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ABSTRACT.

The limit to high performances advanced scenario discharges with qmin above unity is generally set

by the (2,1) MHD mode in JET. We investigate here the possibility that this mode is a (2,1)

Neoclassical Tearing Mode (NTM) by computing the critical island width at which such mode

would be unstable, using a non linear Magneto-Hydro-Dynamic (MHD) code where the relevant

bootstrap current physics is accounted for. We show that the triggering of a (2,1) NTM is consistent

with a lowering of the critical island width as the plasma current diffuses towards the centre. This

is explained partly by the increase of the magnetic shear at the resonant surface, which weakens the

curvature stabilisation term, as found in the analytical framework of a Generalized Rutherford

Equation. A comparison with experiment is made in the non linear regime, showing encouraging

results on the dynamics of the confinement degradation and mode structure.

1. INTRODUCTION

The exploration of high performance limits in present tokamak plasma discharges allows determining

some optimum conditions under which ideal as well as resistive Magneto-Hydro-Dynamic (MHD)

modes can be avoided. The triggering of resistive instabilities below the ideal MHD limit has long

been observed to be the main obstacle to the achievement of good performance, even though the

consequence could be limited to a degradation of the core confinement, without disruption.

Experiments exploring the operational domain in the normalized beta βN (β%aB/Ip
MA, with β = 2µ0

〈p〉/B2, 〈p〉 is the volume average plasma pressure, a is the plasma minor radius, B is the magnetic

field on axis, Ip
MA is the total plasma current expressed in MA) have found this so called soft β

limit (in contrast to disruptive ones) on TFTR [1], JET [2], DIII-D [3], JT60 [4], COMPASS-D [5],

T10 [6], TCV [7] or TEXTOR [8]. In these plasma with high pressure, the drive for island growth

is dominated by a non linear coupling between the pressure and the parallel current density, through

the bootstrap current (driven by the pressure gradient), resulting in the emergence of a metastable

branch called Neoclassical Tearing Mode (NTM) [9]. Extrapolating the condition of existence of

these modes to large tokamak devices as ITER stimulates broad interest in the fusion community,

in the prospect of determining scaling laws for the critical island width or for the β limit above

which they are triggered [10].

In the present work, we model the threshold and dynamics of NTMs in high-βN discharges on

JET, where the current profile is optimized for maximizing the boostrap fraction, as foreseen in an

Advanced Tokamak scenario [11]. The performance of these discharges is limited by the triggering

of a n = 1 mode mainly localised at the q = 2 surface, where q is the safety factor (q = dΦ/dΨ with

Φ and Ψ the toroidal and poloidal magnetic fluxes respectively), and n is the toroidal mode number

[12, 13]. The mode evolves to a large island on q = 2, with significant confinement degradation

(~15% in the H89 confinement scaling factor for the example we have modelled), thus motivating

investigations about its nature as well as about possible ways to avoid its appearance. In complement

to database analysis, modelling focussed on few specific discharges has been initiated, as reported
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in the present paper. Our goal for this work was to determine the threshold for metastable resistive

modes with a full MHD non linear code covering the standard one fluid MHD model with simplified

description of the bootstrap current effect [14], and to check if the appearance of the (m = 2, n = 1)

mode was consistent with the evolution of the critical island width (m is the poloidal mode number).

Also, the dynamics of the confinement degradation produced by the mode can be compared with

the experiment, thus providing a verification of our ability to model the impact of NTMs.

The modelling of NTM threshold and dynamics has long been performed in the analytical

framework developed by Rutherford [15], where the boostrap current contribution and heat transport

effects [16], toroidal curvature effect [17, 18], and polarization effect [19, 20] have been added.

Such developments have been used to model NTM observations in many tokamaks, and they allowed

deriving scaling laws [21] and improving our understanding of the physics at play [22]. Non linear

simulations using a full description of the magnetic and velocity fields (in contrast with simplified

treatments using scalar potentials) have been performed on ITER reference equilibria [23, 24, 25],

allowing a comparison with the predictions of a Generalized Rutherford Equation for the critical

and the saturated island widths, and suggesting significant discrepancies. In these works, the seeding

process of the NTM has not been considered, and the seed is imposed as an initial condition for the

non linear evolution. Indeed, although several seeding mechanisms could be relevant for the standard

one fluid MHD model that has been used so far, such as a change in the classical tearing stability [6,

7, 26, 27], attempts to model the triggering of a NTM as a secondary mode remain unsuccessful

[28]. Additional physics, coming for example from a two fluid description, could well be essential

in the triggering process, allowing for example the polarization current to provide a destabilizing

contribution. This could be the case if the seed mode has a frequency outside the range between

electron and ion diamagnetic frequencies [29], as modelled in [30]. On the critical island width

issue, the polarization effect is also expected to play a role, although in the absence of any external

drive this effect should be stabilizing [19, 20, 31, 32], as suggested by experiment [3, 5]. Taking

into account neoclassical ion viscosity leads to the enhancement of the polarization current effect

[33], and this has also been shown to affect the NTM threshold in non linear MHD modelling [34].

