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Abstract

The experimental data collected during the calibration of the po-
larimeter at JET show clear evidence of non ideal behaviour of the
diagnostic optics. The influence of this non ideal behaviour on the
FIR polarimetric measurements at JET is investigated, since it re-
sults in anomalies which render difficult the interpretation of the de-
tected signals, in particular the Cotton Mouton effect. These anoma-
lies are clearly displayed during the calibration operations in absence
of plasma. In fact, when the polarization of the probing beam is ro-
tated, the phase shift between the two detector signals for a particular
chord is not constant, as expected, but it changes a lot.
After a brief introduction to the implementation of the polarimetry
on JET and after a presentation of typical polarimetric signals, the
optical characteristics of the recombination plate are analyzed. Their
effect is studied using the classical laws of optic. The results show
that the recombination plates don’t look to be the cause of the de-
tected anomalies. Then, the dielectric waveguides used to transfer the
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recombined beams from the Torus Hall to the detectors are consid-
ered as the possible origin of non ideal behaviour of the diagnostic
optics. Assuming that the transmission properties of the optics af-
ter the recombination plate are known, a general method to evaluate
the signals at the detectors is presented, which includes the effects
of the optical components in the dielectric waveguides. As a partic-
ular case, the simple rotation of the polarization acquired along the
beam line from Torus to the detectors is modelled. The results ob-
tained in this case are compared with experimental calibration data
and they indicate that the anomalies present in the calibration data
could be at least partly caused by changes of the polarization, due
to various reasons such as non ideal components or the reflections on
metal mirrors, which may produce rotations of the polarization state
of the recombined beams.

1 Introduction

The JET polari-interferometer was initially designed to operate as a pure

multichannel far-infrared interferometer of the Mach-Zehnder type(1). The

introduction of additional optics allowed measurements of the Faraday effect

and then the determination of the poloidal magnetic field distribution(2).

Recently the system has been upgraded with a new set-up to allow simultane-

ous Faraday rotation angle and Cotton Mouton phase shift measurement(3).

From the latter is possible to obtain the line integrated plasma electron den-

sity.

At JET, the Cotton Mouton effect for the measurement of the line integrated

density, alternative to interferometry, has been widely investigated (4)÷(7).

This new measurement, once reliable enough, could be used to alleviate the

problem of the fringe jumps, which affect JET interferometric measurements.

The various studies of the Cotton Mouton effect include a statistical compar-

ison between the line integrated density from interferometry and polarimetry
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over a wide range of main plasma parameters, in particular for high values

of electron density taking into account data from Thomson Scattering, mag-

netic probes and from an equilibrium code (EFIT) (7).

Even if estimates of the electron density line integrals are available, the po-

larimetric diagnostic seems to be affected by anomalies, which are clearly

displayed during the calibration. The source of this anomaly is still un-

known but a deep analysis to understand it is underway since the anomaly

makes it very difficult to analyze polarimetric data, in particular the Cotton

Mouton effect. So far JET polarimetric signals have to be preprocessed using

a model which includes a ”spurious ellipticity” of the probing beam, assumed

to be due to non ideal behaviuor of unidentified optical components. This

spurious ellipticity has to be added to the one produced by the plasma (8)

to derive meaningful measurements and it is estimated from the calibration

procedure. Even if, as a result of this correction, there is a good agreement

between the line integrated electron densities measured by interferometry

and polarimetry, it should be noted that the correction is purely empirical

and therefore not completely satisfactory. For example, an unresolved issue

remains the total error on the measurements, including the effect of this cor-

rection for the spurious ellipticity. This question becomes especially crucial

in case of discrepancies between the density measurements obtained from

interferometry and polarimetry. It has also to be emphasised that this error

could change for different plasma scenarios. It is therefore considered very

important to understand the cause of this anomaly of the polarimetric data

and every effort should be done to eliminate or at least to reduce the problem

possibly with a suitable intervention on the diagnostic hardware.
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The aim of the present work is the analysis of some optical components which

could be the source of the observed anomalous behaviour of the polarimetric

measurements. Of course, suitable tests will have to be performed to verify

the results of this investigation.

The paper starts with a revision of the polarimetric measurements principle

in JET and a presentation of the main aspects of the calibration and pro-

cessed signals (Section 2). Plots of experimental calibration data for the four

vertical channels, presented in Section 3, clearly show the presence of the

anomaly. Assuming the recombination plate as an optical component which

could introduce ellipticity in the polarization, a detailed analysis of its main

optical properties and its theoretical behaviour, in accordance with the basic

laws of optics, is described (Section 4). The effects of this plate on the po-

larimetric measurements are shown. Then, the beam transfer line from the

Torus hall to the detectors, including the dielectric waveguide, mirrors, wire

grids and optical elbows, is considered. Given the transmission properties of

the optics after the recombination plate, a general method to evaluate the

signals at the detectors is described in Section 5. At last, the effect of a

simple rotation of the polarization along the beam line from Torus to the

detectors is calculated and the comparison with the experimental data of the

calibration is reported (Section 6).

