between particles and

magnetic field perturbations, leading to breaking of the periodic orbits of particles and the toroidal symmetry

of magnetic field and resulting in the violation of the adiabatic invariance associated with the poloidal

magnetic flux. In section 8 six Lagrangian invariants are summarized. The filament motion is largely

controlled by these Lagrangian invariants. The mode-independent part of the curvature-driven turbulent

convective pinch of particles, heat and toroidal momentum are briefly reviewed in section 9. We employ the

quasilinear method to present a qualitative estimation of the intermittent convective transport induced by the

radial propagation of the filamentary structures. Finally a discussion of the results is given in section 10,

followed by a summary. This contribution can be generally regarded as a concept upgrade from electrostatic

filamentary structure [31-34] to electromagnetic filamentary structure in response to the recent experimental

progress [43-53] in the context of intermittent convective transport mediated by propagating coherent

structures. This is a continuation of our previous work presented in Refs. [31,34,54].

2. Intermittent convective transport and mesoscale structures

In this section, we use some reciprocating Langmuir probe data from JET tokamak to show the relation

between the intermittent convective transport and the mesoscale structures. The existence and importance of

the mesoscale structures, known as blobs and holes, for cross-field transport in tokamak edge has been

demonstrated experimentally [2,3,10], where blobs are observed as magnetic-field-aligned filaments of

enhanced density and temperature as compared with the background plasma, while holes are filaments of
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reduced density and temperature. Recently, the first experimental evidence showing the formation of blobs and

holes in the edge velocity shear layer and the transport of poloidal momentum by blobs was obtained on JET

tokamak [79].

The most direct indication of turbulence intermittency is reflected by the bursts emerging in the raw signal

of the ion saturation current ies TTnI +∝ , as shown in figure 1. For the details about this discharge please

see the Ref. [79]. Intermittent positive bursts are prevailing in the SOL, see figure 1(a), indicating the presence

of blobs. Similar behavior of Is signal has been observed in the SOL of almost all tokamaks, see Refs in

[2,3,10]. At the plasma edge there is a shear layer of poloidal velocity mmrrr LCFS 3~15 −−=−=∆  [79],

where LCFSr  is the minor radius of the last closed flux surface (LCFS). Intermittent negative bursts are

detected slightly inside the shear layer, see figure 1(c), suggesting the existence of holes. The first report of

holes was on DIII-D tokamak [3]. In the shear layer, positive and negative perturbations are nearly balanced,

see figure 1(b). It was suggested that the shear layer is the generation region of blobs and holes [79].

An important feature of turbulence intermittency is the non-Gaussian PDFs (Probability Distribution

Function) of plasma density fluctuations [2,3,10]. The PDFs of Is fluctuations measured at four radial locations

are plotted in figure 2. On the horizontal axes, the fluctuation amplitudes have been normalized to the root-

mean-square (rms) fluctuation levels of Is. In the SOL the PDFs are positively skewed with a heavy tail

because of the positive bursts. The skewness (S) and kurtosis (K) of the PDFs, i.e. the deviation of the Is

signals from Gaussian statistics, increases from the near SOL to the far SOL, see figure 2(a) and (b), which

was speculated to be due to the reduction of background pressure towards far SOL [79]. The skewness and

kurtosis, defined as the third- and fourth-order moments of the PDF, give a measure of the degree of

‘asymmetry’ and ‘peakedness’ of a distribution with respect to its mean value, respectively. For a Gaussian

signal, S = 0 and K = 3, whereas for others the deviation from 0 and 3 indicates a higher degree of non-

Gaussianity. In the shear layer, the PDF is very close to a Gaussian distribution, as shown in figure 2(c).

Slightly inside the shear layer, a negative tail appears on the PDF and the skewness changes sign, which can

be seen in figure 2(d), suggesting the presence of negative bursts.

When many propagating structures with different sizes and velocities pass by probe tips, low-frequency

high-amplitude fluctuations, constituted by bursts, are detected. Figure 3 shows the power spectra ( )fkS ,ln θ
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of floating potential fluctuations, where θk  is the poloidal wavenumber. The black solid curves show the

dispersion relations, which is defined as ( ) ( ) ( )∑ ∑ ⎥
⎦

⎤
⎢
⎣

⎡
=

θ θ

θθθθ
k k

fkSfkSkfk ,, . Inside the shear layer the

turbulence propagates in the electron diamagnetic direction as shown in figure 3 (a), where cmr 2−=∆ .

Outside the shear layer the turbulence propagates in the ion diamagnetic direction as shown in figure 3 (b),

where cmr 1=∆ . The reversion of propagating direction is mainly due to the radial variation of the Er×B

rotation velocity [79]. From figure 3 one can see that most of the spectrum power distributes in the low-

frequency low-wavenumber regions ( kHzf 40<  and cmradk 4<θ ), which has been demonstrated to be

in association with the mesoscale structures [79].

The nature of turbulence intermittency can be further characterized by the time behavior of the power

spectra, for which the complex Gaussian wavelet and continuous wavelet transform are used. Figure 4 shows

the time-resolved wavelet power spectra ( )tfS ,ln  of (a) ion saturation current Is and (b) radial E×B

convective velocity vr, in the vicinity of LCFS. Consistent with figure 3, the spectrum power concentrates in

the low-frequency region. Some intermittent structures can be identified around 10 kHz, possibly with some

overlapping of adjacent structures. Comparing figure 4(a) and (b), one find the structures in the Is signal and

the vr signal are strongly correlated, which means these structures are propagating in the radial direction driven

by the E×B drift, suggesting the interchange drive as the underlying mechanism governing structure motion, as

depicted in Ref. [31]. The correlation was further confirmed by the conditional average analysis, which has

been shown in figure 5 of Ref. [79], indicating that the fluctuations of the Is and the vr tend to be in phase, i.e.

charge polarization is nearly at the center of the structures, which maximizes the convective transport.

The cross-field convective transport is dominantly carried by these propagating structures. Figure 5 shows

the wavenumber power spectra ( )skS ρθ  of density fluctuation n~ , poloidal electric field fluctuation θE~  and

radial convective particle flux 0
~~ BEn θ=Γ , measured in the vicinity of LCFS, where sρ  is the ion sound

gyroradius and at this location mms 54.0≈ρ . From the figure one can see that the spectrum power

concentrates in the low-wavenumber region with 1<<sk ρθ , implying that the structure size is much bigger

than sρ , whereas, compared with the system size a , i.e. the minor radius of plasma, these structures are much
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smaller, therefore they are usually called the mesoscale coherent structure (vs. smallscale turbulence)

[2,3,10,33]. The radial convective particle flux is dominated by these structures, as indicated in figure 5.

We use these data as a brief introduction for the audience so that one can have a direct idea for what are

mesoscale structures in fusion plasma edge and why we want to study these structures.

3. Physics behind the mesoscale structures

From the theoretical point of view it has been shown that the edge turbulence is electromagnetic even for

low local value of plasma β [80-82]. Fully electromagnetic nonlinear gyrokinetic theory for edge turbulence

has now come to be mature [83,84]. Efforts dedicated to the development of kinetic simulation of edge

turbulence are now underway [85]. Concerning the basic mechanism, in the recent years substantial progress

has been made in understanding the radial propagation of blobs in the plasma boundary [33,86-89]. For

toroidally magnetized plasmas this was suggested to be due to the guiding center drifts caused by an

inhomogeneous magnetic field, resulting in a vertical charge polarization 1 and a resultant E×B radial

convection reacted to satisfy quasineutrality, 0=⋅∇ j  [90].

3.1. Quasineutrality

Employing the quasineutral condition implies that the Alfvén velocity ( ) 21
0

2
0 nmBv iA µ≡  is much slower

than the speed of light c  in a vacuum, the ion plasma frequency ( ) 21
0

2 εω ipi mne≡  is much higher than ion

gyrofrequency ici meB0≡ω  and the ion sound gyroradius ciss c ωρ ≡ is much longer than the Debye

length ( ) piseD cneT ωελ ~212
0≡ , i.e. 1~ >>= DscipiAvc λρωω , where

( )[ ] Aeieis vmTTc 2121 ~ β+≡  is the ion sound speed, ( ) ( )222
00 ~2 pisAsee LvcBp ρµβ =≡ −  is the ratio

                                                       
1 Here we use the term ‘charge polarization’ instead of ‘charge separation’, since in a quasineutral plasma the net charge is
negligible, E⋅∇=+= 0εσσσ fb , where the net charge σ  is composed of the bound charge bb P⋅−∇=σ  and the

free charge D⋅∇=fσ . Here, bP  is the polarization per unit volume and bb PEPD ≈+= 0ε  is the electric displacement

field. The conservation of charge requires 0=⋅∇+∂=⋅∇+∂=⋅∇+∂ fftpbtt jjj σσσ , where the plasma current

bpf jjjj ++=  is composed of the free current fj , the polarization current pj  and the magnetization (bound) current bj .

Noting 0=⋅∇ bj . The details about these current components will be addressed in section 5.
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of electron pressure to magnetic pressure and pipi cL ω≡  is the ion inertial skin length. The permittivity in a

quasineutral plasma is ( ) 2
00

2
0

−− ≈+= BB ρερε  and the permeability in a low-β plasma is

( ) 0
1

000 1 µµµµµ ≈−+= −MB , where nmi≡ρ  is the mass density (note iρ  is the ion gyroradius) and

bM ⊥
−−≡ pB 1  is the magnetization. With the permittivity and the permeability, the Alfvén speed is formally

defined as ( ) 21−≡ µεAv . Assuming singly charged ions, as herein, n  refers to both the electron or ion

density. In fusion plasmas, even in the SOL, the quasineutral condition is well satisfied, please see table 1.

3.2. Ordering scheme for mesoscale structures

The typical cross-field size ⊥L  of the filamentary structures was observed to be close to the ion poloidal

gyroradius and the ion inertial length spii LL ρρθ >>⊥ ~~  [2,3], which does not follow the standard

gyrokinetic ordering of drift-wave microturbulence 1~sk ρ⊥  [42,84], thereby they are usually called

mesoscale coherent structures, where ⊥k  is the perpendicular wavenumber, θθ ρρ BBii 0≡  is the ion

poloidal gyroradius, cithii v ωρ ≡  is the ion gyroradius and ( ) 212 iithi mTv ≡  is the ion thermal velocity.

The ion inertial length piL  is typically of the same order as the radial gradient lengths of background

pressure p  and zonal potential φ , φLLL ppi ~~  in the plasma edge of tokamaks, where usually steep

pressure gradient and strong radial electric field present, please see table 1, here ( ) 1ln −∂≡ pL rp ,

( ) 1ln −∂≡ φφ rL  and ...  denotes average over a flux surface, i.e. the surface with constant poloidal

magnetic flux ψ . These structures are strongly elongated along the field lines [2], manifested as magnetic-

field-aligned filaments. In tokamak geometry the typical parallel scale length of a filament ||L  is of the same

order of the parallel geometry length qRπ , where q  is the magnetic safety factor and R  is the major radius.

Following [54,91], we employ the drift ordering for small parallel gradient. The magnetization parameter

1<<≡ ⊥Lsρδ  is used as a measure of the smallness of the E×B drift velocity δ~sE cu , where

BEu ×≡ −2BE . By this ordering the vortex turnover time cisEuL τδτδτ 21 ~~ −−
⊥⊥ ≡  is much longer
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than the ion gyroperiod 1−≡ cici ωτ , therefore only low-frequency dynamics are involved, where ss cL⊥≡τ  is

the perpendicular ion sound transit time [36]. In this paper ⊥τ  is referred to the timescale for the interchange

(or convective) motion. The ratio between poloidal and total magnetic fields in a tokamak is

δρρϑ θθ ~0 iiqBB =∈=≡ , where 1<<∈≡ Rr  is the local inverse aspect ratio.