In the present work, we restrict ourselves to the standard MHD model, thus ignoring diamagnetic

and polarization effects. Despite the limitation of this MHD model, our comparison of full MHD

non linear simulations of Neoclassical Tearing Modes with experimental observations on JET gives

many encouraging results. In particular, we identify the increase of magnetic shear during current

diffusion as a factor that facilitates NTM triggering, through the decrease of the critical width.

Also, the dynamics of confinement degradation during the mode growth is consistent with the

observation, and the mode identification from a synthetic diagnostic reveals similar features to

experimental measurements. The NTMthreshold predicted by a Generalized Rutherford Equation

is shown to be very sensitive to the model used for the tearing parameter ∆′, and a reasonable

agreement with quasi linear simulations can only be obtained if this parameter is small compared to

curvature effect.
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The paper is organized as follows: the physical model for non linear simulations as well as for the

Rutherford model are presented in section 2, and the experiments that are analysed are described in

section 3. The (2,1) NTM threshold determined from the models is discussed in section 4, and the

non linear evolution is compared to experimental measurements in section 5.

2. PHYSICAL MODEL

The standard fluid MHD model equations with fixed density are solved in toroidal geometry:

(1)

where JNI = Jcd + Jbs is the non inductive current density, Jbs is the bootstrap current, Jcd is the

imposed current source (Jcd = (Jbs - Jbs)t=0), and H = −∇.χ⊥∇p(t = 0) is the heat source term. The

bootstrap current is modelled as Jbs = fxJbs  (∇p(t)/∇peq)B/B with fx a free parameter for rescaling

the total bootstrap current J eq . Note that the equilibrium is not modified when varying fx. The

magnetic equilibrium itself is computed with the CHEASE code [35], which also provides the

equilibrium bootstrap current. More details on the XTOR code can be found in [14].

The result is compared to the following form of the Rutherford equation, that covers the same

physics as the code, i.e. includes curvature [18] and bootstrap [16] contributions:

(2)

where the various terms are evaluated at q = 2, S is the Lundquist number (S = τR/τA, with τR =

µ0a2/η and τA = R0√µ0ρ/B0), Jbs ≡ (µ0R0/B0)Jbs with R0 and B0 the major radius and magnetic field

at geometric axis, a the minor radius and W ≡  w/a. We also define Wχ  = 2√2 (χ⊥/χ||)
1/4 /√x∈ns,

with x = √Φ Φ,   is the normalized toroidal flux, s = d(log q)/d(log x) the magnetic shear and ∈ = a/

R0. The resistive index DR is defined in [36], and its expression in the limit of small ∈ is [37]:

(3)

One important limitation coming from a Rutherford-type analysis is related to the choice of a

model for the ∆′ term. This parameter is defined in cylindrical geometry as

with ψ the poloidal magnetic flux, and xs the radial pos is obtained from the solution of the tearing

equation

bs

eq

eq

ρ (∂ t v + v · ∇ v ) = J × B − ∇ p + ν∇ 2v

∂ t p + v · ∇ p + Γ p∇ · v = ∇ · χ ⊥ ∇p + B · ∇ [χ // (B · ∇ p)/B 2] + H

∂ t B = ∇ × (V × B ) − ∇ × η (J − J NI )

DRdW

dt

q

s0.82S-1 = aΔ' (w) - 6.35  + 6.35fx  Jbs
χW2+ 0.65W2

W
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1
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+
q
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dq
dx
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0
dx̄

x̄ 3

q2
−

2µ0x̄ 2

B 2 2

dp
dx̄

a∆ cyl. = lim
σ 0

ψ (x s + σ) − ψ (x s − σ)
ψ(x s )
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(4)

with Jz the toroidal current density. Very often, ∆′ is approximated by a∆′ = -2m/x, which corresponds

to the solution of the tearing equation without toroidal current density gradient (dJz/dr = 0). As we

will see later (section 4.2), this simplification is generally not justified.

The physics of the classical tearing mode saturation, which can be represented in the form of a

W-dependence of the tearing parameter ∆′ (like a∆′(W) = a∆′0 - αW [38, 39], or more complex

closures [40]), is also ignored in the standard Generalized Rutherford Equation. For comparison

with the approximation a∆′ = -2m/x, we will also compute the solution of the Rutherford equation

with the model derived in [40].

With our notations, the tearing parameter can then be expressed in this model as:

(5)

All terms are evaluated in the numerical resolution of the tearing equation 4, which uses finite

elements and mesh accumulation at the resonance. A numerical difficulty comes with the Σ′ term,

which requires very dense mesh before converging. The convergence is established by increasing

the number of finite element at a fixed σ value.

3. EXPERIMENTAL DATA

High-βN discharges with qmin above unity have been extensively studied in JET, and have been

often found to hit a soft (i.e. non disruptive) n = 1 MHD limit [41, 12, 13], that leads to confinement

degradation of about 10-20% in the H factor .

For the present work, we have chosen two discharges operated at q95 = 5 but at different magnetic

fields. The first discharge (Pulse No: 72668) is operated at B = 1.8T, Ip = 1.2MA. With 21MW of

input power, the performance reaches βN ≈ 2.8. After a series of short bursts, attributed to q = 2

fishbones [12], the n = 1 mode develops and generates significant confinement degradation, with

H89 lowered by about 15% (figure 1). The second discharge (Pulse No: 74226) is operated at B =

2.7T, Ip = 1.8MA and has also q95 = 5. The total input power is 23MW, and βN ≈ 2.5. Similar bursts

of n = 1 mode are observed, but the soft MHD limitation is not triggered (figure 2).