2 Polarimetry: operation principle

A simplified scheme of the general optical set-up for one vertical chord of

JET polari-interferometer is shown in Fig. 1. A reference frame is assumed
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with x-axis along the toroidal direction, the y-axis along the radial direction

and the z-axis along the vertical axis of the torus. The DCN (λ = 195µm)

laser beam is split into a probing beam and a reference beam (also known

as ”modulated beam”). Neglecting the beam splitter system, which divides

the beam into the different chords, each of the probing beam passes through

a wire grid used as an optical filter and through an half wave plate, used

for calibration and diagnostic set-up prior entering the vacuum vessel. On

the vertical channels, the polarization is linear at 45◦ with respect to the

toroidal direction (x- axis) to maximise the Cotton Mouton effect. After

passing through the plasma, the polarization of the radiation experiences

a rotation because of the Faraday effect and acquires ellipticity due to the

Cotton Mouton effect. The input and exit windows to the vacuum chamber

are made of z-cut crystal quartz.

The reference beam is modulated (frequency shifted) by a rotating grating

wheel at 100kHz (ω0 = 2π × 105s−1) and its polarisation is rotated via a

half wave plate of 45◦; then it is split into the different channels. Each of

these beams passes through a wire grid used as an optical filter before being

recombined with the probing beam by a recombination quartz plate. The

recombined beam passes through an oversized dielectric waveguide (Pyrex

tubes of ∼ 80mm inner diameter) and then it reaches a wire grid which acts

as an analyser, dividing the electric field components into two direction x

and y, that are focused onto two corresponding detectors.

Supposing all the optical components behave ideally, the probing beam, when

passing through the plasma can be expressed in the following complex form:
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E(p)
x = E0 cos Θ (2.1)

E(p)
y = E0 sin Θe−iΦ (2.2)

with time dependence e−iωt, ω = 2πc/λ and

Θ = Θ0 + α (2.3)

with Θ0 = 45◦.

In presence of plasma, α is due to the Faraday effect and Φ is the phase shift

between the electric field components Ex and Ey due to the Cotton Mouton

effect. In absence of plasma, α is produced by a rotation of the half wave

plate used for the calibration. The reference beam can be expressed as:

E(r)
x = E0g cos Θg (2.4)

E(r)
y = E0g sin Θg (2.5)

with time dependence e−i(ω+ω0)t and Θg = 45◦.

The calculation of the average power of the radiation incident on the detec-

tors, evaluated over times much longer than ω−1 but shorter than ω−1
0 , leads

to the following expressions for the detector signals:
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i(t) = Kx(E
(p)
x E(r)∗

x eiω0t + c.c.) (2.6)

p(t) = Ky(E
(p)
y E(r)∗

y eiω0t + c.c.), (2.7)

where the signals from x-component and y-component detector are indicated

as i(t) (”interferometric signal”) and p(t) (”polarimetric signal”) respec-

tively, Kx and Ky are proportional to the respective detector responsivities.

Inserting relations (2.1) and (2.4) into (2.6) it possible to obtain:

i(t) = Kx(E0E
∗
0ge

iω0t + E∗
0E0ge

−iω0t) cos Θ cos Θg. (2.8)

Writing

E0 = |E0|e−iφp , E0g = |E0g|e−iφg , ∆φ = φp − φg (2.9)

the previous relation can be expressed as

i(t) = Kx

√
2|Eo||E0g| cos Θ cos(ω0t− ∆φ). (2.10)

The phase shift ∆φ, which accounts for the different optical path between

probing and reference beam and for the electron density effect on the probing

signal phase, is not important for polarimetry. It can be omitted by the suit-

able choice of the time-line origin. A similar expression for p(t) is obtained,

inserting the relations (2.2) and (2.5) into (2.7). Finally the detector signals

can be written in the form:
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i(t) = Ai cosω0t (2.11)

p(t) = Ap cos(ω0t− ϕ) (2.12)

where

Ai = A cos Θ (2.13)

Ap = B sin Θ (2.14)

A = Kx

√
2|E0||E0g| (2.15)

B = Ky

√
2|E0||E0g| (2.16)

ϕ = φ0 + Φ, (2.17)

where φ0 is the phase shift between the two signals without plasma. It is

zero just in this particular context, but generally it is not zero, as it will

be further shown. The detector outputs are electronically acquired with a

time resolution of 1ms up to 14 ms depending on the acquisition set-up and

they are processed by analog phase sensitive electronic cards to obtain the

following four signals:
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RMS = 〈i(t) · i(t)〉 =
1