The ion guiding center drift velocity is composed of FLRpGiE uuuuuu ++++= || , where bu |||| u≡  is

the parallel flow velocity, BBb ≡  is the unit magnetic field vector, ( )bbu ×∇+∇×= ⊥
−−

||
11 ln iiGi TBTBe

is the curvature and grad-B drift velocities, ⊥
−≡ Eu tcip dB τ1  is the ion polarization drift velocity, the total

time derivative is given by ∇⋅+∂≡ uttd  and EiFLR uu 22
2
1

⊥∇= ρ  is due to the finite-Larmor-radius (FLR)

effect. By this ordering we have δρ ~~~ RLRuvuu EthiiEGi ⊥ , 2~~ δττ ⊥ciEp uu  and

222 ~~ δρ ⊥Luu iEFLR . Consequently, the E×B drift is the only lowest order cross-field guiding center

drift, which is moreover the same for both positively and negatively charged particles. To lowest order, the ion

guiding center drift velocity is reduced to Euuu +≈ || .

3.3. In the finite-β plasmas

We only consider the case of strongly magnetized plasma, where the plasma β is low,

( ) ( ) 222 ~~ δρβ pisAse Lvc = . For the case of greatest current interest, iee mm>β , i.e. in a finite-β

plasma [42], the electromagnetic effects are important. In this case the Alfvén speed Av  is smaller than the

electron thermal velocity ( ) 212 eethe mTv ≡ , i.e. ( ) 1~ 21 <eietheA mmvv β . From table 1 one can see this

is generally the case inside the separatrix, i.e. in the closed field line region. In the vicinity of the separatrix,

we have 2~~ δβeie mm  and hence ( ) δρρ ~~~ 21
iepipethethiie mmLLvv= , where pepe cL ω≡

is the electron inertial skin length and ( ) 21
0

2 εω epe mne≡  is the electron plasma frequency.

At fusion plasma edge, the vortex turnover time ⊥τ  is comparable with the shear Alfvén time AA vL||≡τ

(see table 1), so that the electrostatic vortex motions and the kinetic shear Alfvén waves (KSAW) are coupled,
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Aττ ~⊥ . The coupling with the compressional Alfvén wave, i.e. the magnetosonic wave, is negligible, since

⊥τ  is much longer than the compressional Alfvén time cisAA vL ττδδττ ~~~ 2
⊥⊥⊥ ≡ , where

δβ ~~ 21
eAs vc  has been used. By this ordering the degree of the spatial anisotropy is

221
|| ~~~ δδβeAE vuLL⊥ . Using the quasineutral condition 0=⋅∇ j , we have

2
|||||||| ~~~~ δLLAABBjj ⊥⊥⊥⊥ , where ||B  is the parallel magnetic perturbation and ⊥A  is the

perpendicular component of the magnetic vector potential. ||B  and ⊥A  are neglected in this paper since they

are associated with the compressional Alfvén wave. The timescale for parallel acoustic response is

⊥
−≡ τδτ 1

|||| ~scL , indicating that the excitation of the parallel ion sound wave is a slow process compared

with the perpendicular convective motion. This explains why 2D approximation is frequently applied to the

ion motion and electrostatic vortex dynamics [9].

When the filaments and the KSAW are coupled, the parallel phase speed ⊥=≡ τω |||||| Lkvph  is of the

order of ( ) 21221 sA kv ρ⊥+ . The relative wave impedance Zvuu phEF ||=≡ς  depends not only on the plasma

β but also on the scale sk ρ⊥  [92,93], where Fu  is the perpendicular velocity of field lines,

||0 ~ ABBuBEZ E φ⊥⊥⊥ =≡  is the wave impedance, here φ  is the scalar potential and ||A  is the parallel

component of the magnetic vector potential. In a finite-β plasma (from table 1 one can see this is generally the

case inside the separatrix), for mesoscale structures ( 1<<⊥ sk ρ ), Aph vv ~|| , the wave impedance Z  is of the

same order of the Alfvén speed Av  and structures move perpendicularly with a velocity sE cu δ~ , whereas

the wave impedance Z  of smallscale structures ( 1~sk ρ⊥ ) substantially exceed Av , they move with small

velocities sE cu δ<< , and are strongly coupled with drift waves. Note, for the smallscale structures, one

should apply the standard gyrokinetic ordering instead of the ordering scheme for mesoscale structures.

 In the ideal MHD (Magnetohydrodynamic) limit, 1=ς , the field lines are exactly frozen in fluid elements

and moving with them. In the electrostatic limit, 1<<ς . For mesoscale structures, ς  is of order unity [92,93],

implying that the electromagnetic effects are more important for the mesoscale dynamics than the smallscale

dynamics. This gives the ordering of the perpendicular magnetic field fluctuations
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221
||0 ~~ ςδςδβephF vuBB =⊥ , which is typically very small due to the low β. But, the magnetic

fluctuation levels increase with plasma β, so that field line bending in high-β plasmas is generally stronger

than in low-β plasmas. Recent experiments on blobs from a RFP device [44,45] and ELM filaments from

ASDEX Upgrade tokamak [46] suggested some MHD behaviors 1~ς .

The parallel wavelength of the shear Alfvén wave AAvL τ=||  is comparable with the typical parallel scale

length qRπ  in a tokamak, so that the induced field line bending is global in the parallel direction [33], but is

localized in the drift plane with the cross-field size ⊥L , manifested in a tokamak by a finite toroidal mode

number. The coupling with KSAW allows a perpendicular displacement of the field lines by an amount of

⊥⊥⊥ =≡ LuBBLr AF ςτ ~0|| , which defines the radius of an Alfvén vortex. Inside an Alfvén vortex the

perturbed electric and magnetic fields are coupled with each other through the Maxwell’s equations and

exhibit regular rotation together with the particles trapped inside the structures [9]. In such a way the plasma

could evolve into highly coherent electromagnetic vortex structures.

The electrostatic fluctuation levels are of order unity at the plasma edge, 1~~~~~ eee ppnnTeφ ,

where nnn −≡~ , eee ppp −≡~  and φφφ −≡
~

. Here, φ  is the zonally averaged potential. The

electrostatic fluctuation levels are consistent with the ordering, 1~~ δφ sEe cuTe .

3.4. Alfvén vortex filaments

The strong mobility of the electrons along the field lines will allow a parallel current ||j  to arise as a

response to the charge polarization induced by curvature and grad-B drifts in the drift plane [31]. This current

provides a channel to couple the electrostatic vortex dynamics with the KSAW [44-52]. The coupling is

through the Ampere’s law ||
2

||0 A⊥⊥ ∇−=×∇= bBjµ , where the total magnetic field is ⊥+= BBB 0 , 0B  is

the background (static equilibrium) magnetic field, 00ˆ BBz ≡  is the unit vector along 0B ,

|||| ˆ A∇×−=×∇≡⊥ zAB  is the perpendicular (to 0B ) magnetic perturbation, with 22
0

2
⊥+= BBB  and

00 =⋅∇=⋅∇=⋅∇ ⊥BBB .
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These more general vortices are denoted Alfvén vortex filaments [94-96] and are characterized by both an

electrostatic vorticity φ21
⊥

− ∇=×∇≡ BE buΩ  and a magnetic vorticity ||0jΩ µ≡A , where

φ∇×≈×≡ −− zBEu ˆ1
0

2 BBE  and the electric field is ||AE t∂−−∇≡ φ . The perpendicular electric field is

nearly electrostatic φ⊥⊥ −∇=E , while the parallel electric field involves magnetic perturbation through

Ψ∂−=∂−−∂= |||||||||||| jAE t ηφ , where ( )∫ −≡Ψ |||||||| dlEjη  is the parallel emf (electromotive force), here

we have define ||l  as distance along the perturbed field line, i.e. ∇⋅×∇+∂=∇⋅=∂∂≡∂ − zb ˆ||
1

0|||| ABl z ,

tt ∂∂≡∂  and ∇⋅≡∂ ẑz . The parallel derivatives carry nonlinearity entering through ||A . Then, the parallel

potential gradient and the parallel electric field can be written as |||| AEz ∇⋅+∂=∂ uφφ  and

||||
ˆ AdE tz −−∂= φ , where ∇⋅+∂≡ Ettd uˆ  is the transverse advective derivative.

When an Alfvén vortex arises in a plasma with strong background pressure gradient, which is a typical case

in fusion plasmas, it will propagate in the azimuthal direction and couple to the drift wave, so that it is usually

called drift-Alfvén vortex [97]. The concept of drift-Alfvén vortex was recently applied to the space plasma to

interpret the Cluster observations in the Earth’s magnetosphere [92,93].

3.5. Ordering in the generalized Ohm’s law

In the vicinity of the separatrix, the inertial parameter ( ) 1ˆ 2 >= pie LqRmmµ , the inductive parameter

( ) 1ˆ 2 >= pe LqRββ  and the resistive parameter 1ˆ51.0 >= eisp cLC τµ  are of the same order (see table 1)

[36], which implies strong non-adiabatic electron activity due to the inertial, inductive and resistive parallel

electron responses. With thevqR , sp cL  and eiτ  all comparable (see table 1), the situation is referred to as

transcollisional, where 123 −∝ nTeeiτ  is the electron-ion collisional time.

The parallel component of the generalized Ohm’s law is given by [42]

( ) ( )[ ] φη ||||||||||
111

||
2

|||||| lnˆ ∂−∂−−∂=++∂ ⊥
−−−− BpppnenjdmejA eeetet                           (1)

where ||η  is the parallel resistivity and it is about two times smaller than the perpendicular resistivity

( )eie nem τηη 2
||96.1 ==⊥ , |||| ee nTp ≡  is the electron parallel pressure and ⊥⊥ ≡ ee nTp  is the electron
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perpendicular pressure. Equation (1) is also known as the electron parallel force balance equation. With the

parallel emf, it can be written as ( )φη −Ψ∂=+∂ |||||||| jAt . The first term on the left-hand side (LHS) and the

two terms on the right-hand side (RHS) of equation (1) are of the same order. Using φ||∂  as a reference, we

have the ordering of the first terms on the LHS 1~~ ⊥ττ A , the first term on the RHS 1~~~ φepTp eee

and the last term 1~ . The second term (the Joule dissipation term eiieeipeA mmLL ττττ ⊥⊥ ~~ 22 ) and the

third term (the electron inertial term iepeA mmLL ~~ 22
⊥⊥ττ ) on the LHS are small compared with the other

terms by a factor of ie mm .

From the table 1 one can see that in the whole boundary region eiττ >⊥ , indicating that the Joule

dissipation term dominate over the electron inertial term. Only in the nearly-collisionless plasma core region

where eiττ <⊥ , the electron inertial term is more important. For simplifying the discussion, the electron

inertia and the electron viscosity are omitted in this paper, since we are mainly interested in the plasma edge

region, otherwise the electron kinetic energy must be taken into account in the energy conservation. With this

simplification, the electron fluid velocity is eaedEee uuuuu +++= || , where ( ) ⊥⊥
− ∇×−= eed penB bu 1  is

the electron diamagnetic drift velocity and ( ) ( ) bu ×∇−−= ⊥
−

eeea ppenB ||
1  is the electron drift velocity

induced by anisotropy.