1
x

d
dx

x
dψ
dx

−
m 2

x 2
+

µ0qR0(dJ z /dx )
xB 0 (1 − nq/m )

ψ = 0

a∆ (W ) = a∆ cyl. + 0.82W
A
2

A log W +
Σ
2

− 2.21A 2 + 0.4
A
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+
B
2

A =
dJ/dx
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2
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d2J/dx 2
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1 −

2
s
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σ 0+
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In order to address the issue of resistive mode (meta)-stability in these discharges, we consider for

the MHD limited case (PulseNo: 72668) the properties of the discharge one second before the

mode triggering (at t = 6s), and at the mode triggering (at t = 7s).

The magnetic equilibrium is taken from EFIT reconstruction constrained by Motional Stark Effect

(MSE), polarimetry and core pressure measurements. The advantage of this method is that it provides

a smoothed solution of the Grad-Shafranov equation that fits (in the least mean square sense) the

experimental measurements. Discharge simulation, as done by integrated codes like TRANSP [42]

or CRONOS [43, 44], is another alternative that allows more detailed radial structures to be described,

in a way that is consistent with particle, momentum, heat and current sources. But for the present

study, where we want to highlight the essential feature of NTM properties, we have considered that

details of the pressure profile could generate complicated (and maybe spurious) oscillations of the

bootstrap contribution that would induce more confusion that clarification. Accordingly, we base

our work on the EFIT reconstruction. However, we use other information from the discharge

simulation done with TRANSP for Pulse No:72668. Heat diffusivity calculated from energy balance

is an essential input for evaluating the relative dynamics of current and pressure, that can play a

role in the NTM threshold (see section 4.1). The total bootstrap current calculated with the NCLASS

module [45] is used for a more precise comparison with experiment in section 5.

For the study with XTOR, we have fitted the separatrix with an up/down symmetric shape

(using a mean square root minimization). This has minor impact on the safety factor profile inside

√ψ = 0.95, and we have imposed in CHEASE that the position of the q = 2 surface (in √ψ) is exactly

that given by EFIT reconstruction. The safety factor profiles thus obtained are shown in figure 3.

For the MHD-limited case (Pulse No: 72668), the evolution of the q-profile before the triggering of

the n = 1 mode essentially reflects the diffusion of the current in the plasma, which is not steady-

state. The central value of the safety factor evolves from q(0) = 1.55 to q(0) = 1.37, and the q = 2

surface moves from √Φ  = 0.51 to √Φ= 0.54. The non MHD-limited case (Pulse No: 74226) has a

q = 2 surface that is more inside the plasma, according to the reconstruction. Both cases have

monotonic q-profiles, with qmin above unity, in agreement with the absence of sawtoothing activity.

4. (2,1) NTM THRESHOLD FROM MODELLING

We address in this section the issue of the non linear NTM threshold for the (2,1) mode, with

comparison between the Rutherford prediction and quasi-linear (i.e. n = 0 and n = 1 only) MHD

simulations using XTOR. Due to the importance of perpendicular diffusivity in the dynamics of

pressure, we first investigate the role of this term in the determination of the critical island width.

4.1. ROLE OF PERPENDICULAR DIFFUSIVITY 4.1. ROLE OF PERPENDICULAR

DIFFUSIVITY

The value of perpendicular diffusivity is mainly controlled, in tokamak plasmas, by the level of

small scale and large spectrum turbulent transport. The dynamics of pressure evolves on a typical
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time scale τE ∝ a2/χ⊥, while the plasma current evolves on a time scalen τR = µ0a2/η. In non linear

MHD simulations, keeping the relative dynamics of pressure and current as they are in the experiment

can be of importance [46]. But for NTM studies, this is mandatory, as pressure and current are

coupled through the bootstrap current. This translates into conserving the product Sχ⊥ as it is in the

experiment (here as in the following, heat diffusivities are normalized to a2/τA).

For a magnetic island, pressure effect is controlled by the ratio χ||/χ⊥, which determines the critical

width Wχ (already introduced) below which the effect of the island on the bootstrap current vanishes

[16]. Another mechanism is however playing a role in the neoclassical island dynamics, as we will

show here, and it concerns the effect of the island on the heat transport through the X-point.