2
A2
i (2.18)

PSD = 〈i(t) · p(t)〉 =
1

2
AiAp cosϕ (2.19)

RMS ′ = 〈i′(t) · i′(t)〉 =
1

2
A

′2
i (2.20)

PSD′ = 〈i′(t) · p(t)〉 =
1

2
A′
iAp sinϕ (2.21)

where i′(t) ∼ sinω0t is generated by 90◦ phase shifting i(t) and its amplitude

A′
i is assumed different from Ai. From these four relations the following ratios

can be calculated:

R =
PSD

RMS
=
Ap
Ai

cosϕ (2.22)

R′ =
PSD′

√
RMS · RMS ′

=
Ap
Ai

sinϕ. (2.23)

If the relations (2.13) and (2.14) are satisfied, the previous ratios can be

rewritten as:

R = C−1 tan Θ cosϕ (2.24)

R′ = C−1 tan Θ sinϕ (2.25)

defining

C =
A

B
. (2.26)
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Given the two ratios R and R′, the angles Θ and Φ can be easily obtained.

In fact, their ratio gives:

ϕ = arctan

(

R′

R

)

, (2.27)

independent from Θ, and then the Cotton Mouton phase difference

Φ = ϕ− φ0. (2.28)

The sum of their squares leads to:

Θ = arctan(C
√
R2 +R′2) (2.29)

without any dependence on ϕ. The two calibration constants φ0 and C

are determined in absence of plasma, when Φ = 0 and Θ = 45◦. In this

treatment, it is assumed that the phase shift without plasma ϕ = φ0 is

independent from the Faraday rotation and therefore it remains constant

during the scan of α performed to calibrate the diagnostic.

The angles Θ and Φ define the polarization state of the radiation exiting the

plasma. In fact, the Stokes vector components can be evaluated as:

s1 = cos 2Θ (2.30)

s2 = sin 2Θ cos Φ (2.31)

s3 = sin 2Θ sin Φ (2.32)
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with 0 ≤ Θ ≤ 90◦ and −180◦ ≤ Φ ≤ 180◦. By these expressions it is possible

to calculate the main polarization parameters: ellipticity ǫ, defined as the

ratio between minor and major axes of the polarization ellipse, and ψ, the

tilt angle of the polarization ellipse with respect to the x-direction

ǫ =
|s3|

1 +
√

1 − s2
3

, (2.33)

ψ =
1

2
arctan

(

s2

s1

)

(0 ≤ ψ ≤ 180◦). (2.34)

The Faraday rotation angle is given by:

Ψ = ψ − Θ0, (2.35)

it is equal to α = Θ − Θ0 only in absence of ellipticity (Φ = 0).

3 Calibration and data processing

At JET an on-line calibration is routinely performed before each JET pulse,

rotating the polarization direction of the probing beam by a known angle α

using the half wave plate. Calibration examples are reported in figures 2÷5

for the vertical channels 1÷4 respectively. The R and R’ curves, coming from

experimental data through (2.22) and (2.23), are plotted as functions of the

angle α and the phase shift ϕ, calculated by (2.27), is also shown. It is clear

that the angle ϕ (in this case it is equal to φ0) is not constant for a variation

of the angle α (and so of Θ). This behaviour completely contravenes the

assumptions of the theoretical treatment previously described and it makes
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difficult the interpretation of the polarimetric measurements.

Because of this non ideal behaviour, at JET the polarimetric signals are

processed using a model which assumes that an unspecified optical element

generates an additional ellipticity (”spurious ellipticity”) characterized by a

constant phase shift φ̃ referred to a rotated co-ordinate system of unknown

orientation Ξ (8). Optimizing four parameters by the least square method,

the R and R’ values, evaluated with this model in absence of plasma, fit very

well the experimental calibration curves, obtained varying α. In presence

of plasma, using the parameters optimized during the calibration, the pro-

cessing system evaluates on line the Θ and Φ angles and other polarization

parameters. In particular the Φ angle allows the calculation of the line in-

tegrated plasma electron density which usually agrees with the one provided

by interferometry. This comparison is still under investigation. Fig. 6 shows

the evolution during one shot of Φ and Ψ angles evaluated by this algorithm

for channel 3, and these two parameters are compared with the experimental

phase shift ϕ of the two detector signals. The difference between the Cotton

Mouton angle Φ obtained from the algorithm and the phase shift ϕ, given

directly by the raw data, is large (a factor of five) even if the Faraday rota-

tion is small (∼ 1◦). This confirms that a numerical postprocessing of data

is needed until the anomaly is understood and fixed or almost completely

reduced. Any tentative to evaluate Φ directly from ϕ, given by the raw data,

would cause significant errors. The difference between Φ and ϕ is indeed

large even for small Faraday angles.