From the above ordering analysis we find the first term on the LHS, i.e. the magnetic induction terms, are of

the same order of the terms on the RHS, indicating that the magnetic induction effects are important for

mesoscale dynamics. The physics reflected by equation (1) is commonly interpreted as the response of the

parallel current ||j  to the net parallel gradient force ( )φ−Ψ∂||en  on electrons [36]. Any force imbalance

represented by a nonvanishing RHS will excite a ||j  and the resultant magnetic fluttering ||A . When this force

is zero, the two gradients balance and the electrons are said to be ‘adiabatic’. Here, the ‘adiabatic’ means these

electrons do not exchange energy with the magnetic field. The ‘adiabatic electrons’ are expected to follow the

Boltzmann distribution eTenn φ~~ =  [98]. When all the electrons are adiabatic electrons, the drift waves

are in the electrostatic limit. The parallel phase velocity of a drift wave is expected to be in the range
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thephthi vvv << || .

In the SOL the electron temperature is so low that usually theA vv >  and ⊥> ττ e
|| , where ee L ||

2
|||| χτ ≡  is

the electron parallel thermal conductive time and eeei
e mTτχ 2.3|| ≡  is the electron parallel thermal

conductivity (see table 1), implying that the mobility of electrons along field lines is relatively weak. The drift-

wave phase velocity condition theph vv <||  is unsatisfied if Aph vv ~|| , thereby for mesoscale structures the

coupling to drift wave could be weak and there could be a significant number of ‘nonadiabatic electrons’. This

explains why the interchange turbulence is prevailing in the SOL [34] and the SOL turbulence is

electromagnetic even for low local value of plasma β [37].

Inside the separatrix, although theph vv <||  is generally satisfied and ⊥<ττ e
|| , the electron temperature

isotropization time Teτ  becomes comparable with or even longer than ⊥τ  (see table 1), so that the trapped

electron effects becomes important. The trapped electrons do not obey the Boltzmann relation and they

generally contribute to the so-called ‘nonadiabatic response’. Therefore, it could be everywhere (from the SOL

to the plasma core) that a significant percentage of ‘nonadiabatic electrons’ exists and the turbulence is

electromagnetic in nature.

When the RHS of equation (1) does not vanish, reflecting an imbalance in the parallel force on electrons, the

parallel current ||j  and magnetic perturbations ||A  will arise as a result of the magnetic induction, driven by

the so-called ‘nonadiabatic’ part of the density fluctuations eTnenh φ~~~
−≡  [36]. It is called

‘nonadiabatic’, because during this process the energy of particle system is not conserved. This ‘nonadiabatic’

part of density fluctuations provides a channel to exchange internal energy of particles with the magnetic

energy of field line bending. The second term on the LHS of equation (1), i.e. the Joule dissipation term, is

responsible for the irreversible magnetic energy dissipation, governing the magnetic diffusion process. It is

irreversible since it is accompanied by entropy production.

3.6. Alfvén’s frozen-in law and magnetic diffusion

  In the ideal MHD limit ( 1=ς ), the Alfvén’s frozen-in law is an accurate law, the field lines are exactly

frozen in fluid elements and moving with them, and the parallel emf Ψ  vanishes. In the resistive MHD case
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( 1<ς ), only collisional resistivity can break the Alfvén’s frozen-in law. When kinetic effects, such as Landau

damping and/or trapped particles, [42] are taken into account ( 1<ς ), the Alfvén’s frozen-in law can also be

broken by the kinetic effects and generating the parallel emf Ψ  (note in this paper the definition of the

parallel emf excludes the contribution from the collisional resistivity). The kinetic effects are alternatives to

resistive diffusion for decoupling the magnetic field and plasma. In collisionless plasmas the former dominates

over the latter. The presence of the parallel emf and/or collisional resistivity allows plasma to drift across the

field lines.

With the help of the generalized Ohm’s law (1), the electric field can be expressed as

jE ηφ +Ψ∇−−∇= ⊥ ||                                                                   (2)

Note 2
|||||| ~~ δηη LLjj ⊥⊥⊥ . Taking the curl of the electric field expression, we obtain the induction

equation, i.e. the differential form of the Alfvén’s frozen-in law

( ) jBBuB ×∇−∇+Ψ∇×∇+××∇=∂ ⊥⊥ η2
|| mEt D                                         (3)

where 231
0

−− ∝≡ em TD ηµ  is the magnetic diffusivity. The first term on the RHS of equation (3) can be

written as φ||∇×∇− . The LHS term and the first term (frozen term) and the second term (drift term) on the

RHS are of the same order 1~ . The third term (magnetic diffusion term) and the last term (resistance gradient

term) ieieeipe mmLL ττττ ⊥⊥⊥ ~~ 22 . Combining the first two terms on the RHS, we have ( )φ−Ψ∇×∇ || ,

where ( )φ−Ψ∇||  is the net parallel gradient force on electrons, thereby it is the net parallel gradient force

that drives the field line bending.

The electric field in equation (2) can be rewritten as [42]

juBE η+Ψ∇−×= F                                                                   (4)

where ( ) EphF uBBvB ςφ ==Ψ−∇×≡ ⊥
−

0||
1bu  is the velocity of field lines when the resistive magnetic

diffusion is absent. Its radial component is the velocity of the magnetic surfaces (ψ ).

From Faraday’s law, we rewrite the Alfvén’s frozen-in law as

( ) jBBuB ×∇−∇+××∇=∂ ⊥⊥ η2
mFt D                                                   (5)

The difference between the E×B drift velocity and the field line velocity Ψ∇×=−≡∆ − buuu 1BFE  is a



18

function of the parallel emf Ψ . The parallel emf is generally related to some kinetic effects [42].

It follows that magnetic flux Σ=⋅≡Φ ∫Σ BdσB  is conserved in the zero electron mass limit [99], where

Σ  is the cross-section area of a field-aligned fluid element. The integral form of the Alfvén’s frozen-in law is

( ) 0=Φ∇⋅+∂ Ft u                                                                      (6)

showing that the magnetic flux Φ  is a Lagrangian invariant. The E×B convection of a plasma filament is thus

performed in the form of interchange of flux tubes on the timescale smaller than the magnetic diffusion time

22221 ~~ −
⊥⊥

−≡ δτττ eipeeimm LLLD .

The last two terms on the RHS of equation (5) are small compared with the other terms except in the far

SOL where collisionality is very high. From table 1 one can see that the plasma parameters vary significantly

across the plasma boundary in a tokamak, which typically involves one order of magnitude variations in

density and two orders in temperature. As a consequence the collisionality eL λν ||* ≡  changes by more than

two orders of magnitude, where eithee v τλ ≡  is the electron mean free path. The SOL are usually high-

collisionality ( 10* >ν ) region, and the magnetic diffusion time mτ  is comparable with or even shorter (in the

far SOL) than ⊥τ , so that the SOL generally belongs to the unfrozen or dissipation region. In the SOL,

filaments quickly displace away from the frozen-in flux tubes and drift across field lines due to the magnetic

diffusion.

Inside the separatrix ( 10* <ν ), the magnetic diffusion time mτ  is much longer than ⊥τ , the magnetic

diffusion length mL  is much shorter than ⊥L , the magnetic diffusivity smDm
21<  and the magnetic

Reynolds number 1>>≡ ⊥ mEm DLuR  (see table 1), indicating that the magnetic diffusion, i.e. field lines

diffuse across the width ⊥L  of the filamentary structure, is typically a slow process compared with the

transverse convective motion, so that on the timescale of ⊥τ  the magnetic diffusion effect is negligible. We

can thus refer to the edge as the frozen region. The field lines are dragged away from the unperturbed magnetic

field by the plasma filaments at a speed of Fu , where 1<≡ EF uuς .

3.7. Parallel ion sound wave
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  When a plasma filament drifts across the field lines, it may pass through a succession of many magnetic flux

tubes [54]. Such drifting motion creates transient, local disturbance of pressure within the encountered flux

tubes, initiating transient parallel transport, i.e. by launching ion sound waves and/or Alfvén waves, away from

the position of disturbance. On the timescale of ||τ  ( ⊥>>ττ || ), the pressure perturbations associated with the

filament motion drive parallel acoustic response through the parallel motion equation

( ) |||||||||||||| ln uu ρνρ −∇−+−∇= ⊥ Bpppdt                                                   (7)

where ||ν  is the kinematic viscosity of the parallel flow, |||||| ei ppp +=  and ⊥⊥⊥ += ei ppp . From equation

(7), we have the timescale of the parallel acoustic response ⊥
− τδτ 1

||
2

|||| ~~~~ scpLpu , where scu ~|| . As a

consequence, on the timescale of ⊥τ  the parallel acoustic response is negligible.

4. Compressibility in an inhomogeneous magnetic field

Plasma is different from the incompressible neutral fluid in that it is compressible in the directions both

parallel and perpendicular to the ambient magnetic field. The parallel compressibility is due to the coupling

with ion sound wave [34]; the perpendicular compressibility is due to the inhomogeneity of the magnetic field

[71], whereas the magnetic field is incompressible in the case of low-β, i.e. neglecting the coupling with

compressional Alfvén wave. The equation of ion continuity is

( )1
|||| 2ln −

⊥⊥ ∇⋅−⋅≈⋅∇−⋅−∇= Bundt Buκuu , where we have defined the field line curvature

( ) ( )bbbbκ ×∇×−=∇⋅≡ .

4.1. Poynting’s theorem

In a quasineutral plasma, using Bj ×∇=0µ  and ( )jj φφ ⋅∇=∇⋅ , we have

( ) ( )jju φµφµ 00
2 ⋅∇=∇⋅=⋅∇ EB                                                          (8)

It can be rewritten as ( ) EB ujB 2
0 −=×∇ φµφ . φµ j0  and EB u2  are of the same order. We will show that

the relation (8) is consistent with the Poynting’s theorem

EjS ⋅−⋅−∇=∂Wt ˆ                                                                     (9)
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where 21
02

12
02

121
02

1ˆ BEBW −− ≅+≡ µεµ  is the electromagnetic energy density which is dominated by the

magnetic energy density since the electrostatic energy density is negligible in a quasineutral plasma,

EB uBES 21
0

1
0

−− =×≡ µµ  is the Poynting vector and its divergence is ( )EB uS 21
0 ⋅∇=⋅∇ −µ . The Joule

dissipation term, i.e. the rate at which the electromagnetic fields do work, is ||AjjEj t∂⋅−∇⋅−=⋅ φ .

Substituting Wt ˆ∂ , S⋅∇  and Ej ⋅  into the Poynting’s theorem (9), we obtain the energy conservation

equation for the electrostatic field ( ) φµε ∇⋅=⋅∇+∂ − juEt BE 21
0

2
02

1 . With the quasineutral condition, we

finally get the same relation as (8).

With the help of the electric field expression (4), we have the equation of fluctuating magnetic energy

( ) ( )[ ] 2
||||

1
0||||

1
0

ˆ jEjW Ft ηηµµ −×+×⋅∇−=−×⋅∇−=∂ ⊥
−

⊥
−

⊥ BjuBBE                          (10)

where 21
02

1ˆ
⊥

−
⊥ ≡ BW µ . The first term on the RHS is the divergence of the Poynting vector of the KSAW. The

last term is the Joule dissipation term. From 000 Bj ×∇=µ , we have

( ) φµ ∇⋅=⋅∇ 00
2
0 juEB                                                                  (11)

The gradient length on the LHS of equation (11) is very long RqR 1~~ −∈ δ .