In order to investigate the role of χ⊥ on the critical island, we take the equilibrium of Pulse No:

74226 at t = 7s, and run quasi-linear simulations with XTOR at S(0) = 107, ν = 10η(0) and a fixed

ratio χ||/χ⊥ = 108. The bootstrap fraction in these simulations is fbs = 0.76. The seed island is varied

by steps of about ∆W ≈ 0.004 until the NTM branch is found (the step determines the corresponding

error bar). The value of χ⊥ is scanned, and we find that in the low χ⊥ regime the critical island width

decreases strongly (figure 4). The reason for this decrease is the reversal of the bootstrap current

outside the island, which enhances the NTM drive. This is shown in figure 5, where a Poincaré

section is plotted on the left, and the corresponding contour of the poloidal component of the

bootstrap current is plotted on the right. The mechanism at play seems to be the following: heat

transport is enhanced at the island X-point, and is rapidly equilibrated in the parallel direction

outside the island. When perpendicular transport is small, the pressure inside the island is temporarily

lower than outside, resulting in a reversal of the pressure gradient (and of the bootstrap current) at

the island O-point. As a result, the island is destabilized below the level predicted when a flattening

of the pressure is assumed. This effect is enhanced when the island grows faster. This has been

checked by running simulations at different Lundquist numbers, as shown in figure 4.

As a result, although transport coefficients only appear through their relative amplitude in the

Rutherford equation, the choice of χ⊥ can be of consequence for the determination of the critical

island width. This is true in particular in the regime where perpendicular heat transport at the O-

point is too small to compensate for the anomalous heat flux at the X-point.

Experimental values for χ⊥ are taken from a TRANSP simulation done for the case Pulse No:

72668. It gives χ⊥ ~ 1m2/s in the plasma centre, which in normalized units converts into Sχ⊥ ≈ 400.

Quasi linear XTOR calculations have been performed for the equilibrium Pulse No: 72668 at t = 7s

with fbs = 0.76, S = 107 and χ||/χ⊥ = 108. They show that Wcrit remains similar (Wcrit ∈ [0.023,

0.029]) when χ⊥ is varied in the range χ⊥ = [10-5, 4 × 10-5]. The (2,1) NTM is therefore in a regime

where Wcrit weakly depends on χ⊥, because the pressure flattening has enough time to take place

during the mode growth. For the case Pulse No: 74226, we choose in the following Sχ⊥ = 100, for

which Wcrit is also weakly dependent on χ⊥.
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4.2. (2,1) NTM THRESHOLD: SIMULATION AND RUTHERFORD PREDICTION

4.2.1. Quasi linear results with XTOR

Numerical simulations are performed in a quasi-linear regime, i.e. retaining only n = 0 and n = 1,

with a Lundquist number S(0) = 107 at the plasma centre. We deduce the perpendicular heat

diffusivities from the relation Sχ⊥ ≈ (Sχ⊥)exp., and we take otherwise χ||/χ⊥ = 108 and a viscosity ν
= 10η(0). The bootstrap fraction is varied using the rescaling parameter fx applied to the bootstrap

current computed with CHEASE, and the seed island is scanned until the NTM branch is found.

The critical island width Wcrit for equilibria from Pulse No’s: 74226 and 72668 is then determined

as a function of the total bootstrap fraction fbs.

The result of the XTOR simulations is shown in figure 6. The critical island width for MHD

stable cases (Pulse No’s: 74226 and 72668 at t = 6s) is found to be similar, and of the order of Wcrit

~ 7.5% at fbs ≈ 0.4. For the equilibrium where the (2,1) NTM is about to be triggered (Pulse No’s:

72668 at t = 7s), the threshold is found to be significantly lower, with Wcrit ~ 5% at fbs ≈ 0.38. From

TRANSP/NCLASS, the bootstrap fraction is of this order, although slightly lower with fbs ≈ 0.34.

Thus, we find that the triggering of a (2,1) NTM at t = 7s in the Pulse No: 72668 is consistent with

modelling, assuming a constant (in time) level of seeding process, able to generate seed islands of

about 5% of the minor radius.

4.2.2. The Rutherford-based evaluation: impact of the ∆′ model

These results have been compared with the solutions of the Rutherford equation, with different

models for the ∆′ term. The simplest one assumes a∆′ = -m/x, the second uses the solution of the

tearing equation a∆′ = a∆′cyl., and the third one takes the W-dependent model from [40] (see equation

5). The results are shown in figure 7 together with XTOR results for better comparison. The first

thing to note is that all   2 models predict that the critical island width is lower at t = 7s compared to

t = 6s for Pulse No: 72668, in agreement with XTOR result. The second point is that the ∆′ model

does not play a significant role for Pulse No: 74226, and for this case the critical island width

predicted by the Generalized Rutherford Equation is roughly in agreement with XTOR.

For the simplest evaluation of the ∆′ term (a∆′ = -m/x), we find that the NTM branch appears

only above fbs ~ 0.4 for Pulse No: 72668. For fbs > 0.5, the critical island width is in reasonable

agreement with the XTOR simulations for the MHD stable cases. For the NTM triggered case

(Pulse No: 72668 at t = 7s), the Rutherford evaluation predicts a lower threshold, but by far not as

low as found with the XTOR simulations.

The cylindrical ∆′ is calculated by solving the Tearing equation in cylindrical geometry

(equation 4), with an ideal wall at the plasma boundary (as in XTOR simulations). We compare

in figure 8 the   ∆′ value with and without the current density gradient for the case Pulse No:

72668, as a function of the radial position of the n = 1 and n = 2 resonant modes. The plot on the

left shows that the useful simplification a∆′ = -m/x (corresponding to the gradient-free toroidal

current solution of the Tearing equation) is largely underestimated. Indeed, the correct solution
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of the tearing equation is large and positive, with a∆′cyl. ≈ 38 at t = 6s and a∆′cyl. ≈ 28 at t = 7s for

the (2, 1) mode. The same remark applies for the n = 2 mode up to m = 4. As a consequence, the

critical island width deduced from the Generalized Rutherford Equation is much smaller, and far

below the XTOR results for the case Pulse No: 72668.