Nevertheless the use of this postprocessing algorithm at JET is justified only

by a qualitative agreement between the measurements of the line integrated
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plasma electron density by polarimetry and interferometry, but its reliabil-

ity hasn’t been quantified. Moreover it hasn’t been demonstrated that the

agreement between the R, R’ and ϕ values given by the model with the ex-

perimental ones in absence of plasma is still verified in presence of plasma.

Indications about the reliability of the measurement of the line integrated

plasma electron density by polarimetry using the Cotton Mouton effect, have

been obtained by statistical analysis (4)-(7). In particular in (7) it has been

shown that the agreement between the interferometric and polarimetric mea-

surement of the electron density is within 1.143×19 m−2, for the entire range

of densities, in more than 90% of cases considered in that work. The shots

belong to various campaigns in the years 2006 and 2007, and they were se-

lected to produce statistics without any particular bias linked to particular

experiments. This agreement is very good (99%) for densities higher than

20 ×19 m−2.

4 The effect of the recombination plate

The recombination plate is a z-cut natural crystal quartz plate with thick-

ness h = 1.894mm ± 1µm. The incidence angle of both the probing and the

reference beams is θ0 = 45◦. The x and y directions are perpendicular and

parallel with respect to the incidence plane. The electric field components

corresponding to the probing and the reference beams, are partially trans-

mitted and partially reflected by the plate, and they experience the following

changes:
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E
′(p)
x = P⊥E

(p)
x (4.1)

E
′(p)
y = P‖E

(p)
y (4.2)

E
′(r)
x = R⊥E

(r)
x (4.3)

E
′(r)
y = R‖E

(r)
y (4.4)

where the complex coefficients P⊥, P‖, R⊥, R‖, independent from Θ and Φ,

are evaluated considering multiple reflections on the surfaces of the plate (9).

The birefringence of the medium is characterised by two refraction index val-

ues: ordinary and extraordinary. The former for the electric field component

Ex perpendicular to the incidence plane and the latter for the electric field

component Ey parallel to the incidence plane. For λ = 195µm, the crystal

quartz has an ordinary refraction index n0 = 2.112 and an extraordinary re-

fraction index ns = 2.156, for a propagation perpendicular to the optical axis

(10). Then, assuming that Ex is associated to the ordinary refraction index

n⊥ = n0 and Ey is associated to the extraordinary one, evaluated taking into

account of the angle between the refracted beam and the optical axis

n‖ =

√

n2
0 +

(

1 − n2
0

n2
s

)

sin2 θ0. (4.5)

Neglecting dielectric losses, the complex coefficients in (4.1) ÷ (4.4) can be
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expressed as:

P⊥ =
1 − ℜ⊥

1 −ℜ⊥eiδ⊥
P‖ =

1 − ℜ‖

1 − ℜ‖e
iδ‖

(4.6)

R⊥ =

(

1 − eiδ⊥
)√

ℜ⊥

1 − ℜ⊥eiδ⊥
R‖ =

(

1 − eiδ‖
)√

ℜ‖

1 − ℜ‖e
iδ‖

(4.7)

where

ℜ⊥ =
sin2 (θ0 − θ⊥)

sin2 (θ0 + θ⊥)
ℜ‖ =

tan2 (θ0 − θ⊥)

tan2 (θ0 + θ⊥)
(4.8)

δ⊥ =
4π

λ
n⊥h cos θ⊥ δ‖ =

4π

λ
n‖h cos θ‖ (4.9)

θ⊥ = arcsin

(

sin θ0
n⊥

)

θ‖ = arcsin

(

sin θ0
n‖

)

. (4.10)

It is assumed that the probing beam transmitted through the plate is still

described by (2.1) and (2.2), while the reference beam is represented by

E(r)
x = E0g cos Θg (4.11)

E(r)
y = E0g sin Θge

−iφr (4.12)

to account for a possible spurious ellipticity due to reflection on metal surfaces

and crossing a beamsplitter system. So, using the notations

P⊥,‖ =
∣

∣P⊥,‖

∣

∣ eiψ⊥,‖ R⊥,‖ =
∣

∣R⊥,‖

∣

∣ eiφ⊥,‖ (4.13)

and inserting equations (2.1), (2.2), (4.11) and (4.12) into (4.1) ÷ (4.4),

neglecting the prime sign, it is possible to write the equations for the beams
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outcoming from the recombination plate as follows:

E(p)
x = |P⊥| eiψ⊥ ·E0 cos Θ (4.14)

E(p)
y =

∣

∣P‖

∣

∣ eiψ‖ · E0 sin Θe−iΦ (4.15)

E(r)
x = |R⊥| eiφ⊥ · E0g cos Θg (4.16)

E(r)
y =

∣

∣R‖

∣

∣ eiφ‖ · E0g sin Θge
−iφr . (4.17)