4.2. Compressibility and Lagrangian invariant

With the low-β approximation [76,77], i.e. 2
0 ~ ςδBB⊥  and ( ) EE BB uu ⋅∇<<⋅∇ 22 , regarding EB u2

and φj  as incompressible, ( ) 0ˆ
2
1 ≈∇⋅=⋅∇ φjuEW , we can thus write the compression of electric drift as

( ) ℜ≈∇⋅+ℜ=∇⋅×∇+∇×=⋅∇ −− 22ln 2
0

1 φµφ jbbu BBBE                               (12)

where φ∇⋅=∇⋅−≡ℜ gu 0ln BE , 0
1

0 lnˆ BB ∇×≡ − zg , 1
0 ~ln −

⊥∂ RB  and jgb 1
0

−+=×∇ BB µ . The

compressibility is induced by magnetic field curvature and gradient.

In a low-β plasma the most unstable perturbations are those inducing minimal magnetic energy variation,

i.e. most weakly bending of field lines. On the timescale of ⊥τ , although the local magnetic energy density Ŵ

varies with time due to coupling with KSAW, the energy exchange between particles and the equilibrium

magnetic field 0B  is negligible in a frame moving with the fluid element. This is essentially equivalent to say
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that there is nearly no coupling to compressional Alfvén waves in a low-β plasma, hence 0W  is a Lagrangian

invariant

( ) 0ˆ
00 =⋅∇= uWVWdt                                                                   (13)

where we have defined the magnetic energy of the equilibrium magnetic field as 00 ŴVW ≡ , 1−≡ nV  is the

volume and 2
0

1
02

1
0

ˆ BW −≡ µ  is the magnetic energy density of the equilibrium magnetic field, note 0ˆ
0 =∂Wt .

With equation (13) we regard 2
0
−nB  as a Lagrangian invariant and u2

0B  as an incompressible flow

( ) ( ) 0222
0

2
0 =ℑ+ℜ−⋅∇=⋅∇ uu BB                                                      (14)

where 0|| ln B∇⋅≡ℑ u  denotes the parallel compression, 1
||0 ~ln −∂ LBz . For simplicity here we only keep

the leading order perpendicular velocity Euu ≈⊥ . Using equation (14), the continuity equation is written as

( )ℜ−ℑ=⋅−∇= 2ln undt                                                              (15)

  The induction equation (frozen-in equation) can be written in another form, ( ) ( )uBB ∇⋅= −− 11 nndt . Since

the RHS usually does not vanish, 1−nB  is generally not a Lagrangian invariant. Only in 2D models, where

magnetic field curvature is neglected, 1−nB  can be regarded as a Lagrangian invariant and EBu  can be

regarded as an incompressible quantity [71,72].

4.3. Compressibility in toroidal geometry

Now, let’s specify this question in the circumstance of toroidal geometry. For simplicity we consider a

axisymmetric tokamak with the magnetic field, given by ( ) 1
000

−+=∇×∇+∇= RRBRB cc θϕ ϑψϕϕ eeB ,

where cB  and 0R  are constants, cB  is the center magnetic field value, ϕ  and θ  are the toroidal and poloidal

angles of a torus, respectively, ϕϕ e1−=∇ R , ψ  is the poloidal flux function, ϕθϑ BB=  is the ratio

between the poloidal and the toroidal magnetic fields and the major radius is given by θcos0 rRR += . With

such geometry, the time rate of the perpendicular compression is 1~ −
⊥ ℜ≡ RuEγ , and the parallel gradient

is given by θ∂=∂ cz k , where ( ) 1−≡ qRkc  and θθ ∂∂≡∂ . The time rate of the parallel compression is
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θϑγ sin~ 1
||||

−ℑ≡ Ru . Note δϑ ~~||uuE .

On the outboard (low field side 0~θ ) or inboard (high field side πθ ~ ) midplanes, 0~sinθ , the

parallel compression ||γ  and the parallel advection n∇⋅||u  nearly vanish, the perpendicular compression thus

dominates over the parallel compression ||γγ >>⊥  and the continuity equation is reduced to

ℜ−= 2lnˆ ndt                                                                         (16)

It means that when a filament is displaced toward regions of weaker background magnetic field its volume

expands at a rate of ⊥γ , and as a result of expansion its density is reduced.

At the top 2~ πθ  or bottom 2~ πθ −  of the torus, the parallel and perpendicular compressions are of

the same order ⊥γγ ~|| . The perpendicular compression could be partially canceled by the parallel

compression, so that the induced density variations in a frame moving with the fluid element could be much

smaller than those on the outboard midplane. The spatial dependence of ⊥γγ ||  in a torus is one of the origins

of ballooning in toroidal geometry, and as a consequence interchange instabilities mainly arise in the

unfavorable curvature region and filaments in the toroidal geometry generally manifest themselves as

ballooning structures.

By taking the scalar product with ||u  of the parallel momentum equation (7), we obtain the equation of

parallel kinetic energy evolution

( ) |||||||||||| 2 KnpppKndt ν−ℑ−+∇⋅−= ⊥u                                                  (17)

where 2
||2

1
|| umK i≡  is the kinetic energy of parallel flows. The second term on the RHS depicts the parallel

compression induced by mirror force. The first two terms on the RHS drives ion sound waves along field lines.

On the outboard or inboard midplanes, the parallel compression nearly vanishes, 0|| →Kdt , indicating that

the energy transferred into the parallel flows is negligible. Therefore, the dynamics on the outboard or inboard

midplanes are nearly 2D. At the top or bottom of the torus, the parallel compression is important, but the

mirror force usually counteracts the pressure gradient.

4.4. Coupling with kinetic shear Alfvén waves
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The shear Alfvén wave is a transverse wave with electric field and magnetic field perturbations

perpendicular to 0B . When coupling with KSAW, the field lines are dragged away from the unperturbed

magnetic field by the plasma filaments at a speed of Fu , where 1<≡ EF uuς . In a tokamak, the KSAW are

launched from the unfavorable curvature region, i.e. the wave source is located on the low field side, where

interchange modes are unstable, 0>∇⋅ pκ . The waves propagate along field lines with a phase speed

||phv . On the high field side interchange modes are stable, 0<∇⋅ pκ . The interchange motion perturbs the

field lines in the perpendicular direction, inducing field line bending. A restoring force associated with the

resultant force of magnetic tension does work, generating the magnetic energy of field line bending.

In the ideal MHD limit 1=ς , and the parallel emf Ψ  vanishes, the electric field and magnetic field

perturbations in a shear Alfvén wave divide equally the total energy of the electromagnetic wave [100]. When

1<ς , we have the magnetic energy of field line bending

⊥⊥ = KW 2ς                                                                            (18)

where 2
2
12

2
1

Eii umumK ≈≡ ⊥⊥  is the perpendicular kinetic energy and ⊥⊥ ≡ WVW ˆ . For mesoscale structures,

ς  is of order unity ( 1<ς ) [92,93], ⊥W  and ⊥K  are of the same order.

Using equation (18), we obtain a relation between the parallel current density and the electrostatic vorticity

Ω−−
0

11
0|| ~ Bvj Aςµ                                                                       (19)

showing that the parallel current carried by filaments is proportional to the electrostatic vorticity. The

amplitudes of magnetic field perturbation and parallel current density measured in recent experiments

associated with blobs [44,45], ELM filaments [46] and Alfvén vortex filaments [49-52] are generally

consistent with equations (18) and (19). The importance of the magnetic components was stressed and the

relation between the magnetic and electrostatic fluctuation levels was verified in a recent electromagnetic

simulation of edge resistive ballooning turbulence [101].

With the help of equations (13) and (18), we have the energy exchange between particles and the total

magnetic field B  in a frame moving with the fluid element

⊥⊥ == KdWdWd ttt
2ς                                                                  (20)
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where ⊥+=≡ WWWVW 0
ˆ  is the total magnetic energy.

5. Generation of kinetic energy and magnetic energy through thermal expansion

In this section, a general discussion is given of the generation mechanism of drift-Alfvén vortex structures in

fusion plasmas.

5.1. Fundamental thermodynamic relation

Free energy is stored in the background pressure gradient. The generation of structures requires an effective

mechanism to release the free energy and do work so that the thermal energy of particles can be converted into

kinetic energy of structure motion and magnetic energy of field line bending. The most important energy

transfer channel for a low-β plasma is due to the presence of compressibility in an inhomogeneous magnetic

field. This process can be interpreted in terms of the fundamental thermodynamic relation

VpdsTdUd ttt −=                                                                     (21)

and the entropy equation [102]

( ) Ejquπ ⋅+⋅∇−⋅∇⋅=spdt                                                           (22)

where 2
2
1

||2
1 wmTTTCU v =+=≡ ⊥  is the plasma internal energy, ei TTT +≡  is the plasma temperature,

s  is the specific entropy, nTp ≡  is the plasma pressure, π  is the off-diagonal tensor of the stress tensor

( ) πbbIP +−−−≡ ⊥⊥ ppp ||  and q  is the conductive heat flux. ( ) 11 −−= γvC  is the specific heat at

constant volume, ( ) 11 −−= γγpC  is the specific heat at constant pressure and 1>≡ vp CCγ  is the ratio of

specific heats. The particle motion velocity is composed of collective motion velocity and thermal velocity,

wuv += . The thermal velocity in a magnetic field is composed of 22
||

2
⊥+= www . We have defined the

parallel temperature 2
|||| wmT ≡ , the perpendicular temperature 2

2
1

⊥⊥ ≡ wmT , the parallel pressure |||| nTp ≡

and the perpendicular pressure ⊥⊥ ≡ nTp , where 2w  means average over velocity space.

The first term on the RHS of equation (22) describes the viscous dissipation which is dominated by ion

viscosity, the second term describes the dissipation due to heat conduction and the last term describes the Joule
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dissipation. Note here the dissipation effect associated with the magnetic diffusion has already been included

in equation (22).

5.2. Conservation of specific entropy

There are several dissipation processes, such as viscosity, heat conduction and Joule dissipation, which can

lead to entropy production, and there are also several different dissipation mechanisms taking place in different

situations. In the nearly-collisionless plasma core region the entropy production is dominated by nonlinear

wave-particle interactions (linear and nonlinear Landau damping) and wave-wave interactions [9]. In the

plasma boundary it could be dominated by collisional dissipation (see table 1), or in the far SOL dominated by

sheath dissipation [103].

Whatever the detailed dissipation processes or mechanisms are, we can use a dissipation timescale dτ  to

describe the entropy production

( )⊥⊥
− += WKsTd dt

1τ                                                                   (23)

indicating that the effect of dissipation is to consume the kinetic energy of convective motion and the magnetic

energy of field line bending and convert them back into the internal energy. This process is irreversible since it

is accompanied by entropy production. In many situations of magnetized plasma, the dissipation timescale is

much longer than the timescale for perpendicular dynamics, ⊥>>ττ d . For instance in a tokamak, except in

the far SOL the magnetic diffusion time mτ  is much longer than ⊥τ  (see table 1).