The W-dependent model for ∆′.  has finally been used. It naturally predicts critical island sizes

above that obtained with a∆′cyl. thanks to the W dependence, and therefore moves the prediction for

Pulse No: 72668 closer to XTOR results. However, this correction appears to be too small in this

particular case to allow recovering the results from quasi linear simulations. Note that the validity of

this model requires Wa∆′ << 1, and this condition is only marginally fulfilled for the ∆′  equilibria

from Pulse No: 72668, where Wa∆′  ≤ 1 implies W ≤ 0.026 at t = 6s and W ≤ 0.036 at t = 7s.

Finally, we have calculated the critical width by choosing a  2 = 0 in the Generalized Rutherford

Equation. This crude model gives at the end a rather good agreement with non linear simulations

for a total bootstrap fraction fbs ~ 0.4, although we will not intend to generalize its applicability to

more general context.

To conclude on this comparison between quasi-linear simulations and predictions based on a

generalized Rutherford equation, it appears that significant discrepancies cannot be avoided, although

the relative thresholds of the 3 equilibria that are analysed are correctly ordered: the critical island

width of the unstable equilibrium is found to be lower than that of the two others. The reasons why

the Generalized Rutherford Equation fails to predict the correct threshold are probably many, and

could first be attributed to the absence of a self-consistent treatment of all physical effects. However,

it is clear that an important factor of discrepancy comes from the ∆′  term. Indeed, the Rutherford

prediction is fairly good when the curvature term is large enough compared to ∆′. In order to

illustrate this, we plot the (dW/dt,W) diagram from Rutherford equation in figure 9 for the 3 equilibria.

The curvature term, which is proportional to DR, will strongly depend on the local magnetic shear

since DR ∝ s-2 [37]. For the #74226 case, the magnetic shear at q = 2 is small (s ≈ 0.4) and therefore

the curvature term is large, with DR ≈ 1.12, so that at W = 0 the curvature term alone gives at the

RHS of the Rutherford equation RHS = 0.82S-1dW/dt ≈ -174. This term is largely dominant over

a∆′, which is -2m/xs ≈ -11 or a∆′cyl. ≈ +10 for the two extreme models. In contrast with this

situation, the magnetic shear at q = 2 is much larger for the Pulse No: 72668, with s ≈ 0.78 at t = 6s

and s ≈ 1.04 at t = 7s. The resistive index DR is therefore smaller, with DR ≈ 0.47 at t = 6s and DR ≈
0.27 at t = 7s, and the curvature term gives RHS ≈ -50 at t = 6s and RHS ≈ “30 at t = 7s. In such

condition, the contribution from   2 is no longer negligible and the result strongly depends on the

model chosen for this term.

4.2.3. Role of current diffusion in the decrease of the critical island width

In order to better understand what causes the smaller critical island width as equilibrium evolves

for Pulse No: 72668, we come back to the Rutherford analysis, using the evaluation a∆′ = 0, i.e.

ruling out the ∆′ contribution to the problem. With this limitation, we find that the reduction of the
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critical width for NTM triggering originates from an increasing magnetic shear s at q = 2, as the

current diffuses into the plasma. This increase of sq=2 decreases Wχ as well as the curvature

stabilisation term DR, as can be modelled using the main dependencies in x and s: DR ∝ xp′/s2, Wχ

∝1/√xs, Jbs ∝-√xp′/x, and assuming a pressure profile p = p0(1-x2)2. The critical island width is

then evaluated from the static unstable solution of the Rutherford equation around the equilibrium

data from Pulse  No: 72668 at t = 7s. Between t = 6s and t = 7s, the q = 2 surfaces moves outwards

(stabilizing) but the dominant effect is the increase of the magnetic shear (destabilizing), as shown

in the figure 10.

4.2.4. Summary

In summary, we find that triggering of a (2,1) NTM in Pulse No: 72668 is consistent with a seeding

process producing seed island of about 5% of the minor radius at q = 2, with a critical island width

decaying with time as current diffuses in the discharge. This decay is partly explained by the

destabilizing effect of increasing magnetic shear, which lowers the curvature term DR ∝ 1/s2, although

unfavourable evolution of the tearing stability (represented by the ∆′ term in Rutherford equation)

probably contributes to the lowering of Wcrit, as can be inferred from the lower Wcrit from XTOR

compared to the Rutherford prediction. The comparison with a different equilibrium (Pulse No:

74226) where q = 2 is more inside (unfavourable) but with lower magnetic shear (favourable)

shows that the Rutherford evaluation is improved when curvature effects are dominant, i.e. when

the magnetic shear is low at the resonance.