Explicit expressions for the moduli and the phases of P⊥,‖ and R⊥,‖ are

reported in the Appendix A. Using these mathematical relations it is easy to

calculate the ellipticity introduced on the two beams (probing and reference)

by the recombination plate, supposing they are initially linearly polarized at

45◦ (Θ = 45◦, Φ = 0, φr = 0). So the polarization ellipse of the reference

beam has ellipticity ǫr = 0.214 and tilt angle ψr = 20.41◦ with respect to

the x-direction. On the other hand the polarization ellipse of the probing

beam has ellipticity ǫp = 0.056 and tilt angle ψp = 144.46◦. The effect

of the recombination plate on the polarization of the beams is not only a

modification of the ellipticity but also a rotation of the polarization ellipse

such that the final angle is very far from the initial 45◦.

If the recombined beam is transferred unchanged to the detection system and

the x and y electric field components reach the respective detectors without

any interference between them, the signals at the detectors can be evaluated

as previously seen in Section 2, putting the relations (4.14) ÷ (4.17) into

(2.6) and (2.7). The expressions (2.11) and (2.12) are again satisfied; the
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amplitudes Ai and Ap can be written in the form (2.13) and (2.14) with

A = Kx

√
2 |P⊥| |R⊥| |E0| |E0g| (4.18)

B = Ky

√
2
∣

∣P‖

∣

∣

∣

∣R‖

∣

∣ |E0| |E0g| (4.19)

and the relation (2.17) for ϕ is still true with

φ0 = ψ⊥ − ψ‖ − φ⊥ + φ‖ − φr. (4.20)

The two angles Θ and Φ can be evaluated using the signal processing method

exposed in Section 2. With respect to the ideal case, only the two calibration

constants C and φ0 are different, and the rest doesn’t vary.

The analysis proposed in this section allows to conclude that:

1. the recombination plate modifies considerably the polarization state of

both the probing and the reference beam;

2. anyway, this doesn’t affect the polarimetric measurements of Θ and Φ,

the effects of the recombination plate on the polarization state of the

beams are compensated by the calibration. In particular, the phase

shift ϕ should remain constant in absence of plasma, when α is varied;

3. if the reference beam had some ellipticity, it would be corrected by the

calibration.

Note that the main reported conclusions are independent from the numerical

values of the four complex coefficients P⊥, P‖, P⊥, P‖ which determine the

transmission and reflection properties of the plate.
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5 The dielectric waveguide

The dielectric waveguide used to transfer the recombined beam from the

recombination plate to the detectors is not a straight single Pyrex tube but

a rather complex optical system with other optics, including mirrors. Let’s

suppose that:

1. the x and y electric field components are still perpendicular or parallel

with respect to the planes of incidence of the reflective surfaces, along

the path between the recombination plate and the detection section;

2. all the other optics of the beam transfer line, included the wire grid in

front of the detectors, behave ideally.

Then, without making any numeric calculation, it is possible to say that

the E ′
x and E ′

y electric field components reaching respectively the x and y

detectors are proportional to the initial Ex and Ey components by the mean

of complex coefficients. This can be expressed by the use of a diagonal matrix:







E ′
x

E ′
y






=







Txx 0

0 Tyy






·







Ex

Ey






(5.1)

where Txx and Tyy are complex coefficients to be determined. The polariza-

tion states of the beam will be further modified with respect to the changes

introduced by the recombination plate. The calculation of the signals at the

detectors would lead to the same conclusions as in Section 4; the procedure

explained in Section 2 should be still reliable as long as the calibration con-

stants C and φ0 are adjusted by the calibration procedure. In particular the
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phase shift ϕ between the two signals should be constant for a scan of the

angle α during the calibration without plasma, which actually doesn’t occur.

If instead, for any reason, the x and y detectors are not reached only by the

Ex and Ey field components respectively, but by a combination of the two,

then a non diagonal matrix should be used instead of (5.1) to calculate the

signals:






E ′
x

E ′
y






=







Txx Txy

Tyx Tyy






·







Ex

Ey






. (5.2)

This formalism is more general and allows modelling other additional effects,

for example a non ideal behaviour of the wire grid in front of the detectors

which could have finite transmission and reflection coefficients for electric

field parallel and perpendicular to the wires respectively. Writing

Tjk = |Tjk| eiφjk (j, k) = (x, y), (5.3)

the electric field components Ex and Ey coming out from the recombination

plate (4.14) ÷ (4.17) are inserted into (5.2); the E ′
x and E ′

y components so

evaluated can be put into (2.6) and (2.7) to calculate the detector signals.