Therefore, on the timescale of ⊥τ  the dissipation effects are negligible, and the specific entropy is a

Lagrangian invariant

0=sdt                                                                               (24)

Substituting (24) into (21), we have

VpdUd tt −=                                                                          (25)

It means that the internal energy stored in the background pressure gradient can be tapped off through

reversible pressure-volume work. The presence of compressibility in an inhomogeneous magnetic field renders

the expansion or compression available. Using equation (15), we can rewrite (25) as
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( )TUdt ℜ−ℑ= 2                                                                      (26)

On the outboard midplane the parallel compression ℑ  vanishes, equation (26) is thus reduced to

TUdt ℜ−= 2ˆ                                                                          (27)

indicating that when a filament is displaced toward regions of weaker background magnetic field and/or in the

direction of curvature radius, its internal energy decreases. The reduced internal energy will be converted into

kinetic energy and magnetic energy as a result of energy conservation.

5.3. Conservation of total energy

The total energy H  (Hamiltonian) is composed of magnetic energy W , thermal energy U , kinetic energy

⊥+=≡ KKumK i ||
2

2
1  and electrostatic energy VEWE

2
02

1 ε≡ . In a low-β plasma generally speaking

EWKUW >>>>>> . In a quasineutral plasma, since 0
2

0 ερ >>−B , the kinetic energy of E×B motion is

much larger than the electrostatic energy EWK >>⊥ , hence we will hereafter neglect the electrostatic energy.

On the timescale of ⊥τ , since ⊥>>ττ d , all dissipation effects can be neglected.

Now, let’s focus on the outboard midplane, where the parallel compression nearly vanishes 0|| →Kdt , thus

the conservation of total energy requires

0ˆ =Hdt                                                                              (28)

where ⊥++≡ KUWH . Combining equations (27) and (28), we have

( ) TWKdt ℜ=+ ⊥⊥ 2ˆ                                                                    (29)

This formula depicts the generation of perpendicular kinetic energy and magnetic energy through thermal

expansion. From equation (29), we get the filament acceleration in the direction of curvature radius

Rcg s
2

int ~ , the interchange acceleration time ( ) 211
int ~ ⊥

− RLcsτ  and the interchange velocity

( ) ss cRLcu %10~~ 21
int ⊥ . The interchange velocity is the upper limit of filament transverse motion

velocity [31] (see table 1).

We can use a simple model to include the dissipation effects
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( ) ( )⊥⊥
−

⊥⊥ +−ℜ=+ WKTWKd dt
12ˆ τ                                                      (30)

On the timescale of ||τ  the parallel kinetic energy ||K  will participate in the energy partition. In that case part

of the filament’s energy is transferred into the kinetic energy of parallel flow through the parallel compression,

depicted by equation (17). With the help of equation (16), equation (27) can be rewritten in the following

forms

ℜ−= γ2lnˆ pdt                                                                         (31)

( )ℜ−= γ12lnˆ Tdt                                                                     (32)

With the help of equation (13), equation (25) can be rewritten in the conservation forms

( ) ( ) ( ) ( )( ) 012
0

2
0

1 ==== −−−− γγγγ TBdpBdTndpnd tttt                                         (33)

We recognize that ( ) 0=−γpndt  is just the adiabatic equation.

6. Filament acceleration and vorticity generation

In the last section, we have explained how the free energy stored in background pressure gradient is released

and converted into the kinetic energy of convective motion and the magnetic energy of field line bending

associated with the drift-Alfvén vortices. In this section, we will review this process in a dynamic perspective.

The acceleration of plasma filament is induced by a force unbalance in the direction of curvature radius

resulting from the plasma inertial response on the timescale of ⊥τ , reacted to satisfy quasineutrality. A

restoring force associated with the resultant force of magnetic tension does work, generating the magnetic

energy of field line bending.

6.1. Vorticity equation

The plasma current bpf jjjj ++=  is composed of the free current fj , the polarization current pj  and the

magnetization (bound) current bj , where the free current Gf jjj += ||  can be further decomposed into the

parallel current ||j  and the magnetic-drift current Gj . The polarization current pp enuj ≡  is dominated by the

contribution from the ion polarization drift. The magnetization current is defined as Bdb jjMj −=×∇≡
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[104], where ⊥
− ∇×≡ pBd bj 1  is the diamagnetic current and ( )bbj ×∇+∇×≡ ⊥

− BpBB ln1  is a

component of the magnetic-drift current. The magnetic-drift current is induced by the oppositely directed

guiding center drifts of ions and electrons in an inhomogeneous magnetic field

( ) aBG pBpB jjbbj +=×∇+∇×≡ ⊥
−

||
1 ln , where ( ) bj ×∇−≡ ⊥

− ppBa ||
1  is induced by anisotropy. The

total perpendicular current density can be approximately written in the form padpGb jjjjjjj ++=++≅⊥ .

Noting 0=⋅∇ bj , we have the quasineutral condition

( ) 01
|||||| =∂+⋅∇+⋅∇=⋅∇+⋅∇ −

⊥ BjBGp jjjj                                             (34)

where the compression of magnetic-drift current is given by

( ) ( )[ ] ( )||||||
2

0|| ln ppBpppBppG +∇⋅≈∇−+∇⋅++∇⋅=⋅∇ ⊥⊥
−

⊥ gjgj µ                      (35)

With the Boussinesq approximation [105] the compression of polarization current can be written as

( )1−Ω≈⋅∇ Bdtp ρj                                                                     (36)

The compression of diamagnetic current is given by

⊥⊥
−

⊥ ∇⋅≈∇⋅+∇⋅=⋅∇=⋅∇ ppBpBd gjgjj 22 2
0µ                                         (37)

Inserting equations (35) and (36) into the quasineutral condition (34), we arrive at the vorticity equation [73]

( ) ( ) ( )||
1

||||
1 ppBjBBdt +∇⋅+∂=Ω ⊥

−− gρ                                                  (38)

Another approach to get the vorticity equation is by taking curl of the motion equation

( )( ) πκBju ⋅∇+∇−−−∇−∇−×= ⊥⊥⊥ Bppppdt ln||||||||ρ                                  (39)

and forming the scalar product with b  [106]. The field line curvature is Bjκ ×+∇= −
⊥

2
0ln BB µ  and

( ) ⊥
−

⊥ +=×∇=× jgbκb 1
0BB µ . With the Boussinesq approximation [105], we obtain the same vorticity

equation as (38) [31].

The last term in equation (38) is induced by the perpendicular compressibility. This term is the same term as

that on the RHS of equation (29). This term releases the free energy stored in background pressure gradient

and converts them into the kinetic energy of convective motion resulting in vorticity generation, and into the

magnetic energy of field line bending through the parallel current. The parallel current is contained in the first

term on the RHS of equation (38). One can see that the physics described by equation (29) is essentially the
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same as those in the vorticity equation (38).

If the plasma is incompressible, the RHS of equation (38) will vanish, ( ) 01 =Ω −Bdt . With the help of the

magnetic flux invariant, 0=Φtd , we have .constdI =ΩΣ=⋅≡ ∫Σ σΩ  It is just the integral form of the

Kelvin’s frozen-in law for incompressible fluid [68]. Its differential form is ( )ΩuΩ ××∇=∂t , implying that

vortices are frozen in fluid elements and moving with them. In a compressible fluid this law is violated.

The interchange mechanism leading to radial motion of a filamentary structure is illustrated in figure 6. In

tokamak geometry g  is in the vertical direction, so that the charge polarization induced by the magnetic

guiding center drifts is in the vertical direction, leading to a radial electric drift at the center of the filamentary

structure [90] and a net force due to the vertical polarization current drives the filament to accelerate in the

direction of curvature radius, which is followed by the formation of dipolar vorticity [31] and field line

bending [33].

6.2. Equivalent circuit

From the quasineutral condition (34), one can see that the curvature and grad-B drifts function as a local

current source. The currents generated by this current source flow along and across the field lines compete

through their effective impedance and establish current loops [107], as illustrated in the following equivalent

circuit diagram.

Plasma inertia plays the role of a capacitor. The current flowing through the capacitor is the polarization

current. This current is responsible for filament acceleration and accumulation of perpendicular kinetic energy.

All dissipation processes, such as the Joule dissipation, viscous damping, nonlinear wave-particle Landau

interaction or sheath dissipation, can be represented by an equivalent resistor, as shown in figure 7. The

dissipation processes are irreversible since they are accompanied by entropy production. The parallel current

provides a channel to couple the electrostatic vortex dynamics with the KSAW. The coupling process is similar

to that occurring in an inductor, as illustrated in figure 7. Magnetic energy is accumulated in the inductor

during this process. The inductance of a filament is of the order of ||0Lµ .

In the electrostatic limit ( 1<<ς ), there is nearly no field line bending. This special case corresponds to a

very small equivalent inductance, in a tokamak it means qRL π<<||  and iL θρ<<⊥ , implying that the
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electrostatic limit is more applicable to smallscale structures. For mesoscale structures, 1~ς , qRL π~||  and

sL ρ>>⊥ , therefore the mesoscale structures are essentially electromagnetic, and compared with small scale

structures they are more close to the MHD limit.

In the ideal MHD limit, the parallel emf Ψ  vanishes and the induction part of parallel electric field cancels

the electrostatic part, leading to vanishing parallel electric field 0|||||| →∂−−∂= AE tφ . The parallel

streaming of adiabatic electrons is strongly impeded by the magnetic induction so that the neutralization along

the field lines is incomplete. For detailed discussion about the magnetic induction effects, please see section

3.5.

6.3. Plasma equilibrium

On the timescale of plasma equilibrium ⊥>>ττ eq , the plasma inertial term ( 1
0

−∝⋅∇ eqp τj ) is negligible,

so that the quasineutral condition is reduced to 00||0 =⋅∇+⋅∇ jjG , i.e. ( ) ( )1
00||||00||0
−

⊥ ∂−=+∇⋅ BjBppg .

In tokamak plasmas it means that an electric charge separation in the vertical direction induced by magnetic

guiding center drifts (see figure 6) is neutralized by a parallel return current, i.e. the so called Pfirsch-Schlüter

current. The rotation transformation of field lines in tokamak geometry guarantees the current loop is closed

and the neutralization is nearly accomplished (except a small neoclassical parallel electric field 0||||0|| jE η= ).

The equilibrium equation is given by ( )[ ] ( ) 00
1

00 1ˆ BB ∇⋅=+∇ −µβW , indicating that the gradient of magnetic

pressure plus thermal pressure is balanced by the resultant force (in the curvature direction) of the magnetic

tension (along field line) due to the field line curvature ( ) 00
2

0000 ln1~ln BpBB ⊥⊥
−

⊥ ∇+∇+∇= βµκ .

This force acts as a restoring force in the filamentary dynamics.

6.4. Filament acceleration

Plasma has a natural tendency to expand in the direction of curvature radius in an inhomogeneous magnetic

field. The thermal expansion force is usually referred to as an effective gravity [33]

( ) ( )κBjF ||
2

0|||| ln ppBpBppG +−≈×−∇+−≡ ⊥
−

⊥⊥ µ                                      (40)

On the equilibrium timescale this thermal expansion force is balanced by a magnetic force, i.e. the resultant
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force of the magnetic tension 0000 GGB FBjF −=×= .

On the timescale of interchange motion ⊥τ  the plasma inertia term pj⋅∇  becomes important. In tokamak

geometry the magnetic guiding center drifts induce a local charge polarization in the vertical direction (see

figure 6). There are several mechanisms impeding the parallel motion of free electrons, such as magnetic

induction, magnetic trapping, electron-ion collisions, electron inertia and wave-electron Landau interaction, so

that the parallel motion of electrons cannot completely neutralize the charge polarization on the short timescale

⊥τ . Thus, a polarization current pj  in the vertical direction (see figure 6) will react to satisfy the local

quasineutrality. The vertical charge polarization and the resultant vertical electric field leads to a radial E×B

drift at the center of the filamentary structure (see figure 6), which drives plasma filament to move in the

direction of curvature radius. This interchange mechanism for filament motion has been intensively

investigated recently [31].