5. NON-LINEAR SIMULATIONS AND COMPARISON TO EXPERIMENT

Non linear simulations have been performed for the equilibrium of Pulse No: 72668 at t = 7s, with

a total bootstrap fraction fbs = 0.38, similar to the one calculated in TRANSP. With this case, the

dynamics of the confinement degradation and the radial structure of the temperature perturbation

can be compared with experimental observations. The computed spectrum covers toroidal mode

numbers n = 0 ... 6 and poloidal mode numbers m = 0... 64. Later in the non linear regime, we had

to extend the description to n = 0...12 and m = 0...96. Note that the island width cannot be evaluated

rigorously at every time step, because an ergodic region appear around the separatrix in the non

linear regime, preventing the determination of the separatrix from a Poincaré plot. We therefore

calculate the island width after evaluating the constant C in the relation W(2,1) = CE (2,1) (with E(2,1)

the magnetic energy of the (2, 1) mode) in the linear regime.

We have first checked if the critical island width was similar in the non linear and quasi linear runs.

As shown in figure 11, Wcrit tends to be slightly lower in the non linear simulation (Wcrit =

0.0467±0.0012) than in the quasi-linear ones (Wcrit = 0.0499±0.0011). Non linear coupling tends

therefore to facilitate the triggering of the NTM, because harmonics of the dominant mode help in

flattening the pressure at the O-point. The comparison of the lowest non linearly unstable seed (  )

with the quasi linear run shows that it takes about 5×103τA for this process to drive the mode unstable

1/4
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when it was found stable in the quasi linear regime. We also compare simulations with a seed in the

unstable domain (   ). Here, we find that non linear coupling slows the growth of the q = 2 island.

5.1. CONFINEMENT DEGRADATION DUE TO THE (2,1) NTM

In the experiment, the confinement degradation takes place in about 1 second, and is in the range

40-50% for ion and electron pressures (figure 1). We compare the dynamics of the confinement

degradation and its amplitude with our non linear simulation. In the non linear regime, the (2, 1)

NTM is found to generate a large stochastic region, resulting in a significant confinement degradation.

For a bootstrap fraction fbs = 0.38 (comparable with the TRANSP calculated value), the core pressure

is reduced by about 15% at the latest simulation step (figure 12). The Poincaré map shows that flux

surfaces are largely ergodized around q = 2, leaving only two holes for identifying the poloidal

mode number. Among other island chains, a (3, 2) island is also clearly identified. The saturation

is not yet reached at the latest simulation steps, and we did not pursue it because of limited

computing time. However, the time constant of the confinement degradation is similar in the

experiment and in the simulation. This can be verified by rescaling the simulation dynamics

according to ∆t = (Sexp./Ssim.) τA∆t. According to this renormalisation, 104τA in the simulation

corresponds to ~ 300ms. More precisely, we have applied the transformation:

texp = 3.4 × 104 (texp - t0)

with t0 = 7.06s the time when the (2, 1) mode is triggered. With this rescaling, we can compare the

experimental evolution of the pressure measured from various means with what is found in the

simulation. In figure 12, we plot the evolution of electron pressure measured by the LIDAR diagnostic

(LIDR), the ion pressure measured by Charge Exchange diagnostic (CX), and the total pressure

determined by the EFIT reconstruction. All pressures are normalized to their value at the time of the

mode triggering for clarity. As can be seen, the dynamics of pressure is relatively well reproduced by

the simulation. Note that increasing the bootstrap fraction accelerates the pressure drop (grey dashed

line in figure 12).

5.2. Electron temperature fluctuations

The mode structure is well diagnosed by electron temperature fluctuations in the experiment. The

Electron Cyclotron Emission (ECE) radiometer in JET provides a measurement of electron

temperature along an horizontal line of sight at the tokamak geometrical midplane, which does not

coincide with the magnetic axis position [47]. In the following, the mode structure is determined

from a wavelet analysis of the ECE signal. The amplitude A and phase Θ of the perturbation is

calculated for each ECE channel along the evolving frequency of the dominant mode f(t), and the

mode structure is calculated as δTe(R, t) = A(f(t)) × cos( (f(t)) - Θ0(f(t))), where Θ0(f(t)) is the

phase at a reference position where the mode amplitude is large.

Analysis of the MHD mode structures at different times after its triggering at t = 7.06s is shown
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in figure 13. We shall first remark that a small n = 2 mode is already present in the plasma when the

(2, 1) mode is triggered. We find that the n = 1 mode is initially strongly coupled to this pre-existing

n = 2 mode (presumably localized on q = 5/2), and then it grows uncoupled. The relative amplitude

δTe/Te(0) is from the early stage of the mode evolution around 2%. The interpretation of these

structures is not simple due to the off-axis line of sight of the diagnostic, and the comparison with

a synthetic diagnostic implemented in the non linear simulations is useful.

5.3. Radial structure of the (2,1) NTM in the simulation

We have implemented a simplified synthetic diagnostic for pressure fluctuations in XTOR output,

where the effect of an off-axis line of sight can be studied. The temperature fluctuation produced by

the rotation of the MHD mode passing in front of the diagnostic is analogous to exploring the

pressure along the toroidal angle: δTe(R, t) ⇔ p(R, ϕ). The analysis program is the same as the one

used for obtaining the temperature fluctuation from ECE in figure 13, and the reference phase is

taken here at R/a = 4 where the fluctuation amplitude is maximum. In normalised units, the line of

sight of the ECE radiometer is at Z/a = -0.22. Note that the pressure perturbation is equivalent to

the temperature perturbation since the density is constant in the simulation.