The calculus, reported in Appendix B, provides relations still in the form

(2.11) and (2.12), where the amplitudes Ai and Ap and the phase shift ϕ are
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given by:

Ai = A

√

√

√

√

(

4
∑

k=1

ak cosαk

)2

+

(

4
∑

k=1

ak sinαk

)2

(5.4)

Ap = B

√

√

√

√

(

4
∑

k=1

bk cosβk

)2

+

(

4
∑

k=1

bk sin βk

)2

(5.5)

ϕ = arctan

4
∑

k=1

bk sin βk

4
∑

k=1

bk cosβk

− arctan

4
∑

k=1

ak sinαk

4
∑

k=1

ak cosαk

(5.6)

where A and B are given by (2.15) and (2.16) respectively, and the coefficients

ak and bk (k=1,2,3,4) depend on Θ and the angles αk and βk depend on Φ

and φr. Their explicite expressions are given by relations (B.3) ÷ (B.18)

reported in Appendix B.

The signals i(t) and p(t) at the detectors are processed to calculate the

averaged out values, as in relations (2.18) ÷ (2.21). The ratios R and R’ still

defined by (2.22) ÷ (2.23), are now evaluated by the relations (5.4) ÷ (5.6)

for Ai Ap and ϕ. Note that their dependence on Θ and ϕ is very different

from the one of the relations (2.24) and (2.25). In conclusion, assuming a

transformation of the type (5.2), it is possible to state that:

1. the angles Θ and Φ can’t be obtained from the R and R’ measured

values in a simple way, as it happens when the relations (2.28) and

(2.29) are valid;

2. there is no direct relation between ϕ and Φ; now ϕ depends in a complex
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way on Θ and Φ, as it is shown in (5.6) taking into account (B.3) ÷

(B.18);

3. during the calibration with Φ = 0 it has to be expected that the angle

ϕ isn’t constant as Θ (or α) varies, but it changes with a complex law.

As a consequence, if the waveguide system existing at JET actually operates

a transformation of the type (5.2) on the field components, an algorithm to

get Θ and Φ starting from given R’ and R appears difficult to devise.

In addition, any possible ellipticity of the reference beam expressed by φr

would not be compensated by the calibration and it would affect the accuracy

of the final results. Fortunately, in the polarimeter at JET for each channel,

it has been mounted a wire grid on the path of the reference beam before the

recombination plate to guarantee a linear polarization, as previously said in

Section 2.

6 A particular case

Among the optics included into the transfer beam line an important role

is played by 90◦ elbows and focalizing mirrors, where reflections on metal

surfaces occur. It is well-known that a radiation reflecting on a metal surface

could experience a modification of its polarization. In fact the electric field

components E⊥ and E‖, perpendicular and parallel to the plane of incidence,

behaves differently, as well as in the case of dielectric plates (9). The result
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can be expressed in the form:

E
(r)
⊥ = ρ⊥E

(i)
⊥ (6.1)

E
(r)
‖ = ρ‖E

(i)
‖ , (6.2)

with

ρ⊥ = −sin(θi − θt)

sin(θi + θt)
ρ‖ =

tan(θi − θt)

tan(θi + θt)
(6.3)

sin θt =
1

n̂
sin θi (6.4)

where θi is the angle of incidence and θt plays the role of a complex refraction

angle. The complex refraction index can be approximated (with σ ≫ ωǫ0)

as

n̂ ∼= (1 + i)

√

µrσ

2ωǫ0
, (6.5)

where σ and µr are respectively the conductivity and the relative magnetic

permeability of the metal. For high conductivity metal as aluminium, copper

or silver and for FIR wavelengths, the modulus of the refraction index is big,

so that it results with a good approximation:

ρ⊥ ≈ −1 ρ‖ ≈ 1. (6.6)

As consequence, a linearly polarized radiation incident with electric field

tilted at an angle θ with respect to the plane of incidence, will come out

tilted at −θ, so it will suffer a rotation of an angle 2θ by the effect of the

reflection. Then the metal surface behaves like an half wave plate with optical
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axis parallel to the plane of incidence.

Then let’s analyze the case that the only effect of the optical waveguide

system is a rotation of an angle γ of the radiation propagating along it. The

electric field components change as:







E ′
x

E ′
y






=







cos γ sin γ

− sin γ cos γ






·







Ex

Ey






. (6.7)

As shown in Section 5, the calculus of the detector signals i(t) and p(t) leads

back to the relations (2.11) and (2.12), with expressions formally equal to

(5.4) ÷ (5.6) for Ai , Ap and ϕ where now ak, bk, αk, βk (k=1,2,3,4) are given

by relations (C.1) ÷ (C.12) reported in Appendix C.

Attempts have been done to state if curves of ϕ as function of α = Θ − Θ0,

with Φ = 0, evaluated using (5.6) with (C.1) ÷ (C.12), could reproduce the

experimental calibration curves shown in figures 2 ÷ 5, with Φ = 0 and suit-

able choices for γ and φr.