From the dynamic point of view, the filament acceleration is induced by a force unbalance in the direction of

curvature radius. The magnetic guiding center drift current Gj  is locally partially canceled by the vertical

polarization current pj , so that the local magnetic force is reduced ( ) BjjF ×+= pGB , which can no longer

balance the thermal expansion force GF , and then the net force

BjFFF ×=+= pBGp                                                                  (41)

will push plasma to accelerate in the direction of curvature radius. During this process the thermal expansion

force does work

( ) pWKdn tGGE ℜ=+=∇⋅=⋅ ⊥⊥⊥ 2ˆφjFu                                                 (42)

where equation (29) has been used. As a consequence, the thermal energy stored in the background pressure

gradient is tapped off. Note that only part of the work is converted into the kinetic energy of convective

motion, leading to the filament acceleration and electrostatic vorticity generation. This part of work is done by

the net force.

⊥=⋅ Kdn tpE
ˆFu                                                                        (43)

The other part of the work is converted into the magnetic energy of field line bending, and resulting in the

generation of magnetic vorticity ⊥×∇≡ BΩA . This part of work is done by the restoring force, i.e. the
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resultant force of the magnetic tension

⊥−=⋅ Wdn tBE
ˆFu                                                                      (44)

7. Cross-field transport due to the violation of the third adiabatic invariance

In this section we discuss the fundamental kinetic mechanism responsible for the cross-field transport

associated with the filamentary dynamics.

If the particle system of a magnetized plasma is completely adiabatic, that is to say, there is no energy

exchange between particles and electromagnetic field and no collision or other dissipation process, particle

orbits are exactly determined by several adiabatic invariants. In tokamak geometry there are three such

adiabatic invariants: 21
2
1

⊥
−−≡ mvBbµ  is the magnetic moment (the action of the gyro motion),

∫≡ ||||dlmvJ  is the longitudinal invariant (the action of parallel bounce), and ψ  is the poloidal magnetic flux

(the action of procession) which defines magnetic flux surfaces. If the particle system is completely adiabatic,

the three actions are conserved and no particle can escape from the geometry space confined by the magnetic

field. Each adiabatic invariant corresponds to a type of periodic motion. The period of the gyro motion is cτ ,

the period of the bounce motion is bτ , the period of toroidal procession is pτ , and usually cbp τττ >>>> .

In a quasineutral plasma the electrostatic energy EW  is so small that the energy exchange between particles

and electrostatic field is negligible. If the timescale for energy exchange between particles and magnetic field

is shorter than or comparable with the period of an adiabatic motion, the corresponding adiabatic invariant

will be violated.

From equations (20), (29) and (44), we have known that the timescale for the energy exchange between

particles and magnetic field, i.e. the timescale for field line bending, is the timescale for interchange motion

⊥τ . This timescale is typically short compared with the period of toroidal procession pτ , implying that the

magnetic flux invariant ψ  is not conserved during this process, and as a consequence, particles can escape

across the nested magnetic flux surfaces.

Note that filaments are localized structures with finite toroidal mode number. When a filament is generated,

it will induce local field line bending, which is accompanied by B  toroidal symmetry breaking on the
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timescale of ⊥τ . This is one of the fundamental kinetic mechanisms for cross-field turbulent transport in a

toroidal magnetic confinement system.

8. Lagrangian invariants

In this section we summarize the involved Lagrangian invariants. The filament motion is controlled by six

Lagrangian invariants. The first Lagrangian invariant is the magnetic flux, introduced in equation (6). The

second is the magnetic energy of the equilibrium magnetic field 0B , introduced in equation (13). The third is

the specific entropy, introduced in equation (24). The fourth is the total energy (Hamiltonian), introduced in

equation (28). The other two are magnetic momentum and toroidal angular momentum.

8.1. Conservation of magnetic momentum

The timescale for interchange motion is much longer than the ion gyroperiod ciττ >>⊥ , so that the

adiabatic condition for gyro motion is satisfied and the magnetic moment µ  is an adiabatic invariant. And,

the ion-ion collision time iiτ , the ion temperature isotropization time Tiτ  and the electron-ion energy exchange

time exτ  are much longer than ⊥τ  (see table 1), thus the magnetic momentum of ion is conserved. But for

electrons, in most of the boundary region the electron-ion collision time eiτ  and the electron temperature

isotropization time Teτ  are shorter than ⊥τ . Therefore, in the plasma boundary region the average magnetic

momentum 1−
⊥= BTµ  is generally a Lagrangian invariant for ions but not for electrons, where the average is

over velocity space.

0=µtd                                                                               (45)

With the help of equation (33), we find when the temperature is isotropic, TTT == ⊥|| , the ratio of specific

heats is 35=γ . The corresponding degrees of freedom is ( ) 312 1 =−= −γN . Using equations (25), (33)

and (45), we obtain the CGL (Chew, Goldberger and Low) double adiabatic equations [108]

( ) ( ) 032
||

11 == −−−
⊥ nBpdnBpd tt                                                          (46)

On the outboard midplane, with the help of equations (16), (27) (31) and (32), equation (46) can be rewritten in
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the following forms

( )ℜ+−= ⊥ ||
ˆ TTUdt                                                                     (47)

−ℜ=⊥Tdt lnˆ                                                                          (48)

−ℜ=||2
1 lnˆ Tdt                                                                        (49)

ℜ−=⊥ 3lnˆ pdt                                                                        (50)

ℜ−= 2lnˆ
||2

1 pdt                                                                       (51)

8.2. Conservation of toroidal angular momentum

In toroidal configuration the toroidal angular momentum density ϕL  is a conserved quantity [109]. Similar

to the equation of continuity (15), we have the conservation equation of ϕL  [76,77]

( )ℜ−ℑ=⋅−∇= 2ln uϕLdt                                                             (52)

Combining the continuity equation (15) and (52), we find that the toroidal angular momentum

ϕϕϕ uRVL ˆ=≡l  is a Lagrangian invariant

( ) ( ) 0ˆ2
0 === −

ϕϕϕ uRdBLdd tttl                                                          (53)

where RRR 2ˆ ≡  is an effective major radius and it is an increasing function of r  (minor radius), ϕu  is

the toroidal rotation velocity. For a simple torus with concentric circular flux surfaces, ( )2
2
32

0
2 1~ˆ ∈+RR

[76]. The moment of inertia density is related to the effective major radius through 2R̂I ρ≡ , which suggests

that the core is less inert, i.e. lighter, than the edge, so if the toroidal angular momentum ϕl  is homogenized

by turbulence, the rotation near the core will be faster than at the edge. Because of this r  dependence of the

moment of inertia density in toroidal geometry, the linear toroidal momentum density RLuP ˆ
ϕϕϕ ρ =≡  is

not conserved.

Assuming filaments carry toroidal momentum, equation (53) implies that, when a filament is displaced

outwards, R̂  increases, and thus the toroidal rotation velocity ϕu  will be reduced, as well as the kinetic energy
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of toroidal rotation 2
2
1

ϕϕ umK i≡ . On the contrary, when a filament is displaced inwards, ϕu  and ϕK  will

increase. This is an anomalous pinch effect, which has recently been proposed to explain the phenomena of the

so-called spontaneous rotation in the plasma core [76,77]. It was observed in a recent experiment [110] that

the rotation profiles were peaked in the plasma core without external momentum injection. In general, an

anomalous ‘pinch’ effect is required to explain this observation.

On the outboard midplane, similar to equation (16), equation (52) is reduced to

ℜ−= 2lnˆ
ϕLdt                                                                         (54)

Accordingly, we can see that the behaviors of toroidal angular momentum density are very similar to the

particle density. As noted [76,77], it is the toroidal flow velocity rather than the momentum density that is

measured in experiments. With the definition of the angular velocity ϕϕω uR 1ˆ −≡ , the toroidal angular

momentum density can be expressed as ϕϕ ωIL = . From equation (53), using the relation between the toroidal

angular momentum density and the linear toroidal momentum density, we have ( ) 0ˆ 2
0 =−BRPdt ϕ .

9. Curvature-driven convective transport and anomalous pinch effects

A strongly intermittent nature of cross-field transport of particles and heat in the boundary region of fusion

plasmas has been recognized for more than one decade [86]. There are strong indications that this is caused by

field-aligned filamentary structures in the form of plasma blobs propagating radially far into the SOL [2,3]. In

this paper we suggested that these structures can be associated with the drift-Alfvén vortices. The intermittent

convective transports of particles, heat and momentum across magnetic field can be interpreted in terms of the

ballistic motion of these solitary filamentary structures. To quantitatively calculate the resultant transport

fluxes we need nonlinear electromagnetic turbulence simulations [35-37,101], but for a qualitative estimation

we can use the quasilinear method [76]. The mode-independent part of the curvature-driven turbulent

convective pinch of particles, heat and momentum [111] are briefly reviewed in this section. The phenomena

of profile consistency, or resilience, are generally thought to be associated with these anomalous pinch effects

[112]. We divide the discussion below into three subsections according to different transport categories.

9.1. Particle transport
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To simplify the further analytic process we use the tokamak configuration described in section 3.3. The

radial gradient of the background magnetic field ( ) 1
0 cos1 −∈+= θcBB  is θγ γγ cos1

00
−−=∂ RBBr . The

symbol for perpendicular compressibility Eu⋅∇≈ℜ 2
1  can be expressed as θcos11 −− ==ℜ RuRu rR ,

where Ru  is a component of Eu  in the direction of curvature radius and ru  is the radial component.

Assuming the perpendicular kinetic energy associated with the filamentary structures bears ballooning

distribution like ( ) ⊥⊥ = KfK θ , where ( ) ( )22211 exp αθπαθ −≡ −−f  is the poloidal distribution

function and α  is a factor characterizing ballooning degree. We note that the poloidal distribution function is

a weighting function, then we have 11 cos −
⊥

−
⊥ ≈ outRKRK θ , where rRRout +≡ 0  denotes the major

radius on the outboard side (low-field side).

Following the quasilinear method [76], separating nnn ~+= , substituting it into equation (13), we have

( ) 0~~ 2
0

2
0 =∂+∂ −BnuBn rrt , indicating that 2

0
−nB  is conserved in the convective process. Note the timescale

for density variation is ⊥τ . Then, the density perturbation can be expressed as

θττ cos~2~~ 1−
⊥⊥ −∂−= Runnun rrr                                                      (55)

Substituting the density perturbation (55) into the radial convective particle flux

nVnDun nrrrn +∂−=≡Γ ~~                                                          (56)

we get the turbulent diffusivity ⊥⊥
−≡ KmD i τ

1  and the curvature-driven pinch velocity DRV outnr
12 −−≡ ,

where we have rendered 2~
riumK =⊥ . This anomalous pinch effect is induced by curvature-driven convection,

as a consequence the pinch velocity is proportional to 1−
outR . Both the turbulent diffusivity and the anomalous

pinch velocity are proportional to the fluctuation intensity ⊥K .