In order to show the impact of the off-axis line of sight on the mode structure determination, we

compare the pressure perturbation calculated along a line of sight crossing the magnetic axis at Z =

Zmag, with the same quantity calculated along the equivalent ECE radiometer line of sight. The

radial profiles determined under the two diagnostic configurations are shown in figure 14, for the

non linear simulation at t = 17641τA. The even parity of the n = 1 mode structure is clearly identified

when the line of sight crosses the magnetic axis, and converts to an apparent odd parity for the off-

axis line of sight, similar to experimental findings shown in figure 13.

The mode structure is shown at various times in figure 15. The relative amplitude of the

perturbation is, from the early stage of the mode growth, of the order of 2%. It does increase

slightly as the island grows, more than measured in the experiment, and it does not change much in

shape. From the ECE diagnostic, it is not easy to determine the probable q = 2 surface position

before t = 7.28s, where the inversion radius seems to be around R = 3.35m (along the diagnostic

line of sight). In contrast, we have the q = 2 island more outward, around R = 3.5m. The radial

profile of the mode compares well with the experiment inside the resonance, but the structure

outside the resonance evolves differently. In the experiment, no clear inversion can be seen during

the first 0.25s, and it develops afterwards in a broad region R = 3.35≈3.5m. In the simulation, the

inversion radius is never clearly identified at q = 2 on the Low Field Side (LFS at R ≈ 3.5m), while

this signature of the island position appears clearly on the High Field Side (HFS at R ≈ 2.5m).

To summarize, the comparison of mode structures shows similarities but also important

differences. The relative amplitude of the n = 1 perturbation is well reproduced, and its radial

profile inside q = 2 is similar to the observed one. Interestingly, the differences give some clues on

physical phenomenon that are not covered in the present MHD modelling and may play an important

role in the dynamics of the NTM.
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The first discrepancy concerns the position of resonant modes, and it is not related to the MHD

model. Inaccuracy of the input equilibrium is of course a main source of error for all MHD studies,

and this could well produce this mismatch. However, we also need to consider error bars in the

position of the ECE channels when appreciating this difference. This error is typically of the order of

2-5cm for typical JET plasmas [47] but could be more important in certain cases as suggested by a

statistical analysis [48]. Adding these two uncertainties may explain the large difference (about 15cm)

in the q = 2 position, although it may be difficult to determine which is the dominant source of error.

The second difference concerns the n = 1 mode structure outside the q = 2 resonance, which as

mentioned previously does not show a clear sign of an inversion radius on the outboard side. This

difference with experimental observations is due to the q = 3 island, as evidenced by the odd parity

of the distorsion outside q = 2 (see figure 14, with the on-axis line of sight of the plot on the left): it

reinforces the inversion at q = 2 on the High Field Side and weakens it on the Low Field Side. A

possible explanation for the absence of such signature of an island on q = 3 is that toroidal coupling

between the two poloidal harmonics is prevented by the differential rotation between the two

resonances, so that the MHD displacement at q = 3 is much weaker than in the simulation. This

issue is outside the scope of the present paper, as toroidal rotation is ignored. However, with a

central rotation of about 280km/s which represents about 7% of the Alfvén speed (see figure 16),

this is certainly an effect that is worth considering in the future.

The third difference concerns the n = 2 mode. The fact that we do not recover the (5, 2) mode is

not surprising, since the n = 2 mode is linearly stable in the input equilibrium, as we have checked

with quasi linear runs (using n = 0 and n = 2 only). We did not expect, therefore, to find an island at

q = 5/2 in the simulation. The growth of the (3, 2) mode, attested by the Poincar´e map (figure 12)

as well as by the n = 2 mode structure (figure 14), is a more significant discrepancy. The linear

stability of the n = 2 mode implies that the (3, 2) mode has a NTM nature, and that it is non linearly

destabilized by the (2, 1) NTM. Although not consistent with the experiment it is supposed to

reproduce, this is a demonstration of NTM triggering by non linear coupling in numerical simulation.

For the (3, 2) NTM growth, the driving mode is the large (4, 2) component, which does not seem to

be as large in the experiment. It is present in the early stage of the mode growth (figure 13, first

plot), where it has the same amplitude as the (2, 1) mode, but it vanishes at later times, except a very

minor contribution (compared to the outer component on q = 5/2) when the n = 1 mode is well

developed (figure 13, last plot). There is a possibility that toroidal rotation shear plays a role here

again. The pre-existing n = 2 mode, which is driven by the (5, 2) mode, may prevent the growth of

a (4, 2) component that would rotate at a different velocity. The absence of a (3, 2) island would

follow. Note that uncertainties in the input equilibrium, which may be wrong in predicting the

presence of a q = 3/2 surface, would not solve the discrepancy on the (4, 2) component.