A particularly good agreement has been found between data calculated for

γ = −29◦ and φr = 3◦ and the experimental data for channel 3, as it can be

seen in Fig. 7, where the curve of tanϕ is compared with the experimental

curve of R’/R. This agreement has been reached optimizing the values of

γ and φr and the reported values are the results of the optimization. The

agreement shown in Fig. 7 is very interesting because it demostrates that

any possible rotation of the polarization of the radiation propagating along

the waveguide up to the detectors, could be a source of the anomaly affect-

ing the polarimetric measurements at JET. As previously shown, rotations
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of the polarization could actually happen in reflections on metal mirrors. It

is understood this cause of the anomaly wasn’t considered for the JET po-

larimeter up to now.

Moreover, the fact that the agreement is optimized with a small φr angle

different from zero, could be ascribed to some ellipticity of the polarization

of the reference beam, perhaps due to a non perfect filtering of the wire grid.

7 Conclusions

The main results of the analysis so far developed can be summarized as

follows:

1. the recombination plates don’t look to be the source of the anomaly

noticed in the polarimetric data at JET; they modify the polarization of

the beam but these changes should be compensated by the calibration;

2. the anomaly could be ascribed to a non standard behaviour of some

optical element encountered by the probing beam along its path;

3. the anomaly may be due also to changes of the polarization suffered

along the optical beam line which transfers the recombined beams from

the Torus hall to the detectors. The particular case of a simple rotation

of the polarization proves to be very significant.

In order to carry on this investigation on the causes of the anomaly, it is

necessary to go on two directions. One way is doing bench tests on all the

optical components (or combinations of optics) crossed by the probing beam

from the halfwave plates to the recombination plates, i.e. quartz windows,
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mylar foils, TPX windows,... It is necessary to have a laser source, producing

a linearly polarised beam, followed by a rotatable half wave plate and a

device able to measure the polarisation state of the beam outcoming from

the sample. It must be verified whether the beam crossing the sample suffers

an ellipticity and how this ellipticty varies with the change of the orientation

of the incident polarisation. The other way is doing a careful inspection on

the paths of the beams from the recombination plates up to the detectors.

The main purpose of this inspection is to obtain a precise characterisation

of all the optics crossed by the beams and to draw a tridimensional map of

the paths. In this way, it will be possible to properly simulate the behaviour

of the beams while they travel along this section of the diagnostic. Once all

these data will be available it will be possible to recognise without doubt the

causes of the anomalous behaviour of the polarimeter operating at JET. It

should be also possible to formulate models suitable to simulate the operation

of the polarimeter. In particular, reproducing the experimental curves of ϕ

and of the associated parameters according with α varying, as shown in

figures 2÷5. When this goal will be achieved, the next step will be to define

the changes which have to be perfomed on the polarimeter to remove the

anomaly.
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A Transmission and reflection coefficients of

the recombination plate expressed in polar

form

The following relations have to be known to be able to express the coefficients

given by (4.6) and (4.7) in the form (4.13):

|P⊥| =
|1 − ℜ⊥|

√

1 + ℜ2
⊥ − 2ℜ⊥ cos δ⊥

(A.1)

|P‖| =
|1 −ℜ‖|

√

1 + ℜ2
‖ − 2ℜ‖ cos δ‖

(A.2)

|R⊥| =

2
√
ℜ⊥

∣

∣

∣

∣

sin
δ⊥
2

∣

∣

∣

∣

√

1 + ℜ2
⊥ − 2ℜ⊥ cos δ⊥

(A.3)

|R‖| =

2
√

ℜ‖

∣

∣

∣

∣

sin
δ‖
2

∣

∣

∣

∣

√

1 + ℜ2
‖ − 2ℜ‖ cos δ‖

(A.4)

ψ⊥ = arctan

( ℜ⊥ sin δ⊥
1 − ℜ⊥ cos δ⊥

)

(A.5)

ψ‖ = arctan

( ℜ‖ sin δ‖
1 − ℜ‖ cos δ‖

)

(A.6)

φ⊥ = arctan

(

−1 − ℜ⊥

1 + ℜ⊥

sin δ⊥
1 − cos δ⊥

)

(A.7)

φ‖ = arctan

(

−1 − ℜ‖

1 + ℜ‖

sin δ‖
1 − cos δ‖

)

(A.8)
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B Evaluation of detector signals assuming the

transformation law (5.2)