Note that there is no offdiagonal term in equation (56), such as the temperature gradient term. According to

the principle of Onsager symmetries there should be no offdiagonal term in the temperature transport

equations. It was suggested that, when the FLR effects are taken into account, offdiagonal terms will appear in

the transport matrix [72]. Substituting the radial particle flux (56) into the particle transport equation

( ) 01 =Γ∂+∂ −
nrt rrn                                                                  (57)
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we finally arrive at the density evolution equation. With this equation one can calculate density profile and its

evolution.

9.2. Thermal transport

Following the same procedure as in 9.1, we separate ppp ~+=  and TTT ~+= . Substituting them

into equation (33), we have ( ) 0~~ 2
0

2
0 =∂+∂ − γγ BpuBp rrt  and ( ) ( )( ) 0~~ 12

0
12

0 =∂+∂ −− γγ BTuBT rrt ,

indicating that γ2
0
−pB  and ( )γ−12

0TB  are conserved in the convection process. The pressure perturbation and

the temperature perturbation can be written as

θγττ cos~2~~ 1−
⊥⊥ −∂−= Ruppup rrr                                                    (58)

( ) θτγτ cos~12~~ 1−
⊥⊥ −−∂−= RuTTuT rrr                                                (59)

Substituting the temperature perturbation (59) into the radial conductive thermal flux

TVTDuT TrrrT +∂−=≡Γ ~~
                                                         (60)

where D  is still the turbulent diffusivity and ( ) DRV outTr
112 −−−≡ γ  is the conductive thermal pinch velocity.

Substituting the pressure perturbation (58) into the radial thermal flux (convective plus conductive thermal

flux)

Tnprrrp nTpVpDup Γ+Γ=+∂−=≡Γ ~~                                           (61)

where DRV outpr
12 −−≡ γ  is the anomalous thermal pinch velocity.

Equations (31) and (32) can be rewritten as

( ) ( ) ℜ−=⋅∇+∂ ppp Et γ12u                                                            (62)

( ) ( ) ℜ−=⋅∇+∂ TTT Et γ22u                                                            (63)

Note equation (31) and (32) are written on the outboard midplane. Inserting equations (58) and (59) into

equations (62) and (63) and taking average over a flux surface, we obtain the thermal transport equations

( ) ( ) ( )pDVpVrrp prrnrprt
11 1 −− −∂−=Γ∂+∂ γ                                         (64)

( ) ( ) ( )TDVTVrrT TrrnrTrt
11 2 −− −∂−=Γ∂+∂ γ                                         (65)
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Using these thermal transport equations, one can calculate the self-consistent profiles of pressure and

temperature.

9.3. Toroidal momentum transport

It was highlighted in a recent research [76,77] that the behaviors of toroidal angular momentum density ϕL

are very similar to the particle density since they are both conserved quantities. Similar to the procedure in 9.1,

we obtain the ϕL  flux

ϕϕ LVLD nrrL +∂−=Γ                                                               (66)

and the ϕL  transport equation

( ) 01 =Γ∂+∂ −
Lrt rrLϕ                                                                 (67)

As noted [76,77], it is the toroidal flow velocity 11 ˆ −−= RLu ρϕϕ  rather than the toroidal angular momentum

density ϕL  that is measured in experiments. The toroidal velocity profiles can be directly measured by charge

exchange recombination spectroscopy diagnostics [110]. In order to write the evolution of toroidal flow, we

need to disentangle the flow and the density.

Separating ϕϕϕ uuu ~+= , substituting it into equation (53), we have ( ) 0ˆ~ˆ~ 1 =∂+∂ −
ϕϕ uRuRu rrt . Then,

the toroidal velocity perturbation is

RRuuuuu rrrr
ˆˆ~~~ 1∂−∂−= −

⊥⊥ ϕϕϕ ττ                                                      (68)

Substituting the toroidal velocity perturbation (68) into the radial convective flux

ϕϕϕϕϕ uVuDuu rrr +∂−=≡Γ ~~                                                       (69)

where RRKmV rir
ˆˆ 11 ∂−≡ −

⊥⊥
− τϕ  is the anomalous pinch velocity of the toroidal velocity. Rewriting

equation (53) as

( ) ℜ+∂−=⋅∇+∂ −
ϕϕϕϕ uRRuuuu rrt 2ˆˆ 1u                                                   (70)

Averaging equations (70) over a flux surface, and with the help of equation (68), we get the transport equation

for the toroidal velocity
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( ) ( ) ( ) ϕϕϕϕϕ θτ uRRRKRRKmuVVrru rrirrnrrt
ˆˆcos2ˆˆ 112211 ∂−∂+∂−=Γ∂+∂ −−

⊥
−

⊥⊥
−−       (71)

where the last term on the RHS is a high order term. Using this transport equation, one can calculate the radial

profile of toroidal velocity.

10. Discussions and summary

In the last decade, the basic physics picture of transport in the plasma boundary of tokamaks and other

magnetically confined fusion devices has shifted [113]. This basic picture was based on the cross-field

diffusive transport driven by local turbulent fluctuations [114], and in the SOL this cross-field diffusion

competes with parallel classical transport toward material surfaces to establish a dynamic balance and

determine the SOL radial width [115]. However, in the recent years accumulating experimental evidences have

shown that the cross-field transport of plasma particles, heat and momentum is dominated by intermittent

convection mediated by radially propagating filamentary structures rather than diffusion [2,3,10,31-34]. The

presence of ballistic motion of solitary coherent objects and bursty transport events break the linear flux-

gradient relationship and make the cross-field transport exhibit nonlocal character [32], namely transport is not

determined by local parameters but is induced by propagating structures generated somewhere else.

Significant progress has been made in understanding the 2D electrostatic dynamics of blobs in the plasma

boundary [31-34]. Now, strong interest is arising on their 3D and electromagnetic features [35-37]. This

interest is enhanced by some analogies with the ELM filaments in H-mode [11-30] and the avalanche-like

events in the plasma core region [38]. Recently, the first experimental evidence showing the association of the

propagating plasma turbulent structures with the drift-Alfvén vortices was obtained in the RFP device [44,45].

Moreover, dipolar drift-Alfvén vortices were identified both in the magnetospheric cusp [47] and in the

magnetosheath [48-50] by the four-spacecraft Cluster mission. In this contribution the generation mechanism

and fundamental dynamics of drift-Alfvén vortex structures in a nonuniformly and strongly magnetized plasma

are revisited. This contribution can be generally regarded as a concept upgrade from electrostatic filamentary

structure [31-34] to electromagnetic filamentary structure in response to the recent experimental progress [43-

53] in the context of intermittent convective transport carried by propagating coherent structures. This is a

continuation of our previous work presented in Refs. [31,34,35].

The main points in this paper are summarized as follows:
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1. The mesoscale structures ( 1<<⊥ sk ρ  see table 1) do not obey the standard gyrokinetic ordering of

microturbulence ( 1~sk ρ⊥ ), so that a special set of ordering scheme is employed. This ordering scheme

is consistent with order-unity electrostatic fluctuation levels at the plasma edge.

2. The turbulence at fusion plasma boundary is essentially electromagnetic even for low local value of

plasma β. The perpendicular dynamic timescale ⊥τ  is comparable with the shear Alfvén time Aτ  (see

table 1), as a result the electrostatic vortex motions and the kinetic shear Alfvén waves (KSAW) are

coupled, through the parallel current and Ampere’s law, leading to field line bending.

3. The induction part ||At∂  of parallel electric field ||E  is of the same order as the electrostatic part φ||∂  and

the parallel emf gradient Ψ∂|| , indicating the importance of the electromagnetic effects for mesoscale

dynamics. Any imbalance in the parallel gradient force ( )φ−Ψ∂||en  on electrons will allow the parallel

current ||j  and magnetic perturbations ||A  to arise, driven by the so-called ‘nonadiabatic’ part of the

density fluctuations, which provides a channel to exchange internal energy of particles with the magnetic

energy of field line bending.

4. The relative wave impedance Zvuu phEF ||=≡ς  depends not only on the plasma β but also on the

scale sk ρ⊥ . In a finite-β plasma, for mesoscale structures 1<<⊥ sk ρ , ς  is of order unity ( 1<ς )

[92,93], implying that the electromagnetic effects are more important for the mesoscale dynamics than the

smallscale dynamics. In the ideal MHD limit ( 1=ς ), the field lines are exactly frozen in fluid elements

and moving with them, and the parallel emf Ψ  vanishes. In the resistive MHD case ( 1<ς ), only

collisional resistivity can break the Alfvén’s frozen-in law. In progressing from MHD limit ( 1=ς ) to

kinetics limit ( 1<<ς ), the contribution of parallel emf Ψ  increases and kinetic effects become

alternatives to resistive diffusion for breaking the Alfvén’s frozen-in law and decoupling the magnetic

field and plasma. The mesoscale dynamics is somewhere in between. Recent experiments on blobs from a

RFP device [44,45] and ELM filaments from ASDEX Upgrade tokamak [46] suggested some MHD

behaviors 1~ς .

5. In the SOL ( 10* >ν  see table 1), plasma filaments quickly displace away from the frozen-in flux tube
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and drift across field lines due to the magnetic diffusion. Inside the separatrix ( 10* <ν  see table 1), the

magnetic diffusion effects are much weaker. The field lines are dragged away from the unperturbed

magnetic field by the plasma filaments at a speed of Fu , where 1<≡ EF uuς .

6. In a low-β plasma the background magnetic energy is a Lagrangian invariant and u2
0B  is an

incompressible flow. In toroidal geometry the parallel compression ||γ  competes with the perpendicular

compression ⊥γ . On the outboard midplane the parallel compression ||γ  nearly vanishes, the

perpendicular compression thus dominates the density variation. At the top or bottom of the torus, the

parallel and perpendicular compressions are of the same order. The spatial dependence of ⊥γγ ||  in a

torus is one of the origins of ballooning structures associated with the filamentary phenomena in toroidal

geometry.

7. In a tokamak, when the perpendicular interchange motions and the KSAW are coupled, the KSAW are

launched from the unfavorable curvature region. The generated magnetic energy of field line bending and

perpendicular kinetic energy of convective motion, or the parallel current density and the electrostatic

vorticity, are related through equations (18) (19) and (20).

8. In fusion plasmas the free energy is stored in the background pressure gradient. The generation of

structures requires an effective mechanism to release the free energy and do work so that the thermal

energy of particles can be converted into kinetic energy of structure motion and magnetic energy of field

line bending. For a low-β plasma the energy transfer is through the reversible pressure-volume work,

which can be interpreted in terms of the fundamental thermodynamic relation and the entropy equation.

When the dissipation timescale is much longer than the timescale for perpendicular convective motion

⊥>>ττ d  (which is a typical case in fusion plasmas except in the far SOL, see table 1), the specific

entropy is a Lagrangian invariant on the timescale of ⊥τ . The description of the energy transfer process is

closed by the conservation of total energy.

9. The acceleration of plasma filament is induced by a force unbalance in the direction of curvature radius

resulting from the plasma inertial response on the timescale of ⊥τ , reacted to satisfy quasineutrality. A

restoring force associated with the resultant force of magnetic tension does work, generating the magnetic



42

energy of field line bending. The interchange mechanism leading to radial motion of filaments is

illustrated in figure 6.

10. An equivalent circuit (figure 7) is used to illustrate the processes in a drift-Alfvén vortex filament. The

curvature and grad-B drifts function as a local current source. The currents generated by this current

source flow along and across the field lines compete through their effective impedance and establish

current loops. Plasma inertia plays the role of a capacitor. All dissipation processes can be represented by

an equivalent resistor. The process of coupling to the KSAW is similar to that occurring in an inductor.