CONCLUSION AND PERSPECTIVES

The (2,1) NTM threshold in high performance JET discharges with q > 1 has been modelled with a

non linear MHD code and compared to the prediction given by a Generalized Rutherford Equation.
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We find that the determination of the critical island width can be sensitive to the perpendicular

diffusivity taken in the simulation if it is too small, but with the rescaling (τR/τA)sim. = (τR/τA)exp.

that is mandatory for NTM modelling, the critical island width is relatively insensitive to the actual

value of χ⊥, at fixed ratio χ||/χ⊥. For the experiment that is studied, we find that the triggering of the

(2,1) mode is consistent with the excitation of the NTM branch by a seed of about 5% of the minor

radius. By comparing the threshold at the mode triggering time and one second before, we find that

the diffusion of the plasma current plays a role in the lowering of the threshold, by reducing the

curvature stabilisation effect through the increase of the local magnetic shear. The comparison with

the prediction from a Generalized Rutherford Equation covering the same physical ingredients

shows that when curvature effects are not sufficiently large, the result becomes very sensitive to the

model used for the ∆′ term, and is generally not very accurate. Finally, the non linear evolution of

the (2,1) NTM has been compared with experimental observations. The dynamics of the confinement

degradation is found to be qualitatively correct, with a long characteristic time. A synthetic ECE

diagnostic implemented in the code shows the impact of the off-axis line of sight of the JET ECE

radiometer on the identification of the mode. For the (2,1) NTM, we find comparable mode structure

with a relative perturbation δT/T ~ 2%, although the radial localisation of the q = 2 surface taken

from the equilibrium code EFIT may be at a too large radius. The n = 2 mode that is observed

outside q = 2 in the experiment (presumably at q = 5/2), develops at q = 3/2 in the simulation, and

is excited non linearly by the (2,1) NTM. This discrepancy could result also from the sensitivity to

the input equilibrium, which in the experiment may not contain the q = 3/2 surface. For both n = 1

and n = 2 modes, discrepancies on the radial profile of the mode structure suggest a stabilizing role

of the toroidal rotation shear, which can decouple poloidal harmonics.

Several potentially important effects have been neglected for simplicity and need to be addressed

in the future. As we just mentioned, the toroidal rotation in these plasmas is significant (about 7%

of the Alfvén speed), and although it is very similar in the two discharges that have been considered

here, it could affect the absolute value of the seed required to excite the (2,1) NTM, its non linear

evolution and its impact on the confinement. The other aspect is the completeness of the MHD

model. Separate density and temperature evolutions, rotation and two fluid effects, can be addressed

in simulations based on a fully implicit numerical scheme, as developed in a recent version of

XTOR [49], and should allow better comparison with experimental observations.
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Figure 1: High-βN JET discharge limited by n = 1 mode
(B = 1.8T, Ip = 1.2MA, q95 = 5, Ptot = 21MW).

Figure 2: High- N JET discharge without n = 1 MHD
limitation (B = 2.7T, Ip = 1.8MA, q95 = 5, Ptot = 23MW).

Figure 3: Safety factor profiles used in the study. Figure 4: Critical island width as a function of  χ⊥, while
keeping  χ|| /χ⊥ constant (a∆′ = -2m/x is assumed for the
Rutherford prediction). The error bars correspond to the
step in W.
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Figure 5: Poincaré section (left) and contours of the poloidal component of the bootstrap current (right) in a low χ⊥
regime where the critical island width is sensitive to the value of χ⊥ (at fixed χ|| /χ⊥).

Figure 6: Critical island width as a function of the bootstrap fraction from XTOR.
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Figure 8: a∆′cyl. as a function of the radial position of resonant modes for Pulse No: 72668 case, compared to the
simple evaluation -2m/x (left); evolution between t = 6s and t = 7s (right). The color scale corresponds to the
poloidal mode numbers.

Figure 7: Critical island width as a function of the total bootstrap fraction, from XTOR and from the Generalized
Rutherford Equation (equation 2) with different models for ∆′(W): a∆′ = -2m/x, a∆′ = 0, a∆′ = a∆′cyl. and with the
model a∆′(W) of [40].
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Figure 9. (dW/dt,W) diagram from Rutherford equation.

Figure 10. Effect of magnetic shear and position of q = 2
surface on critical island width, following Rutherford
equation.

Figure 11: (2, 1) NTM evolution in Quasi-Linear (QL)
and Non-Linear (NL) simulations.
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Figure 13: Evolution of n = 1 and n = 2 mode structures, as determined from the ECE diagnostic. The radial position
of the magnetic axis from equilibrium reconstruction with EFIT is also indicated (note however that the magnetic axis
is not on the line of sight of the diagnostic).

Figure 12: Non-Linear XTOR runs: q = 2 island size (top), maximum pressure (middle), and maximum ion, electron
and total pressure from the experiment after rescaling the time (bottom). Right plot: Poincar´e map at the last simulation
step (t = 21274 A).
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Figure 14: Magnetic equilibrium from EFIT and mean fit used in XTOR simulations for Pulse No: 72668 at t = 7s
(left); mode structure deduced from the synthetic ECE diagnostic: δp at t = 17641τA for a line of sight crossing the
magnetic axis (top) and for the line of sight of the ECE radiometer in JET (bottom).
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ECE diagnostic.
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Figure 16. Toroidal rotation profile as measured by Charge Exchange diagnostic for Pulse No: 72668.
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