Making the operation previously presented, the two signals i(t) and p(t) are

represented by a four terms sum:

i(t) = Kx

√
2 |E0| |E0g|

4
∑

k=1

ak cos(ω0t− αk) (B.1)

p(t) = Ky

√
2 |E0| |E0g|

4
∑

k=1

bk cos(ω0t− βk) (B.2)
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where

a1 = |Txx|2 |P⊥| |R⊥| cos Θ (B.3)

a2 = |Txx| |Txy| |P⊥|
∣

∣R‖

∣

∣ cos Θ (B.4)

a3 = |Txx| |Txy|
∣

∣P‖

∣

∣ |R⊥| sin Θ (B.5)

a4 = |Txy|2
∣

∣P‖

∣

∣

∣

∣R‖

∣

∣ sin Θ (B.6)

b1 = |Tyx|2 |P⊥| |R⊥| cos Θ (B.7)

b2 = |Tyx| |Tyy| |P⊥|
∣

∣R‖

∣

∣ cos Θ (B.8)

b3 = |Tyy| |Tyx|
∣

∣P‖

∣

∣ |R⊥| sin Θ (B.9)

b4 = |Tyy|2
∣

∣P‖

∣

∣

∣

∣R‖

∣

∣ sin Θ (B.10)

α1 = −ψ⊥ + φ⊥ (B.11)

α2 = −φxx + φxy − ψ⊥ + φ‖ − φr (B.12)

α3 = φxx − φxy − ψ‖ + φ⊥ + Φ (B.13)

α4 = −ψ‖ + φ‖ − φr + Φ (B.14)

β1 = −ψ⊥ + φ⊥ (B.15)

β2 = −φyx + φyy − ψ⊥ + φ‖ − φr (B.16)

β3 = −φyy + φyx − ψ‖ + φ⊥ + Φ (B.17)

β4 = −ψ‖ + φ‖ − φr + Φ. (B.18)

Then, equations (B.1) and (B.2) can be expressed in the form

i(t) = Ai cos(ω0t− ψi) (B.19)

p(t) = Ap cos(ω0t− ψp) (B.20)
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with

Ai = A

√

√

√

√

(

4
∑

k=1

ak cosαk

)2

+

(

4
∑

k=1

ak sinαk

)2

(5.4)

Ap = B

√

√

√

√

(

4
∑

k=1

bk cosβk

)2

+

(

4
∑

k=1

bk sin βk

)2

(5.5)

ψi = arctan

4
∑

k=1

ak sinαk

4
∑

k=1

ak cosαk

(B.21)

ψp = arctan

4
∑

k=1

bk sin βk

4
∑

k=1

bk cosβk

. (B.22)

A and B are given by relations (2.15) and (2.16) respectively. Finally,

equations (5.4) and (5.5) can be put in the form (2.11) and (2.12) with

ϕ = ψp − ψi. (B.23)

Equations (B.21), (B.22) and (B.23) lead to (5.6).
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C Evaluation of detectors signals assuming

the transformation law (6.7)

With a method similar to the previous one, for the quantities Ai, Ap and ϕ,

it is possible to obtain relations formally equal to (5.4) ÷ (5.6), where ak, bk,

αk, βk (k = 1, 2, 3, 4) are provided by:

a1 = cos2 γ |P⊥| |R⊥| cos Θ (C.1)

a2 = cos γ sin γ |P⊥|
∣

∣R‖

∣

∣ cos Θ (C.2)

a3 = cos γ sin γ
∣

∣P‖

∣

∣ |R⊥| sin Θ (C.3)

a4 = sin2 γ
∣

∣P‖

∣

∣

∣

∣R‖

∣

∣ sin Θ (C.4)

b1 = sin2 γ |P⊥| |R⊥| cos Θ (C.5)

b2 = − cos γ sin γ |P⊥|
∣

∣R‖

∣

∣ cos Θ (C.6)

b3 = − cos γ sin γ
∣

∣P‖

∣

∣ |R⊥| sin Θ (C.7)

b4 = cos2 γ
∣

∣P‖

∣

∣

∣

∣R‖

∣

∣ sin Θ (C.8)

α1 = β1 = −ψ⊥ + φ⊥ (C.9)

α2 = β2 = −ψ⊥ + φ‖ − φr (C.10)

α3 = β3 = −ψ‖ + φ⊥ + Φ (C.11)

α4 = β4 = −ψ‖ + φ‖ − φr + Φ. (C.12)
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Figure 1: Diagnostic layout for one vertical chord of the polari-interferometer at JET.
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Figure 2: Evolution of ϕ, R and R′ with respect to the
angle α for channel 1.

Figure 3: Evolution of ϕ, R and R′ with respect to the
angle α for channel 2.

Figure 4: Evolution of ϕ, R and R′ with respect to the
angle α for channel 3.

Figure 5: Evolution of ϕ, R and R′ with respect to the
angle α for channel 4.
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Figure 6: Evolution of Φ, of the Faraday rotation angle
Ψ and of the phase shift ϕ during one shot for channel 3.
The signals Φ and Ψ are processed by the software; ϕ
comes directly from the raw data.
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Figure 7: Experimental R′/R curve for channel 3 is
compared with theoretical tan ϕ, calculated with γ = -
29o and φr = 3o.
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