11. Since plasma filaments are localized structures with finite toroidal mode number. The filamentary

structures present a channel for local energy exchange between particles and magnetic field perturbations,

leading to breaking of the periodic orbits of particles and the toroidal symmetry of magnetic field and

resulting in the violation of the adiabatic invariance associated with the poloidal magnetic flux. This is one

of the fundamental kinetic mechanisms for cross-field turbulent transport in a toroidal magnetic

confinement system.

12. The structure motions are controlled by six Lagrangian invariants, namely magnetic flux, background

magnetic energy, specific entropy, total energy, magnetic momentum and angular momentum. The

conservation of magnetic momentum is consistent with the CGL double adiabatic equations. The

behaviors of toroidal angular momentum density are very similar to the particle density. Because of the

radial dependence of the moment of inertia in toroidal geometry, an anomalous pinch effect emerges. This

effect has recently been proposed to explain the phenomena of the so-called spontaneous rotation in the

plasma core.

13. The intermittent convective transports of particles, heat and momentum across magnetic field can be

interpreted in terms of the ballistic motion of these solitary filamentary structures. The mode-independent

part of the curvature-driven turbulent convective pinch of particles, heat and momentum are briefly

reviewed in section 9. The phenomena of profile consistency, or resilience, are generally thought to be

associated with these anomalous pinch effects.

The quasilinear calculation presented in section 9 is only qualitative. For quantitative transport prediction

one needs nonlinear electromagnetic turbulence simulations. Currently there have been several attempts in this

direction, see the Refs in [40,41]. Moreover, fully electromagnetic nonlinear gyrokinetic theory for edge



turbulence has now come to be mature [83,84]. A shift to a kinetic formulation may be required to capture the kinetic

effects, such as the neoclassical flow equilibrium. Efforts dedicated to the development of such gyrokinetic models

of the plasma edge are now underway [40,41,85].

In summary, in this paper the ordering scheme and some fundamental aspects of filamentary structures at fusion

plasma edge are reviewed. The Lagrangian-invariant-based method was systemized and extended to include the

electromagnetic effects. The similarity of the electromagnetic filaments in fusion plasmas and in space plasmas

suggests that it could be a universal phenomenon in plasma turbulence. The importance of such phenomenon has

been widely recognized. It provides a fundamental mechanism for cross-field transport at the fusion plasma edge

[116]. The understanding of the plasma filamentary phenomena is rapidly evolving through the combined numerical

and experimental efforts, and we expect that progress in this field will be rapid in the next several years.
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Appendix A: Physical parameters and derived quantities
Table 1. Physical parameters and derived quantities for a typical filamentary structure (using the JET tokamak
parameters) in the pedestal region (in H-mode) or periphery region (in L-mode), in the vicinity of separatrix
and in the scrape-off layer (SOL), assuming a pure deuterium plasma. We define the region between the
pedestal (or periphery) and the separatrix as the plasma edge, and the region outside the separatrix as the SOL.
See text for explanation and discussion.
Quantity, symbol (unit) Pedestal or Periphery Separatrix Scrape-off layer

Particle density, n (m−3) 1×1020 3×1019 5×1018

Temperature, Te, Ti (eV) Te = Ti = 1000 Te = Ti = 100 Te = Ti/2 =10

Magnetic field, B (T) 3 3 3

Major Radius, R (m) 3 3 3

Safety factor, q 3 4 5

Parallel length, L|| ~ πqR (m) 30 40 30

Background pressure gradient length, Lp (mm) ~50 ~50 ~100

Typical vortex width, L⊥ (mm) ~10 ~10 ~10

Transverse motion velocity, u⊥ (km/s) ~1 ~1 ~1

Experimental cross-field diffusivity, Deff (m2/s) ~0.1 ~1 ~2

Vortex lifetime or eruption time, τlife (µs) ~100 ~100 ~100

Ion gyrofrequency, fci = eB/2πmi (MHz) 23 23 23

Ion plasma frequency, fpi = ωpi/2π (MHz) 1.5×103 810 330

Debye length, λD = (ε0Te/ne2)1/2 (mm) 2.4×10−2 1.4×10−2 1×10−2

Ion gyroradius, ρi = vthi/ωci (mm) 2.2 0.7 0.3

Ion poloidal gyroradius, ρθi = ρiB/Bθ (mm) 43 13.6 6.1
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Ion sound gyroradius, ρs = cs/ωci (mm) 2.2 0.7 0.26

Quasineutrality, ρi/λD ~ c/vA = ωpi/ωci 92 50 29

Magnetic curvature, ρi/R 7×10−4 2.3×10−4 1×10−4

Magnetization parameter, δ = ρs/L⊥ 0.22 0.07 0.026

Magnetic diffusion length, Lm = (τ⊥Dm)1/2 (mm) 0.6 3.3 17

Electron inertial length, Lpe = c/ωpe (mm) 0.5 1 2.4

Ion inertial length, Lpi = c/ωpi (mm) 32 59 144

Electron mean free path, λe = vtheτei (m) 140 5 0.35

Ion mean free path, λi = vthiτii (m) 170 7 2

Collisionality, ν* = L||/λe 0.2 7.7 86

Spatial anisotropy, L⊥/L|| ~ δβe
1/2 3.3×10−4 2.5×10−4 3.3×10−4

Specific pressure, βe = 2µ0pe/B2 ~ (cs/vA)2 = (ρs/Lpi)2 4.5×10−3 1.3×10−4 2.2×10−6

Mass ratio for deuterium, me/mi 2.7×10−4 2.7×10−4 2.7×10−4

Alfvén speed, vA = (B2/µ0nmi)1/2 (km/s) 4.6×103 8.5×103 2×104

Electron thermal speed, vthe = (2Te/me)1/2 (km/s) 2×104 6×103 2×103

Ion thermal speed, vthi = (2Ti/mi)1/2 (km/s) 310 98 44

Ion sound speed, cs ~ β1/2vA (km/s) 310 98 38

Transverse Mach number, M = u⊥/cs 0.003 0.01 0.03

Interchange velocity, uint = cs(L⊥/R)1/2 (km/s) 18 6 2

Froude number, Fr = u⊥/uint 0.06 0.2 0.5

Magnetic diffusivity, Dm = η/µ0 = Lpe
2/τei (m2/s) 0.04 1 30

Classical cross-field diffusivity, Dcl = βeDm (m2/s) 1.7×10−4 1.4×10−4 6.8×10−5

Bohm diffusivity, DB = Te/16B (m2/s) 20 2 0.2

Kinematic viscosity, ν = ρi
2/τii (m2/s) 8.4×10−3 6.6×10−3 2.2×10−3

Electron thermal conductivity, χ||
e = 3.2τeiTe/me (m2/s) 4×109 5×107 1×106

Ion thermal conductivity, χ||
i = 3.9τiiTi/mi (m2/s) 1×108 1.3×106 1.6×105

Vortex turnover time, τ⊥ = L⊥/u⊥ (µs) ~10 ~10 ~10

Shear Alfvén time, τA = L||/vA (µs) 6.5 4.7 1.4

Compressional Alfvén time, τA⊥ = L⊥/vA (µs) 2×10−3 1×10−3 5×10−4

Parallel convective time, τ|| = L||/cs (µs) 100 410 790

Perpendicular sound transit time, τs = L⊥/cs (µs) 0.03 0.1 0.26

Ion transit time, τi|| = L||/vthi (µs) 100 410 690

Electron transit time, τe|| = L||/vthe (µs) 1.6 6.7 16

Magnetic diffusion time, τm = L⊥
2/Dm (µs) 2600 93 3

Magnetic reconnection time, τK = (τmτA)1/2 (µs) 130 20 2

Viscous dissipation time, τν = L⊥
2/ν (µs) 1.2×104 1.5×104 4.6×104

Electron thermal conductive time, τ||
e = L||

2/χ||
e (µs) 0.2 32 860

Ion thermal conductive time, τ||
i = L||

2/χ||
i (µs) 9 1.2×103 5.7×103
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Electron-ion collisional time, τei ∝ Te
3/2/n (µs) 7 0.9 0.2

Ion-ion collisional time, τii ∝ Ti
3/2/n (µs) 550 70 42

Electron-ion energy exchange time, τex = τeimi/3me (µs) 9000 1100 230

Electron temperature isotropization, τTe (µs) 26 3 0.7

Ion temperature isotropization, τTi (µs) 1400 180 100

Interchange acceleration time, τint = (RL⊥)1/2/cs (µs) 0.6 2 4.6

Magnetic Reynolds number, Rm = u⊥L⊥/Dm 260 9.3 0.3

Lundquist number, Sm = RmvA/u⊥ 1.2×106 8×104 7×103

Magnetic Prandtl number, Pm = Rm/Re = ν/Dm 0.2 6×10−3 7×10−5

Reynolds number, Re = u⊥L⊥/ν 1.2×103 1.5×103 4.6×103

Schmidt number, Sc = ν/Dcl 49 46 32

Péclet number, Pe = ReSc = u⊥L⊥/Dcl 6×104 7×104 1.5×105

Interchange acceleration, g = cs
2/R (m/s2) 3×1010 3×109 5×108

Rayleigh number, Ra = gL⊥
3/ν2 4.5×108 7.3×107 1×108

Normalized blob size, a* = ρs(L||
2/Rρs)1/5 (mm) 23 10 4.3

Normalized blob velocity, v* = cs(a* /R)1/2 (km/s) 27 5.7 1.4

Inertial parameter, µ̂ = (me/mi)(qR/Lp)2 8.8 15.7 24.5

Inductive parameter, β̂ = βe(qR/Lp)2 145 7.7 0.2

Resistive parameter, C = 0.51 µ̂ Lp/csτei 0.1 4.7 89



Figure 1: Turbulence intermittency shown on the raw
signal of the ion saturation current Is, (a) positive bursts
are prevailing in the SOL , (b) positive and negative
perturbations are nearly balanced in the edge velocity
shear layer and (c) negative bursts are prevailing just
inside the edge velocity shear layer .

Figure 2: Semi-logarithmic plots of the PDFs of the ion
saturation current signals Is measured in the (a) far SOL
, (b) near SOL , (c) edge velocity shear layer and (d) just
inside the edge velocity shear layer . On the horizontal
axes, the fluctuation amplitudes have been normalized to
the rms fluctuation levels of Is. The solid red lines in plot
(c) and (d) are the best Gaussian fit to the PDFs. The
corresponding skewness (S) and kurtosis (K) of the PDFs
are also shown in the figure.

Figure 3: Power spectra of floating potential fluctuations,
(a) 2cm inside LCFS, (b) 1cm outside the LCFS. The
spectral intensity is plotted in a logarithmic scale. The
black solid curves show the dispersion relations.

Figure 4: Time-frequency wavelet power spectra of (a)
ion saturation current Is and (b) radial ExB convective
velocity vr, in the vicinity of LCFS. The complex Gaussian
wavelet and continuous wavelet transform are used to
calculate the power spectra. The spectral intensity is
plotted in a logarithmic scale.
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Figure 5: Wavenumber power spectra of density fluctuation (solid black line), poloidal electric field fluctuation (dashed
red line) and radial convective particle flux (dotted blue line), in the vicinity of LCFS.

Figure 6: Illustration of the interchange mechanism leading to radial motion of a filamentary structure in tokamak

Figure 7: The equivalent circuit diagram for an Alfvén vortex filament.
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